diff options
Diffstat (limited to 'Documentation')
62 files changed, 1042 insertions, 370 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX index edef85ce119..2a39aeba146 100644 --- a/Documentation/00-INDEX +++ b/Documentation/00-INDEX @@ -42,14 +42,8 @@ IRQ.txt - description of what an IRQ is. ManagementStyle - how to (attempt to) manage kernel hackers. -MSI-HOWTO.txt - - the Message Signaled Interrupts (MSI) Driver Guide HOWTO and FAQ. RCU/ - directory with info on RCU (read-copy update). -README.DAC960 - - info on Mylex DAC960/DAC1100 PCI RAID Controller Driver for Linux. -README.cycladesZ - - info on Cyclades-Z firmware loading. SAK.txt - info on Secure Attention Keys. SM501.txt @@ -86,20 +80,16 @@ blackfin/ - directory with documentation for the Blackfin arch. block/ - info on the Block I/O (BIO) layer. +blockdev/ + - info on block devices & drivers cachetlb.txt - describes the cache/TLB flushing interfaces Linux uses. -cciss.txt - - info, major/minor #'s for Compaq's SMART Array Controllers. cdrom/ - directory with information on the CD-ROM drivers that Linux has. -computone.txt - - info on Computone Intelliport II/Plus Multiport Serial Driver. connector/ - docs on the netlink based userspace<->kernel space communication mod. console/ - documentation on Linux console drivers. -cpqarray.txt - - info on using Compaq's SMART2 Intelligent Disk Array Controllers. cpu-freq/ - info on CPU frequency and voltage scaling. cpu-hotplug.txt @@ -126,8 +116,6 @@ device-mapper/ - directory with info on Device Mapper. devices.txt - plain ASCII listing of all the nodes in /dev/ with major minor #'s. -digiepca.txt - - info on Digi Intl. {PC,PCI,EISA}Xx and Xem series cards. dontdiff - file containing a list of files that should never be diff'ed. driver-model/ @@ -152,14 +140,10 @@ filesystems/ - info on the vfs and the various filesystems that Linux supports. firmware_class/ - request_firmware() hotplug interface info. -floppy.txt - - notes and driver options for the floppy disk driver. frv/ - Fujitsu FR-V Linux documentation. gpio.txt - overview of GPIO (General Purpose Input/Output) access conventions. -hayes-esp.txt - - info on using the Hayes ESP serial driver. highuid.txt - notes on the change from 16 bit to 32 bit user/group IDs. timers/ @@ -186,8 +170,6 @@ io_ordering.txt - info on ordering I/O writes to memory-mapped addresses. ioctl/ - directory with documents describing various IOCTL calls. -ioctl-number.txt - - how to implement and register device/driver ioctl calls. iostats.txt - info on I/O statistics Linux kernel provides. irqflags-tracing.txt @@ -250,14 +232,10 @@ mips/ - directory with info about Linux on MIPS architecture. mono.txt - how to execute Mono-based .NET binaries with the help of BINFMT_MISC. -moxa-smartio - - file with info on installing/using Moxa multiport serial driver. mutex-design.txt - info on the generic mutex subsystem. namespaces/ - directory with various information about namespaces -nbd.txt - - info on a TCP implementation of a network block device. netlabel/ - directory with information on the NetLabel subsystem. networking/ @@ -270,8 +248,6 @@ numastat.txt - info on how to read Numa policy hit/miss statistics in sysfs. oops-tracing.txt - how to decode those nasty internal kernel error dump messages. -paride.txt - - information about the parallel port IDE subsystem. parisc/ - directory with info on using Linux on PA-RISC architecture. parport.txt @@ -290,20 +266,16 @@ powerpc/ - directory with info on using Linux with the PowerPC. preempt-locking.txt - info on locking under a preemptive kernel. +printk-formats.txt + - how to get printk format specifiers right prio_tree.txt - info on radix-priority-search-tree use for indexing vmas. -ramdisk.txt - - short guide on how to set up and use the RAM disk. rbtree.txt - info on what red-black trees are and what they are for. -riscom8.txt - - notes on using the RISCom/8 multi-port serial driver. robust-futex-ABI.txt - documentation of the robust futex ABI. robust-futexes.txt - a description of what robust futexes are. -rocket.txt - - info on the Comtrol RocketPort multiport serial driver. rt-mutex-design.txt - description of the RealTime mutex implementation design. rt-mutex.txt @@ -332,8 +304,6 @@ sparc/ - directory with info on using Linux on Sparc architecture. sparse.txt - info on how to obtain and use the sparse tool for typechecking. -specialix.txt - - info on hardware/driver for specialix IO8+ multiport serial card. spi/ - overview of Linux kernel Serial Peripheral Interface (SPI) support. spinlocks.txt @@ -342,14 +312,10 @@ stable_api_nonsense.txt - info on why the kernel does not have a stable in-kernel api or abi. stable_kernel_rules.txt - rules and procedures for the -stable kernel releases. -stallion.txt - - info on using the Stallion multiport serial driver. svga.txt - short guide on selecting video modes at boot via VGA BIOS. sysfs-rules.txt - How not to use sysfs. -sx.txt - - info on the Specialix SX/SI multiport serial driver. sysctl/ - directory with info on the /proc/sys/* files. sysrq.txt @@ -358,8 +324,6 @@ telephony/ - directory with info on telephony (e.g. voice over IP) support. time_interpolators.txt - info on time interpolators. -tty.txt - - guide to the locking policies of the tty layer. uml/ - directory with information about User Mode Linux. unicode.txt diff --git a/Documentation/ABI/testing/sysfs-c2port b/Documentation/ABI/testing/sysfs-c2port new file mode 100644 index 00000000000..716cffc457e --- /dev/null +++ b/Documentation/ABI/testing/sysfs-c2port @@ -0,0 +1,88 @@ +What: /sys/class/c2port/ +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/ directory will contain files and + directories that will provide a unified interface to + the C2 port interface. + +What: /sys/class/c2port/c2portX +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/c2portX/ directory is related to X-th + C2 port into the system. Each directory will contain files to + manage and control its C2 port. + +What: /sys/class/c2port/c2portX/access +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/c2portX/access file enable the access + to the C2 port from the system. No commands can be sent + till this entry is set to 0. + +What: /sys/class/c2port/c2portX/dev_id +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/c2portX/dev_id file show the device ID + of the connected micro. + +What: /sys/class/c2port/c2portX/flash_access +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/c2portX/flash_access file enable the + access to the on-board flash of the connected micro. + No commands can be sent till this entry is set to 0. + +What: /sys/class/c2port/c2portX/flash_block_size +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/c2portX/flash_block_size file show + the on-board flash block size of the connected micro. + +What: /sys/class/c2port/c2portX/flash_blocks_num +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/c2portX/flash_blocks_num file show + the on-board flash blocks number of the connected micro. + +What: /sys/class/c2port/c2portX/flash_data +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/c2portX/flash_data file export + the content of the on-board flash of the connected micro. + +What: /sys/class/c2port/c2portX/flash_erase +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/c2portX/flash_erase file execute + the "erase" command on the on-board flash of the connected + micro. + +What: /sys/class/c2port/c2portX/flash_erase +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/c2portX/flash_erase file show the + on-board flash size of the connected micro. + +What: /sys/class/c2port/c2portX/reset +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/c2portX/reset file execute a "reset" + command on the connected micro. + +What: /sys/class/c2port/c2portX/rev_id +Date: October 2008 +Contact: Rodolfo Giometti <giometti@linux.it> +Description: + The /sys/class/c2port/c2portX/rev_id file show the revision ID + of the connected micro. diff --git a/Documentation/ABI/testing/sysfs-firmware-acpi b/Documentation/ABI/testing/sysfs-firmware-acpi index f27be7d1a49..e8ffc70ffe1 100644 --- a/Documentation/ABI/testing/sysfs-firmware-acpi +++ b/Documentation/ABI/testing/sysfs-firmware-acpi @@ -89,7 +89,7 @@ Description: error - an interrupt that can't be accounted for above. - invalid: it's either a wakeup GPE or a GPE/Fixed Event that + invalid: it's either a GPE or a Fixed Event that doesn't have an event handler. disable: the GPE/Fixed Event is valid but disabled. @@ -117,30 +117,30 @@ Description: and other user space applications so that the machine won't shutdown when pressing the power button. # cat ff_pwr_btn - 0 + 0 enabled # press the power button for 3 times; # cat ff_pwr_btn - 3 + 3 enabled # echo disable > ff_pwr_btn # cat ff_pwr_btn - disable + 3 disabled # press the power button for 3 times; # cat ff_pwr_btn - disable + 3 disabled # echo enable > ff_pwr_btn # cat ff_pwr_btn - 4 + 4 enabled /* * this is because the status bit is set even if the enable bit is cleared, * and it triggers an ACPI fixed event when the enable bit is set again */ # press the power button for 3 times; # cat ff_pwr_btn - 7 + 7 enabled # echo disable > ff_pwr_btn # press the power button for 3 times; # echo clear > ff_pwr_btn /* clear the status bit */ # echo disable > ff_pwr_btn # cat ff_pwr_btn - 7 + 7 enabled diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt index b8e86460046..b462bb14954 100644 --- a/Documentation/DMA-API.txt +++ b/Documentation/DMA-API.txt @@ -316,12 +316,10 @@ reduce current DMA mapping usage or delay and try again later). pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction) -Maps a scatter gather list from the block layer. - Returns: the number of physical segments mapped (this may be shorter -than <nents> passed in if the block layer determines that some -elements of the scatter/gather list are physically adjacent and thus -may be mapped with a single entry). +than <nents> passed in if some elements of the scatter/gather list are +physically or virtually adjacent and an IOMMU maps them with a single +entry). Please note that the sg cannot be mapped again if it has been mapped once. The mapping process is allowed to destroy information in the sg. diff --git a/Documentation/PCI/00-INDEX b/Documentation/PCI/00-INDEX index 49f43946c6b..812b17fe3ed 100644 --- a/Documentation/PCI/00-INDEX +++ b/Documentation/PCI/00-INDEX @@ -1,5 +1,7 @@ 00-INDEX - this file +MSI-HOWTO.txt + - the Message Signaled Interrupts (MSI) Driver Guide HOWTO and FAQ. PCI-DMA-mapping.txt - info for PCI drivers using DMA portably across all platforms PCIEBUS-HOWTO.txt diff --git a/Documentation/MSI-HOWTO.txt b/Documentation/PCI/MSI-HOWTO.txt index 256defd7e17..256defd7e17 100644 --- a/Documentation/MSI-HOWTO.txt +++ b/Documentation/PCI/MSI-HOWTO.txt diff --git a/Documentation/acpi/debug.txt b/Documentation/acpi/debug.txt new file mode 100644 index 00000000000..65bf47c46b6 --- /dev/null +++ b/Documentation/acpi/debug.txt @@ -0,0 +1,148 @@ + ACPI Debug Output + + +The ACPI CA, the Linux ACPI core, and some ACPI drivers can generate debug +output. This document describes how to use this facility. + +Compile-time configuration +-------------------------- + +ACPI debug output is globally enabled by CONFIG_ACPI_DEBUG. If this config +option is turned off, the debug messages are not even built into the +kernel. + +Boot- and run-time configuration +-------------------------------- + +When CONFIG_ACPI_DEBUG=y, you can select the component and level of messages +you're interested in. At boot-time, use the acpi.debug_layer and +acpi.debug_level kernel command line options. After boot, you can use the +debug_layer and debug_level files in /sys/module/acpi/parameters/ to control +the debug messages. + +debug_layer (component) +----------------------- + +The "debug_layer" is a mask that selects components of interest, e.g., a +specific driver or part of the ACPI interpreter. To build the debug_layer +bitmask, look for the "#define _COMPONENT" in an ACPI source file. + +You can set the debug_layer mask at boot-time using the acpi.debug_layer +command line argument, and you can change it after boot by writing values +to /sys/module/acpi/parameters/debug_layer. + +The possible components are defined in include/acpi/acoutput.h and +include/acpi/acpi_drivers.h. Reading /sys/module/acpi/parameters/debug_layer +shows the supported mask values, currently these: + + ACPI_UTILITIES 0x00000001 + ACPI_HARDWARE 0x00000002 + ACPI_EVENTS 0x00000004 + ACPI_TABLES 0x00000008 + ACPI_NAMESPACE 0x00000010 + ACPI_PARSER 0x00000020 + ACPI_DISPATCHER 0x00000040 + ACPI_EXECUTER 0x00000080 + ACPI_RESOURCES 0x00000100 + ACPI_CA_DEBUGGER 0x00000200 + ACPI_OS_SERVICES 0x00000400 + ACPI_CA_DISASSEMBLER 0x00000800 + ACPI_COMPILER 0x00001000 + ACPI_TOOLS 0x00002000 + ACPI_BUS_COMPONENT 0x00010000 + ACPI_AC_COMPONENT 0x00020000 + ACPI_BATTERY_COMPONENT 0x00040000 + ACPI_BUTTON_COMPONENT 0x00080000 + ACPI_SBS_COMPONENT 0x00100000 + ACPI_FAN_COMPONENT 0x00200000 + ACPI_PCI_COMPONENT 0x00400000 + ACPI_POWER_COMPONENT 0x00800000 + ACPI_CONTAINER_COMPONENT 0x01000000 + ACPI_SYSTEM_COMPONENT 0x02000000 + ACPI_THERMAL_COMPONENT 0x04000000 + ACPI_MEMORY_DEVICE_COMPONENT 0x08000000 + ACPI_VIDEO_COMPONENT 0x10000000 + ACPI_PROCESSOR_COMPONENT 0x20000000 + +debug_level +----------- + +The "debug_level" is a mask that selects different types of messages, e.g., +those related to initialization, method execution, informational messages, etc. +To build debug_level, look at the level specified in an ACPI_DEBUG_PRINT() +statement. + +The ACPI interpreter uses several different levels, but the Linux +ACPI core and ACPI drivers generally only use ACPI_LV_INFO. + +You can set the debug_level mask at boot-time using the acpi.debug_level +command line argument, and you can change it after boot by writing values +to /sys/module/acpi/parameters/debug_level. + +The possible levels are defined in include/acpi/acoutput.h. Reading +/sys/module/acpi/parameters/debug_level shows the supported mask values, +currently these: + + ACPI_LV_INIT 0x00000001 + ACPI_LV_DEBUG_OBJECT 0x00000002 + ACPI_LV_INFO 0x00000004 + ACPI_LV_INIT_NAMES 0x00000020 + ACPI_LV_PARSE 0x00000040 + ACPI_LV_LOAD 0x00000080 + ACPI_LV_DISPATCH 0x00000100 + ACPI_LV_EXEC 0x00000200 + ACPI_LV_NAMES 0x00000400 + ACPI_LV_OPREGION 0x00000800 + ACPI_LV_BFIELD 0x00001000 + ACPI_LV_TABLES 0x00002000 + ACPI_LV_VALUES 0x00004000 + ACPI_LV_OBJECTS 0x00008000 + ACPI_LV_RESOURCES 0x00010000 + ACPI_LV_USER_REQUESTS 0x00020000 + ACPI_LV_PACKAGE 0x00040000 + ACPI_LV_ALLOCATIONS 0x00100000 + ACPI_LV_FUNCTIONS 0x00200000 + ACPI_LV_OPTIMIZATIONS 0x00400000 + ACPI_LV_MUTEX 0x01000000 + ACPI_LV_THREADS 0x02000000 + ACPI_LV_IO 0x04000000 + ACPI_LV_INTERRUPTS 0x08000000 + ACPI_LV_AML_DISASSEMBLE 0x10000000 + ACPI_LV_VERBOSE_INFO 0x20000000 + ACPI_LV_FULL_TABLES 0x40000000 + ACPI_LV_EVENTS 0x80000000 + +Examples +-------- + +For example, drivers/acpi/bus.c contains this: + + #define _COMPONENT ACPI_BUS_COMPONENT + ... + ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Device insertion detected\n")); + +To turn on this message, set the ACPI_BUS_COMPONENT bit in acpi.debug_layer +and the ACPI_LV_INFO bit in acpi.debug_level. (The ACPI_DEBUG_PRINT +statement uses ACPI_DB_INFO, which is macro based on the ACPI_LV_INFO +definition.) + +Enable all AML "Debug" output (stores to the Debug object while interpreting +AML) during boot: + + acpi.debug_layer=0xffffffff acpi.debug_level=0x2 + +Enable PCI and PCI interrupt routing debug messages: + + acpi.debug_layer=0x400000 acpi.debug_level=0x4 + +Enable all ACPI hardware-related messages: + + acpi.debug_layer=0x2 acpi.debug_level=0xffffffff + +Enable all ACPI_DB_INFO messages after boot: + + # echo 0x4 > /sys/module/acpi/parameters/debug_level + +Show all valid component values: + + # cat /sys/module/acpi/parameters/debug_layer diff --git a/Documentation/arm/mem_alignment b/Documentation/arm/mem_alignment index d145ccca169..c7c7a114c78 100644 --- a/Documentation/arm/mem_alignment +++ b/Documentation/arm/mem_alignment @@ -24,7 +24,7 @@ real bad - it changes the behaviour of all unaligned instructions in user space, and might cause programs to fail unexpectedly. To change the alignment trap behavior, simply echo a number into -/proc/sys/debug/alignment. The number is made up from various bits: +/proc/cpu/alignment. The number is made up from various bits: bit behavior when set --- ----------------- diff --git a/Documentation/blockdev/00-INDEX b/Documentation/blockdev/00-INDEX new file mode 100644 index 00000000000..86f054c4701 --- /dev/null +++ b/Documentation/blockdev/00-INDEX @@ -0,0 +1,16 @@ +00-INDEX + - this file +README.DAC960 + - info on Mylex DAC960/DAC1100 PCI RAID Controller Driver for Linux. +cciss.txt + - info, major/minor #'s for Compaq's SMART Array Controllers. +cpqarray.txt + - info on using Compaq's SMART2 Intelligent Disk Array Controllers. +floppy.txt + - notes and driver options for the floppy disk driver. +nbd.txt + - info on a TCP implementation of a network block device. +paride.txt + - information about the parallel port IDE subsystem. +ramdisk.txt + - short guide on how to set up and use the RAM disk. diff --git a/Documentation/README.DAC960 b/Documentation/blockdev/README.DAC960 index 0e8f618ab53..0e8f618ab53 100644 --- a/Documentation/README.DAC960 +++ b/Documentation/blockdev/README.DAC960 diff --git a/Documentation/cciss.txt b/Documentation/blockdev/cciss.txt index 89698e8df7d..89698e8df7d 100644 --- a/Documentation/cciss.txt +++ b/Documentation/blockdev/cciss.txt diff --git a/Documentation/cpqarray.txt b/Documentation/blockdev/cpqarray.txt index c7154e20ef5..c7154e20ef5 100644 --- a/Documentation/cpqarray.txt +++ b/Documentation/blockdev/cpqarray.txt diff --git a/Documentation/floppy.txt b/Documentation/blockdev/floppy.txt index 6ccab88705c..6ccab88705c 100644 --- a/Documentation/floppy.txt +++ b/Documentation/blockdev/floppy.txt diff --git a/Documentation/nbd.txt b/Documentation/blockdev/nbd.txt index aeb93ffe641..aeb93ffe641 100644 --- a/Documentation/nbd.txt +++ b/Documentation/blockdev/nbd.txt diff --git a/Documentation/paride.txt b/Documentation/blockdev/paride.txt index e4312676bdd..e4312676bdd 100644 --- a/Documentation/paride.txt +++ b/Documentation/blockdev/paride.txt diff --git a/Documentation/ramdisk.txt b/Documentation/blockdev/ramdisk.txt index 6c820baa19a..6c820baa19a 100644 --- a/Documentation/ramdisk.txt +++ b/Documentation/blockdev/ramdisk.txt diff --git a/Documentation/c2port.txt b/Documentation/c2port.txt new file mode 100644 index 00000000000..d9bf93ea439 --- /dev/null +++ b/Documentation/c2port.txt @@ -0,0 +1,90 @@ + C2 port support + --------------- + +(C) Copyright 2007 Rodolfo Giometti <giometti@enneenne.com> + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + + + +Overview +-------- + +This driver implements the support for Linux of Silicon Labs (Silabs) +C2 Interface used for in-system programming of micro controllers. + +By using this driver you can reprogram the in-system flash without EC2 +or EC3 debug adapter. This solution is also useful in those systems +where the micro controller is connected via special GPIOs pins. + +References +---------- + +The C2 Interface main references are at (http://www.silabs.com) +Silicon Laboratories site], see: + +- AN127: FLASH Programming via the C2 Interface at +http://www.silabs.com/public/documents/tpub_doc/anote/Microcontrollers/Small_Form_Factor/en/an127.pdf, and + +- C2 Specification at +http://www.silabs.com/public/documents/tpub_doc/spec/Microcontrollers/en/C2spec.pdf, + +however it implements a two wire serial communication protocol (bit +banging) designed to enable in-system programming, debugging, and +boundary-scan testing on low pin-count Silicon Labs devices. Currently +this code supports only flash programming but extensions are easy to +add. + +Using the driver +---------------- + +Once the driver is loaded you can use sysfs support to get C2port's +info or read/write in-system flash. + +# ls /sys/class/c2port/c2port0/ +access flash_block_size flash_erase rev_id +dev_id flash_blocks_num flash_size subsystem/ +flash_access flash_data reset uevent + +Initially the C2port access is disabled since you hardware may have +such lines multiplexed with other devices so, to get access to the +C2port, you need the command: + +# echo 1 > /sys/class/c2port/c2port0/access + +after that you should read the device ID and revision ID of the +connected micro controller: + +# cat /sys/class/c2port/c2port0/dev_id +8 +# cat /sys/class/c2port/c2port0/rev_id +1 + +However, for security reasons, the in-system flash access in not +enabled yet, to do so you need the command: + +# echo 1 > /sys/class/c2port/c2port0/flash_access + +After that you can read the whole flash: + +# cat /sys/class/c2port/c2port0/flash_data > image + +erase it: + +# echo 1 > /sys/class/c2port/c2port0/flash_erase + +and write it: + +# cat image > /sys/class/c2port/c2port0/flash_data + +after writing you have to reset the device to execute the new code: + +# echo 1 > /sys/class/c2port/c2port0/reset diff --git a/Documentation/cgroups/freezer-subsystem.txt b/Documentation/cgroups/freezer-subsystem.txt index c50ab58b72e..41f37fea127 100644 --- a/Documentation/cgroups/freezer-subsystem.txt +++ b/Documentation/cgroups/freezer-subsystem.txt @@ -1,4 +1,4 @@ - The cgroup freezer is useful to batch job management system which start +The cgroup freezer is useful to batch job management system which start and stop sets of tasks in order to schedule the resources of a machine according to the desires of a system administrator. This sort of program is often used on HPC clusters to schedule access to the cluster as a @@ -6,7 +6,7 @@ whole. The cgroup freezer uses cgroups to describe the set of tasks to be started/stopped by the batch job management system. It also provides a means to start and stop the tasks composing the job. - The cgroup freezer will also be useful for checkpointing running groups +The cgroup freezer will also be useful for checkpointing running groups of tasks. The freezer allows the checkpoint code to obtain a consistent image of the tasks by attempting to force the tasks in a cgroup into a quiescent state. Once the tasks are quiescent another task can @@ -16,7 +16,7 @@ recoverable error occur. This also allows the checkpointed tasks to be migrated between nodes in a cluster by copying the gathered information to another node and restarting the tasks there. - Sequences of SIGSTOP and SIGCONT are not always sufficient for stopping +Sequences of SIGSTOP and SIGCONT are not always sufficient for stopping and resuming tasks in userspace. Both of these signals are observable from within the tasks we wish to freeze. While SIGSTOP cannot be caught, blocked, or ignored it can be seen by waiting or ptracing parent tasks. @@ -37,26 +37,29 @@ demonstrate this problem using nested bash shells: <at this point 16990 exits and causes 16644 to exit too> - This happens because bash can observe both signals and choose how it +This happens because bash can observe both signals and choose how it responds to them. - Another example of a program which catches and responds to these +Another example of a program which catches and responds to these signals is gdb. In fact any program designed to use ptrace is likely to have a problem with this method of stopping and resuming tasks. - In contrast, the cgroup freezer uses the kernel freezer code to +In contrast, the cgroup freezer uses the kernel freezer code to prevent the freeze/unfreeze cycle from becoming visible to the tasks being frozen. This allows the bash example above and gdb to run as expected. - The freezer subsystem in the container filesystem defines a file named +The freezer subsystem in the container filesystem defines a file named freezer.state. Writing "FROZEN" to the state file will freeze all tasks in the cgroup. Subsequently writing "THAWED" will unfreeze the tasks in the cgroup. Reading will return the current state. +Note freezer.state doesn't exist in root cgroup, which means root cgroup +is non-freezable. + * Examples of usage : - # mkdir /containers/freezer + # mkdir /containers # mount -t cgroup -ofreezer freezer /containers # mkdir /containers/0 # echo $some_pid > /containers/0/tasks @@ -94,6 +97,6 @@ things happens: the freezer.state file 2) Userspace retries the freezing operation by writing "FROZEN" to the freezer.state file (writing "FREEZING" is not legal - and returns EIO) + and returns EINVAL) 3) The tasks that blocked the cgroup from entering the "FROZEN" state disappear from the cgroup's set of tasks. diff --git a/Documentation/cpu-freq/user-guide.txt b/Documentation/cpu-freq/user-guide.txt index 6c442d8426b..4f3f3840320 100644 --- a/Documentation/cpu-freq/user-guide.txt +++ b/Documentation/cpu-freq/user-guide.txt @@ -23,6 +23,7 @@ Contents: 1.3 sparc64 1.4 ppc 1.5 SuperH +1.6 Blackfin 2. "Policy" / "Governor"? 2.1 Policy @@ -97,6 +98,17 @@ The following SuperH processors are supported by cpufreq: SH-3 SH-4 +1.6 Blackfin +------------ + +The following Blackfin processors are supported by cpufreq: + +BF522, BF523, BF524, BF525, BF526, BF527, Rev 0.1 or higher +BF531, BF532, BF533, Rev 0.3 or higher +BF534, BF536, BF537, Rev 0.2 or higher +BF561, Rev 0.3 or higher +BF542, BF544, BF547, BF548, BF549, Rev 0.1 or higher + 2. "Policy" / "Governor" ? ========================== diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index 05d71b4b943..1a8af7354e7 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -56,30 +56,6 @@ Who: Mauro Carvalho Chehab <mchehab@infradead.org> --------------------------- -What: old tuner-3036 i2c driver -When: 2.6.28 -Why: This driver is for VERY old i2c-over-parallel port teletext receiver - boxes. Rather then spending effort on converting this driver to V4L2, - and since it is extremely unlikely that anyone still uses one of these - devices, it was decided to drop it. -Who: Hans Verkuil <hverkuil@xs4all.nl> - Mauro Carvalho Chehab <mchehab@infradead.org> - - --------------------------- - -What: V4L2 dpc7146 driver -When: 2.6.28 -Why: Old driver for the dpc7146 demonstration board that is no longer - relevant. The last time this was tested on actual hardware was - probably around 2002. Since this is a driver for a demonstration - board the decision was made to remove it rather than spending a - lot of effort continually updating this driver to stay in sync - with the latest internal V4L2 or I2C API. -Who: Hans Verkuil <hverkuil@xs4all.nl> - Mauro Carvalho Chehab <mchehab@infradead.org> - ---------------------------- - What: PCMCIA control ioctl (needed for pcmcia-cs [cardmgr, cardctl]) When: November 2005 Files: drivers/pcmcia/: pcmcia_ioctl.c @@ -268,18 +244,6 @@ Who: Michael Buesch <mb@bu3sch.de> --------------------------- -What: init_mm export -When: 2.6.26 -Why: Not used in-tree. The current out-of-tree users used it to - work around problems in the CPA code which should be resolved - by now. One usecase was described to provide verification code - of the CPA operation. That's a good idea in general, but such - code / infrastructure should be in the kernel and not in some - out-of-tree driver. -Who: Thomas Gleixner <tglx@linutronix.de> - ----------------------------- - What: usedac i386 kernel parameter When: 2.6.27 Why: replaced by allowdac and no dac combination diff --git a/Documentation/filesystems/ocfs2.txt b/Documentation/filesystems/ocfs2.txt index 4340cc82579..67310fbbb7d 100644 --- a/Documentation/filesystems/ocfs2.txt +++ b/Documentation/filesystems/ocfs2.txt @@ -28,10 +28,7 @@ Manish Singh <manish.singh@oracle.com> Caveats ======= Features which OCFS2 does not support yet: - - extended attributes - quotas - - cluster aware flock - - cluster aware lockf - Directory change notification (F_NOTIFY) - Distributed Caching (F_SETLEASE/F_GETLEASE/break_lease) - POSIX ACLs diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index bcceb99b81d..71df353e367 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -44,6 +44,7 @@ Table of Contents 2.14 /proc/<pid>/io - Display the IO accounting fields 2.15 /proc/<pid>/coredump_filter - Core dump filtering settings 2.16 /proc/<pid>/mountinfo - Information about mounts + 2.17 /proc/sys/fs/epoll - Configuration options for the epoll interface ------------------------------------------------------------------------------ Preface @@ -1338,10 +1339,13 @@ nmi_watchdog Enables/Disables the NMI watchdog on x86 systems. When the value is non-zero the NMI watchdog is enabled and will continuously test all online cpus to -determine whether or not they are still functioning properly. +determine whether or not they are still functioning properly. Currently, +passing "nmi_watchdog=" parameter at boot time is required for this function +to work. -Because the NMI watchdog shares registers with oprofile, by disabling the NMI -watchdog, oprofile may have more registers to utilize. +If LAPIC NMI watchdog method is in use (nmi_watchdog=2 kernel parameter), the +NMI watchdog shares registers with oprofile. By disabling the NMI watchdog, +oprofile may have more registers to utilize. msgmni ------ @@ -2483,4 +2487,30 @@ For more information on mount propagation see: Documentation/filesystems/sharedsubtree.txt +2.17 /proc/sys/fs/epoll - Configuration options for the epoll interface +-------------------------------------------------------- + +This directory contains configuration options for the epoll(7) interface. + +max_user_instances +------------------ + +This is the maximum number of epoll file descriptors that a single user can +have open at a given time. The default value is 128, and should be enough +for normal users. + +max_user_watches +---------------- + +Every epoll file descriptor can store a number of files to be monitored +for event readiness. Each one of these monitored files constitutes a "watch". +This configuration option sets the maximum number of "watches" that are +allowed for each user. +Each "watch" costs roughly 90 bytes on a 32bit kernel, and roughly 160 bytes +on a 64bit one. +The current default value for max_user_watches is the 1/32 of the available +low memory, divided for the "watch" cost in bytes. + + ------------------------------------------------------------------------------ + diff --git a/Documentation/filesystems/ramfs-rootfs-initramfs.txt b/Documentation/filesystems/ramfs-rootfs-initramfs.txt index 62fe9b1e089..a8273d5fad2 100644 --- a/Documentation/filesystems/ramfs-rootfs-initramfs.txt +++ b/Documentation/filesystems/ramfs-rootfs-initramfs.txt @@ -130,12 +130,12 @@ The 2.6 kernel build process always creates a gzipped cpio format initramfs archive and links it into the resulting kernel binary. By default, this archive is empty (consuming 134 bytes on x86). -The config option CONFIG_INITRAMFS_SOURCE (for some reason buried under -devices->block devices in menuconfig, and living in usr/Kconfig) can be used -to specify a source for the initramfs archive, which will automatically be -incorporated into the resulting binary. This option can point to an existing -gzipped cpio archive, a directory containing files to be archived, or a text -file specification such as the following example: +The config option CONFIG_INITRAMFS_SOURCE (in General Setup in menuconfig, +and living in usr/Kconfig) can be used to specify a source for the +initramfs archive, which will automatically be incorporated into the +resulting binary. This option can point to an existing gzipped cpio +archive, a directory containing files to be archived, or a text file +specification such as the following example: dir /dev 755 0 0 nod /dev/console 644 0 0 c 5 1 diff --git a/Documentation/filesystems/xip.txt b/Documentation/filesystems/xip.txt index 3cc4010521a..0466ee56927 100644 --- a/Documentation/filesystems/xip.txt +++ b/Documentation/filesystems/xip.txt @@ -39,10 +39,11 @@ The block device operation is optional, these block devices support it as of today: - dcssblk: s390 dcss block device driver -An address space operation named get_xip_page is used to retrieve reference -to a struct page. To address the target page, a reference to an address_space, -and a sector number is provided. A 3rd argument indicates whether the -function should allocate blocks if needed. +An address space operation named get_xip_mem is used to retrieve references +to a page frame number and a kernel address. To obtain these values a reference +to an address_space is provided. This function assigns values to the kmem and +pfn parameters. The third argument indicates whether the function should allocate +blocks if needed. This address space operation is mutually exclusive with readpage&writepage that do page cache read/write operations. diff --git a/Documentation/ftrace.txt b/Documentation/ftrace.txt index ea5a827395d..9cc4d685dde 100644 --- a/Documentation/ftrace.txt +++ b/Documentation/ftrace.txt @@ -8,7 +8,7 @@ Copyright 2008 Red Hat Inc. Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton, John Kacur, and David Teigland. -Written for: 2.6.27-rc1 +Written for: 2.6.28-rc2 Introduction ------------ @@ -50,26 +50,26 @@ of ftrace. Here is a list of some of the key files: Note: all time values are in microseconds. - current_tracer : This is used to set or display the current tracer + current_tracer: This is used to set or display the current tracer that is configured. - available_tracers : This holds the different types of tracers that + available_tracers: This holds the different types of tracers that have been compiled into the kernel. The tracers listed here can be configured by echoing their name into current_tracer. - tracing_enabled : This sets or displays whether the current_tracer + tracing_enabled: This sets or displays whether the current_tracer is activated and tracing or not. Echo 0 into this file to disable the tracer or 1 to enable it. - trace : This file holds the output of the trace in a human readable + trace: This file holds the output of the trace in a human readable format (described below). - latency_trace : This file shows the same trace but the information + latency_trace: This file shows the same trace but the information is organized more to display possible latencies in the system (described below). - trace_pipe : The output is the same as the "trace" file but this + trace_pipe: The output is the same as the "trace" file but this file is meant to be streamed with live tracing. Reads from this file will block until new data is retrieved. Unlike the "trace" and "latency_trace" @@ -82,11 +82,11 @@ of ftrace. Here is a list of some of the key files: tracer is not adding more data, they will display the same information every time they are read. - iter_ctrl : This file lets the user control the amount of data + iter_ctrl: This file lets the user control the amount of data that is displayed in one of the above output files. - trace_max_latency : Some of the tracers record the max latency. + trace_max_latency: Some of the tracers record the max latency. For example, the time interrupts are disabled. This time is saved in this file. The max trace will also be stored, and displayed by either @@ -94,29 +94,26 @@ of ftrace. Here is a list of some of the key files: only be recorded if the latency is greater than the value in this file. (in microseconds) - trace_entries : This sets or displays the number of trace - entries each CPU buffer can hold. The tracer buffers - are the same size for each CPU. The displayed number - is the size of the CPU buffer and not total size. The + trace_entries: This sets or displays the number of bytes each CPU + buffer can hold. The tracer buffers are the same size + for each CPU. The displayed number is the size of the + CPU buffer and not total size of all buffers. The trace buffers are allocated in pages (blocks of memory that the kernel uses for allocation, usually 4 KB in size). - Since each entry is smaller than a page, if the last - allocated page has room for more entries than were - requested, the rest of the page is used to allocate - entries. + If the last page allocated has room for more bytes + than requested, the rest of the page will be used, + making the actual allocation bigger than requested. + (Note, the size may not be a multiple of the page size due + to buffer managment overhead.) This can only be updated when the current_tracer - is set to "none". + is set to "nop". - NOTE: It is planned on changing the allocated buffers - from being the number of possible CPUS to - the number of online CPUS. - - tracing_cpumask : This is a mask that lets the user only trace + tracing_cpumask: This is a mask that lets the user only trace on specified CPUS. The format is a hex string representing the CPUS. - set_ftrace_filter : When dynamic ftrace is configured in (see the + set_ftrace_filter: When dynamic ftrace is configured in (see the section below "dynamic ftrace"), the code is dynamically modified (code text rewrite) to disable calling of the function profiler (mcount). This lets tracing be configured @@ -130,14 +127,11 @@ of ftrace. Here is a list of some of the key files: be traced. If a function exists in both set_ftrace_filter and set_ftrace_notrace, the function will _not_ be traced. - available_filter_functions : When a function is encountered the first - time by the dynamic tracer, it is recorded and - later the call is converted into a nop. This file - lists the functions that have been recorded - by the dynamic tracer and these functions can - be used to set the ftrace filter by the above - "set_ftrace_filter" file. (See the section "dynamic ftrace" - below for more details). + available_filter_functions: This lists the functions that ftrace + has processed and can trace. These are the function + names that you can pass to "set_ftrace_filter" or + "set_ftrace_notrace". (See the section "dynamic ftrace" + below for more details.) The Tracers @@ -145,7 +139,7 @@ The Tracers Here is the list of current tracers that may be configured. - ftrace - function tracer that uses mcount to trace all functions. + function - function tracer that uses mcount to trace all functions. sched_switch - traces the context switches between tasks. @@ -166,8 +160,8 @@ Here is the list of current tracers that may be configured. the highest priority task to get scheduled after it has been woken up. - none - This is not a tracer. To remove all tracers from tracing - simply echo "none" into current_tracer. + nop - This is not a tracer. To remove all tracers from tracing + simply echo "nop" into current_tracer. Examples of using the tracer @@ -182,7 +176,7 @@ Output format: Here is an example of the output format of the file "trace" -------- -# tracer: ftrace +# tracer: function # # TASK-PID CPU# TIMESTAMP FUNCTION # | | | | | @@ -192,7 +186,7 @@ Here is an example of the output format of the file "trace" -------- A header is printed with the tracer name that is represented by the trace. -In this case the tracer is "ftrace". Then a header showing the format. Task +In this case the tracer is "function". Then a header showing the format. Task name "bash", the task PID "4251", the CPU that it was running on "01", the timestamp in <secs>.<usecs> format, the function name that was traced "path_put" and the parent function that called this function @@ -1003,22 +997,20 @@ is the stack for the hard interrupt. This hides the fact that NEED_RESCHED has been set. We do not see the 'N' until we switch back to the task's assigned stack. -ftrace ------- +function +-------- -ftrace is not only the name of the tracing infrastructure, but it -is also a name of one of the tracers. The tracer is the function -tracer. Enabling the function tracer can be done from the -debug file system. Make sure the ftrace_enabled is set otherwise -this tracer is a nop. +This tracer is the function tracer. Enabling the function tracer +can be done from the debug file system. Make sure the ftrace_enabled is +set; otherwise this tracer is a nop. # sysctl kernel.ftrace_enabled=1 - # echo ftrace > /debug/tracing/current_tracer + # echo function > /debug/tracing/current_tracer # echo 1 > /debug/tracing/tracing_enabled # usleep 1 # echo 0 > /debug/tracing/tracing_enabled # cat /debug/tracing/trace -# tracer: ftrace +# tracer: function # # TASK-PID CPU# TIMESTAMP FUNCTION # | | | | | @@ -1040,10 +1032,10 @@ this tracer is a nop. [...] -Note: ftrace uses ring buffers to store the above entries. The newest data -may overwrite the oldest data. Sometimes using echo to stop the trace -is not sufficient because the tracing could have overwritten the data -that you wanted to record. For this reason, it is sometimes better to +Note: function tracer uses ring buffers to store the above entries. +The newest data may overwrite the oldest data. Sometimes using echo to +stop the trace is not sufficient because the tracing could have overwritten +the data that you wanted to record. For this reason, it is sometimes better to disable tracing directly from a program. This allows you to stop the tracing at the point that you hit the part that you are interested in. To disable the tracing directly from a C program, something like following @@ -1077,18 +1069,31 @@ every kernel function, produced by the -pg switch in gcc), starts of pointing to a simple return. (Enabling FTRACE will include the -pg switch in the compiling of the kernel.) -When dynamic ftrace is initialized, it calls kstop_machine to make -the machine act like a uniprocessor so that it can freely modify code -without worrying about other processors executing that same code. At -initialization, the mcount calls are changed to call a "record_ip" -function. After this, the first time a kernel function is called, -it has the calling address saved in a hash table. - -Later on the ftraced kernel thread is awoken and will again call -kstop_machine if new functions have been recorded. The ftraced thread -will change all calls to mcount to "nop". Just calling mcount -and having mcount return has shown a 10% overhead. By converting -it to a nop, there is no measurable overhead to the system. +At compile time every C file object is run through the +recordmcount.pl script (located in the scripts directory). This +script will process the C object using objdump to find all the +locations in the .text section that call mcount. (Note, only +the .text section is processed, since processing other sections +like .init.text may cause races due to those sections being freed). + +A new section called "__mcount_loc" is created that holds references +to all the mcount call sites in the .text section. This section is +compiled back into the original object. The final linker will add +all these references into a single table. + +On boot up, before SMP is initialized, the dynamic ftrace code +scans this table and updates all the locations into nops. It also +records the locations, which are added to the available_filter_functions +list. Modules are processed as they are loaded and before they are +executed. When a module is unloaded, it also removes its functions from +the ftrace function list. This is automatic in the module unload +code, and the module author does not need to worry about it. + +When tracing is enabled, kstop_machine is called to prevent races +with the CPUS executing code being modified (which can cause the +CPU to do undesireable things), and the nops are patched back +to calls. But this time, they do not call mcount (which is just +a function stub). They now call into the ftrace infrastructure. One special side-effect to the recording of the functions being traced is that we can now selectively choose which functions we @@ -1251,36 +1256,6 @@ Produces: We can see that there's no more lock or preempt tracing. -ftraced -------- - -As mentioned above, when dynamic ftrace is configured in, a kernel -thread wakes up once a second and checks to see if there are mcount -calls that need to be converted into nops. If there are not any, then -it simply goes back to sleep. But if there are some, it will call -kstop_machine to convert the calls to nops. - -There may be a case in which you do not want this added latency. -Perhaps you are doing some audio recording and this activity might -cause skips in the playback. There is an interface to disable -and enable the "ftraced" kernel thread. - - # echo 0 > /debug/tracing/ftraced_enabled - -This will disable the calling of kstop_machine to update the -mcount calls to nops. Remember that there is a large overhead -to calling mcount. Without this kernel thread, that overhead will -exist. - -If there are recorded calls to mcount, any write to the ftraced_enabled -file will cause the kstop_machine to run. This means that a -user can manually perform the updates when they want to by simply -echoing a '0' into the ftraced_enabled file. - -The updates are also done at the beginning of enabling a tracer -that uses ftrace function recording. - - trace_pipe ---------- @@ -1289,14 +1264,14 @@ on the tracing is different. Every read from trace_pipe is consumed. This means that subsequent reads will be different. The trace is live. - # echo ftrace > /debug/tracing/current_tracer + # echo function > /debug/tracing/current_tracer # cat /debug/tracing/trace_pipe > /tmp/trace.out & [1] 4153 # echo 1 > /debug/tracing/tracing_enabled # usleep 1 # echo 0 > /debug/tracing/tracing_enabled # cat /debug/tracing/trace -# tracer: ftrace +# tracer: function # # TASK-PID CPU# TIMESTAMP FUNCTION # | | | | | @@ -1317,7 +1292,7 @@ is live. Note, reading the trace_pipe file will block until more input is added. By changing the tracer, trace_pipe will issue an EOF. We needed -to set the ftrace tracer _before_ cating the trace_pipe file. +to set the function tracer _before_ we "cat" the trace_pipe file. trace entries @@ -1334,10 +1309,10 @@ number of entries. 65620 Note, to modify this, you must have tracing completely disabled. To do that, -echo "none" into the current_tracer. If the current_tracer is not set -to "none", an EINVAL error will be returned. +echo "nop" into the current_tracer. If the current_tracer is not set +to "nop", an EINVAL error will be returned. - # echo none > /debug/tracing/current_tracer + # echo nop > /debug/tracing/current_tracer # echo 100000 > /debug/tracing/trace_entries # cat /debug/tracing/trace_entries 100045 diff --git a/Documentation/hwmon/adt7462 b/Documentation/hwmon/adt7462 new file mode 100644 index 00000000000..ec660b32827 --- /dev/null +++ b/Documentation/hwmon/adt7462 @@ -0,0 +1,67 @@ +Kernel driver adt7462 +====================== + +Supported chips: + * Analog Devices ADT7462 + Prefix: 'adt7462' + Addresses scanned: I2C 0x58, 0x5C + Datasheet: Publicly available at the Analog Devices website + +Author: Darrick J. Wong + +Description +----------- + +This driver implements support for the Analog Devices ADT7462 chip family. + +This chip is a bit of a beast. It has 8 counters for measuring fan speed. It +can also measure 13 voltages or 4 temperatures, or various combinations of the +two. See the chip documentation for more details about the exact set of +configurations. This driver does not allow one to configure the chip; that is +left to the system designer. + +A sophisticated control system for the PWM outputs is designed into the ADT7462 +that allows fan speed to be adjusted automatically based on any of the three +temperature sensors. Each PWM output is individually adjustable and +programmable. Once configured, the ADT7462 will adjust the PWM outputs in +response to the measured temperatures without further host intervention. This +feature can also be disabled for manual control of the PWM's. + +Each of the measured inputs (voltage, temperature, fan speed) has +corresponding high/low limit values. The ADT7462 will signal an ALARM if +any measured value exceeds either limit. + +The ADT7462 samples all inputs continuously. The driver will not read +the registers more often than once every other second. Further, +configuration data is only read once per minute. + +Special Features +---------------- + +The ADT7462 have a 10-bit ADC and can therefore measure temperatures +with 0.25 degC resolution. + +The Analog Devices datasheet is very detailed and describes a procedure for +determining an optimal configuration for the automatic PWM control. + +The driver will report sensor labels when it is able to determine that +information from the configuration registers. + +Configuration Notes +------------------- + +Besides standard interfaces driver adds the following: + +* PWM Control + +* pwm#_auto_point1_pwm and temp#_auto_point1_temp and +* pwm#_auto_point2_pwm and temp#_auto_point2_temp - + +point1: Set the pwm speed at a lower temperature bound. +point2: Set the pwm speed at a higher temperature bound. + +The ADT7462 will scale the pwm between the lower and higher pwm speed when +the temperature is between the two temperature boundaries. PWM values range +from 0 (off) to 255 (full speed). Fan speed will be set to maximum when the +temperature sensor associated with the PWM control exceeds temp#_max. + diff --git a/Documentation/hwmon/lis3lv02d b/Documentation/hwmon/lis3lv02d new file mode 100644 index 00000000000..65dfb0c0fd6 --- /dev/null +++ b/Documentation/hwmon/lis3lv02d @@ -0,0 +1,49 @@ +Kernel driver lis3lv02d +================== + +Supported chips: + + * STMicroelectronics LIS3LV02DL and LIS3LV02DQ + +Author: + Yan Burman <burman.yan@gmail.com> + Eric Piel <eric.piel@tremplin-utc.net> + + +Description +----------- + +This driver provides support for the accelerometer found in various HP laptops +sporting the feature officially called "HP Mobile Data Protection System 3D" or +"HP 3D DriveGuard". It detect automatically laptops with this sensor. Known models +(for now the HP 2133, nc6420, nc2510, nc8510, nc84x0, nw9440 and nx9420) will +have their axis automatically oriented on standard way (eg: you can directly +play neverball). The accelerometer data is readable via +/sys/devices/platform/lis3lv02d. + +Sysfs attributes under /sys/devices/platform/lis3lv02d/: +position - 3D position that the accelerometer reports. Format: "(x,y,z)" +calibrate - read: values (x, y, z) that are used as the base for input class device operation. + write: forces the base to be recalibrated with the current position. +rate - reports the sampling rate of the accelerometer device in HZ + +This driver also provides an absolute input class device, allowing +the laptop to act as a pinball machine-esque joystick. + +Axes orientation +---------------- + +For better compatibility between the various laptops. The values reported by +the accelerometer are converted into a "standard" organisation of the axes +(aka "can play neverball out of the box"): + * When the laptop is horizontal the position reported is about 0 for X and Y +and a positive value for Z + * If the left side is elevated, X increases (becomes positive) + * If the front side (where the touchpad is) is elevated, Y decreases (becomes negative) + * If the laptop is put upside-down, Z becomes negative + +If your laptop model is not recognized (cf "dmesg"), you can send an email to the +authors to add it to the database. When reporting a new laptop, please include +the output of "dmidecode" plus the value of /sys/devices/platform/lis3lv02d/position +in these four cases. + diff --git a/Documentation/ics932s401 b/Documentation/ics932s401 new file mode 100644 index 00000000000..07a739f406d --- /dev/null +++ b/Documentation/ics932s401 @@ -0,0 +1,31 @@ +Kernel driver ics932s401 +====================== + +Supported chips: + * IDT ICS932S401 + Prefix: 'ics932s401' + Addresses scanned: I2C 0x69 + Datasheet: Publically available at the IDT website + +Author: Darrick J. Wong + +Description +----------- + +This driver implements support for the IDT ICS932S401 chip family. + +This chip has 4 clock outputs--a base clock for the CPU (which is likely +multiplied to get the real CPU clock), a system clock, a PCI clock, a USB +clock, and a reference clock. The driver reports selected and actual +frequency. If spread spectrum mode is enabled, the driver also reports by what +percent the clock signal is being spread, which should be between 0 and -0.5%. +All frequencies are reported in KHz. + +The ICS932S401 monitors all inputs continuously. The driver will not read +the registers more often than once every other second. + +Special Features +---------------- + +The clocks could be reprogrammed to increase system speed. I will not help you +do this, as you risk damaging your system! diff --git a/Documentation/input/input-programming.txt b/Documentation/input/input-programming.txt index 81905e81585..7f8b9d97bc4 100644 --- a/Documentation/input/input-programming.txt +++ b/Documentation/input/input-programming.txt @@ -20,10 +20,11 @@ pressed or released a BUTTON_IRQ happens. The driver could look like: static struct input_dev *button_dev; -static void button_interrupt(int irq, void *dummy, struct pt_regs *fp) +static irqreturn_t button_interrupt(int irq, void *dummy) { input_report_key(button_dev, BTN_0, inb(BUTTON_PORT) & 1); input_sync(button_dev); + return IRQ_HANDLED; } static int __init button_init(void) diff --git a/Documentation/ioctl/00-INDEX b/Documentation/ioctl/00-INDEX new file mode 100644 index 00000000000..d2fe4d4729e --- /dev/null +++ b/Documentation/ioctl/00-INDEX @@ -0,0 +1,10 @@ +00-INDEX + - this file +cdrom.txt + - summary of CDROM ioctl calls +hdio.txt + - summary of HDIO_ ioctl calls +ioctl-decoding.txt + - how to decode the bits of an IOCTL code +ioctl-number.txt + - how to implement and register device/driver ioctl calls diff --git a/Documentation/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt index b880ce5dbd3..b880ce5dbd3 100644 --- a/Documentation/ioctl-number.txt +++ b/Documentation/ioctl/ioctl-number.txt diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index c86c0745971..d5418d52891 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -198,59 +198,42 @@ and is between 256 and 4096 characters. It is defined in the file that require a timer override, but don't have HPET - acpi.debug_layer= [HW,ACPI] + acpi_backlight= [HW,ACPI] + acpi_backlight=vendor + acpi_backlight=video + If set to vendor, prefer vendor specific driver + (e.g. thinkpad_acpi, sony_acpi, etc.) instead + of the ACPI video.ko driver. + + acpi_display_output= [HW,ACPI] + acpi_display_output=vendor + acpi_display_output=video + See above. + + acpi.debug_layer= [HW,ACPI,ACPI_DEBUG] + acpi.debug_level= [HW,ACPI,ACPI_DEBUG] Format: <int> - Each bit of the <int> indicates an ACPI debug layer, - 1: enable, 0: disable. It is useful for boot time - debugging. After system has booted up, it can be set - via /sys/module/acpi/parameters/debug_layer. - CONFIG_ACPI_DEBUG must be enabled for this to produce any output. - Available bits (add the numbers together) to enable debug output - for specific parts of the ACPI subsystem: - 0x01 utilities 0x02 hardware 0x04 events 0x08 tables - 0x10 namespace 0x20 parser 0x40 dispatcher - 0x80 executer 0x100 resources 0x200 acpica debugger - 0x400 os services 0x800 acpica disassembler. - The number can be in decimal or prefixed with 0x in hex. - Warning: Many of these options can produce a lot of - output and make your system unusable. Be very careful. - - acpi.debug_level= [HW,ACPI] - Format: <int> - Each bit of the <int> indicates an ACPI debug level, - which corresponds to the level in an ACPI_DEBUG_PRINT - statement. After system has booted up, this mask - can be set via /sys/module/acpi/parameters/debug_level. - - CONFIG_ACPI_DEBUG must be enabled for this to produce - any output. The number can be in decimal or prefixed - with 0x in hex. Some of these options produce so much - output that the system is unusable. - - The following global components are defined by the - ACPI CA: - 0x01 error - 0x02 warn - 0x04 init - 0x08 debug object - 0x10 info - 0x20 init names - 0x40 parse - 0x80 load - 0x100 dispatch - 0x200 execute - 0x400 names - 0x800 operation region - 0x1000 bfield - 0x2000 tables - 0x4000 values - 0x8000 objects - 0x10000 resources - 0x20000 user requests - 0x40000 package - The number can be in decimal or prefixed with 0x in hex. - Warning: Many of these options can produce a lot of - output and make your system unusable. Be very careful. + CONFIG_ACPI_DEBUG must be enabled to produce any ACPI + debug output. Bits in debug_layer correspond to a + _COMPONENT in an ACPI source file, e.g., + #define _COMPONENT ACPI_PCI_COMPONENT + Bits in debug_level correspond to a level in + ACPI_DEBUG_PRINT statements, e.g., + ACPI_DEBUG_PRINT((ACPI_DB_INFO, ... + See Documentation/acpi/debug.txt for more information + about debug layers and levels. + + Enable AML "Debug" output, i.e., stores to the Debug + object while interpreting AML: + acpi.debug_layer=0xffffffff acpi.debug_level=0x2 + Enable PCI/PCI interrupt routing info messages: + acpi.debug_layer=0x400000 acpi.debug_level=0x4 + Enable all messages related to ACPI hardware: + acpi.debug_layer=0x2 acpi.debug_level=0xffffffff + + Some values produce so much output that the system is + unusable. The "log_buf_len" parameter may be useful + if you need to capture more output. acpi.power_nocheck= [HW,ACPI] Format: 1/0 enable/disable the check of power state. @@ -311,7 +294,9 @@ and is between 256 and 4096 characters. It is defined in the file Possible values are: isolate - enable device isolation (each device, as far as possible, will get its own protection - domain) + domain) [default] + share - put every device behind one IOMMU into the + same protection domain fullflush - enable flushing of IO/TLB entries when they are unmapped. Otherwise they are flushed before they will be reused, which @@ -646,7 +631,7 @@ and is between 256 and 4096 characters. It is defined in the file digiepca= [HW,SERIAL] See drivers/char/README.epca and - Documentation/digiepca.txt. + Documentation/serial/digiepca.txt. disable_mtrr_cleanup [X86] enable_mtrr_cleanup [X86] @@ -757,7 +742,7 @@ and is between 256 and 4096 characters. It is defined in the file See header of drivers/scsi/fdomain.c. floppy= [HW] - See Documentation/floppy.txt. + See Documentation/blockdev/floppy.txt. force_pal_cache_flush [IA-64] Avoid check_sal_cache_flush which may hang on @@ -1118,7 +1103,7 @@ and is between 256 and 4096 characters. It is defined in the file the same attribute, the last one is used. load_ramdisk= [RAM] List of ramdisks to load from floppy - See Documentation/ramdisk.txt. + See Documentation/blockdev/ramdisk.txt. lockd.nlm_grace_period=P [NFS] Assign grace period. Format: <integer> @@ -1210,8 +1195,8 @@ and is between 256 and 4096 characters. It is defined in the file it is equivalent to "nosmp", which also disables the IO APIC. - max_addr=[KMG] [KNL,BOOT,ia64] All physical memory greater than or - equal to this physical address is ignored. + max_addr=nn[KMG] [KNL,BOOT,ia64] All physical memory greater than + or equal to this physical address is ignored. max_luns= [SCSI] Maximum number of LUNs to probe. Should be between 1 and 2^32-1. @@ -1311,6 +1296,9 @@ and is between 256 and 4096 characters. It is defined in the file mga= [HW,DRM] + min_addr=nn[KMG] [KNL,BOOT,ia64] All physical memory below this + physical address is ignored. + mminit_loglevel= [KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this parameter allows control of the logging verbosity for @@ -1405,7 +1393,20 @@ and is between 256 and 4096 characters. It is defined in the file when a NMI is triggered. Format: [state][,regs][,debounce][,die] - nmi_watchdog= [KNL,BUGS=X86-32] Debugging features for SMP kernels + nmi_watchdog= [KNL,BUGS=X86-32,X86-64] Debugging features for SMP kernels + Format: [panic,][num] + Valid num: 0,1,2 + 0 - turn nmi_watchdog off + 1 - use the IO-APIC timer for the NMI watchdog + 2 - use the local APIC for the NMI watchdog using + a performance counter. Note: This will use one performance + counter and the local APIC's performance vector. + When panic is specified panic when an NMI watchdog timeout occurs. + This is useful when you use a panic=... timeout and need the box + quickly up again. + Instead of 1 and 2 it is possible to use the following + symbolic names: lapic and ioapic + Example: nmi_watchdog=2 or nmi_watchdog=panic,lapic no387 [BUGS=X86-32] Tells the kernel to use the 387 maths emulation library even if a 387 maths coprocessor @@ -1613,7 +1614,7 @@ and is between 256 and 4096 characters. It is defined in the file pcd. [PARIDE] See header of drivers/block/paride/pcd.c. - See also Documentation/paride.txt. + See also Documentation/blockdev/paride.txt. pci=option[,option...] [PCI] various PCI subsystem options: off [X86] don't probe for the PCI bus @@ -1638,6 +1639,17 @@ and is between 256 and 4096 characters. It is defined in the file nomsi [MSI] If the PCI_MSI kernel config parameter is enabled, this kernel boot option can be used to disable the use of MSI interrupts system-wide. + noioapicquirk [APIC] Disable all boot interrupt quirks. + Safety option to keep boot IRQs enabled. This + should never be necessary. + ioapicreroute [APIC] Enable rerouting of boot IRQs to the + primary IO-APIC for bridges that cannot disable + boot IRQs. This fixes a source of spurious IRQs + when the system masks IRQs. + noioapicreroute [APIC] Disable workaround that uses the + boot IRQ equivalent of an IRQ that connects to + a chipset where boot IRQs cannot be disabled. + The opposite of ioapicreroute. biosirq [X86-32] Use PCI BIOS calls to get the interrupt routing table. These calls are known to be buggy on several machines and they hang the machine @@ -1714,7 +1726,7 @@ and is between 256 and 4096 characters. It is defined in the file pcmv= [HW,PCMCIA] BadgePAD 4 pd. [PARIDE] - See Documentation/paride.txt. + See Documentation/blockdev/paride.txt. pdcchassis= [PARISC,HW] Disable/Enable PDC Chassis Status codes at boot time. @@ -1722,10 +1734,10 @@ and is between 256 and 4096 characters. It is defined in the file See arch/parisc/kernel/pdc_chassis.c pf. [PARIDE] - See Documentation/paride.txt. + See Documentation/blockdev/paride.txt. pg. [PARIDE] - See Documentation/paride.txt. + See Documentation/blockdev/paride.txt. pirq= [SMP,APIC] Manual mp-table setup See Documentation/x86/i386/IO-APIC.txt. @@ -1795,7 +1807,7 @@ and is between 256 and 4096 characters. It is defined in the file prompt_ramdisk= [RAM] List of RAM disks to prompt for floppy disk before loading. - See Documentation/ramdisk.txt. + See Documentation/blockdev/ramdisk.txt. psmouse.proto= [HW,MOUSE] Highest PS2 mouse protocol extension to probe for; one of (bare|imps|exps|lifebook|any). @@ -1815,7 +1827,7 @@ and is between 256 and 4096 characters. It is defined in the file <io>,<mss_io>,<mss_irq>,<mss_dma>,<mpu_io>,<mpu_irq> pt. [PARIDE] - See Documentation/paride.txt. + See Documentation/blockdev/paride.txt. pty.legacy_count= [KNL] Number of legacy pty's. Overwrites compiled-in @@ -1829,10 +1841,10 @@ and is between 256 and 4096 characters. It is defined in the file See Documentation/md.txt. ramdisk_blocksize= [RAM] - See Documentation/ramdisk.txt. + See Documentation/blockdev/ramdisk.txt. ramdisk_size= [RAM] Sizes of RAM disks in kilobytes - See Documentation/ramdisk.txt. + See Documentation/blockdev/ramdisk.txt. rcupdate.blimit= [KNL,BOOT] Set maximum number of finished RCU callbacks to process @@ -2164,7 +2176,7 @@ and is between 256 and 4096 characters. It is defined in the file See Documentation/sonypi.txt specialix= [HW,SERIAL] Specialix multi-serial port adapter - See Documentation/specialix.txt. + See Documentation/serial/specialix.txt. spia_io_base= [HW,MTD] spia_fio_base= @@ -2267,6 +2279,13 @@ and is between 256 and 4096 characters. It is defined in the file Format: <io>,<irq>,<dma>,<dma2>,<sb_io>,<sb_irq>,<sb_dma>,<mpu_io>,<mpu_irq> + tsc= Disable clocksource-must-verify flag for TSC. + Format: <string> + [x86] reliable: mark tsc clocksource as reliable, this + disables clocksource verification at runtime. + Used to enable high-resolution timer mode on older + hardware, and in virtualized environment. + turbografx.map[2|3]= [HW,JOY] TurboGraFX parallel port interface Format: diff --git a/Documentation/local_ops.txt b/Documentation/local_ops.txt index f4f8b1c6c8b..23045b8b50f 100644 --- a/Documentation/local_ops.txt +++ b/Documentation/local_ops.txt @@ -149,7 +149,7 @@ static void do_test_timer(unsigned long data) int cpu; /* Increment the counters */ - on_each_cpu(test_each, NULL, 0, 1); + on_each_cpu(test_each, NULL, 1); /* Read all the counters */ printk("Counters read from CPU %d\n", smp_processor_id()); for_each_online_cpu(cpu) { diff --git a/Documentation/networking/phy.txt b/Documentation/networking/phy.txt index 8df6a7b0e66..88bb71b46da 100644 --- a/Documentation/networking/phy.txt +++ b/Documentation/networking/phy.txt @@ -96,7 +96,7 @@ Letting the PHY Abstraction Layer do Everything static void adjust_link(struct net_device *dev); Next, you need to know the device name of the PHY connected to this device. - The name will look something like, "phy0:0", where the first number is the + The name will look something like, "0:00", where the first number is the bus id, and the second is the PHY's address on that bus. Typically, the bus is responsible for making its ID unique. diff --git a/Documentation/nmi_watchdog.txt b/Documentation/nmi_watchdog.txt index 90aa4531cb6..bf9f80a9828 100644 --- a/Documentation/nmi_watchdog.txt +++ b/Documentation/nmi_watchdog.txt @@ -69,6 +69,11 @@ to the overall system performance. On x86 nmi_watchdog is disabled by default so you have to enable it with a boot time parameter. +It's possible to disable the NMI watchdog in run-time by writing "0" to +/proc/sys/kernel/nmi_watchdog. Writing "1" to the same file will re-enable +the NMI watchdog. Notice that you still need to use "nmi_watchdog=" parameter +at boot time. + NOTE: In kernels prior to 2.4.2-ac18 the NMI-oopser is enabled unconditionally on x86 SMP boxes. diff --git a/Documentation/powerpc/booting-without-of.txt b/Documentation/powerpc/booting-without-of.txt index 02ea9a971b8..0ab0230cbcb 100644 --- a/Documentation/powerpc/booting-without-of.txt +++ b/Documentation/powerpc/booting-without-of.txt @@ -41,25 +41,14 @@ Table of Contents VI - System-on-a-chip devices and nodes 1) Defining child nodes of an SOC 2) Representing devices without a current OF specification - a) MDIO IO device - b) Gianfar-compatible ethernet nodes - c) PHY nodes - d) Interrupt controllers - e) I2C - f) Freescale SOC USB controllers - g) Freescale SOC SEC Security Engines - h) Board Control and Status (BCSR) - i) Freescale QUICC Engine module (QE) - j) CFI or JEDEC memory-mapped NOR flash - k) Global Utilities Block - l) Freescale Communications Processor Module - m) Chipselect/Local Bus - n) 4xx/Axon EMAC ethernet nodes - o) Xilinx IP cores - p) Freescale Synchronous Serial Interface - q) USB EHCI controllers - r) MDIO on GPIOs - s) SPI busses + a) PHY nodes + b) Interrupt controllers + c) CFI or JEDEC memory-mapped NOR flash + d) 4xx/Axon EMAC ethernet nodes + e) Xilinx IP cores + f) USB EHCI controllers + g) MDIO on GPIOs + h) SPI busses VII - Marvell Discovery mv64[345]6x System Controller chips 1) The /system-controller node @@ -1830,41 +1819,7 @@ platforms are moved over to use the flattened-device-tree model. big-endian; }; - r) Freescale Display Interface Unit - - The Freescale DIU is a LCD controller, with proper hardware, it can also - drive DVI monitors. - - Required properties: - - compatible : should be "fsl-diu". - - reg : should contain at least address and length of the DIU register - set. - - Interrupts : one DIU interrupt should be describe here. - - Example (MPC8610HPCD) - display@2c000 { - compatible = "fsl,diu"; - reg = <0x2c000 100>; - interrupts = <72 2>; - interrupt-parent = <&mpic>; - }; - - s) Freescale on board FPGA - - This is the memory-mapped registers for on board FPGA. - - Required properities: - - compatible : should be "fsl,fpga-pixis". - - reg : should contain the address and the lenght of the FPPGA register - set. - - Example (MPC8610HPCD) - board-control@e8000000 { - compatible = "fsl,fpga-pixis"; - reg = <0xe8000000 32>; - }; - - r) MDIO on GPIOs + g) MDIO on GPIOs Currently defined compatibles: - virtual,gpio-mdio @@ -1884,7 +1839,7 @@ platforms are moved over to use the flattened-device-tree model. &qe_pio_c 6>; }; - s) SPI (Serial Peripheral Interface) busses + h) SPI (Serial Peripheral Interface) busses SPI busses can be described with a node for the SPI master device and a set of child nodes for each SPI slave on the bus. For this diff --git a/Documentation/printk-formats.txt b/Documentation/printk-formats.txt new file mode 100644 index 00000000000..1b5a5ddbc3e --- /dev/null +++ b/Documentation/printk-formats.txt @@ -0,0 +1,35 @@ +If variable is of Type, use printk format specifier: +--------------------------------------------------------- + int %d or %x + unsigned int %u or %x + long %ld or %lx + unsigned long %lu or %lx + long long %lld or %llx + unsigned long long %llu or %llx + size_t %zu or %zx + ssize_t %zd or %zx + +Raw pointer value SHOULD be printed with %p. + +u64 SHOULD be printed with %llu/%llx, (unsigned long long): + + printk("%llu", (unsigned long long)u64_var); + +s64 SHOULD be printed with %lld/%llx, (long long): + + printk("%lld", (long long)s64_var); + +If <type> is dependent on a config option for its size (e.g., sector_t, +blkcnt_t, phys_addr_t, resource_size_t) or is architecture-dependent +for its size (e.g., tcflag_t), use a format specifier of its largest +possible type and explicitly cast to it. Example: + + printk("test: sector number/total blocks: %llu/%llu\n", + (unsigned long long)sector, (unsigned long long)blockcount); + +Reminder: sizeof() result is of type size_t. + +Thank you for your cooperation and attention. + + +By Randy Dunlap <rdunlap@xenotime.net> diff --git a/Documentation/serial/00-INDEX b/Documentation/serial/00-INDEX new file mode 100644 index 00000000000..07dcdb0d2a3 --- /dev/null +++ b/Documentation/serial/00-INDEX @@ -0,0 +1,24 @@ +00-INDEX + - this file. +README.cycladesZ + - info on Cyclades-Z firmware loading. +computone.txt + - info on Computone Intelliport II/Plus Multiport Serial Driver. +digiepca.txt + - info on Digi Intl. {PC,PCI,EISA}Xx and Xem series cards. +hayes-esp.txt + - info on using the Hayes ESP serial driver. +moxa-smartio + - file with info on installing/using Moxa multiport serial driver. +riscom8.txt + - notes on using the RISCom/8 multi-port serial driver. +rocket.txt + - info on the Comtrol RocketPort multiport serial driver. +specialix.txt + - info on hardware/driver for specialix IO8+ multiport serial card. +stallion.txt + - info on using the Stallion multiport serial driver. +sx.txt + - info on the Specialix SX/SI multiport serial driver. +tty.txt + - guide to the locking policies of the tty layer. diff --git a/Documentation/README.cycladesZ b/Documentation/serial/README.cycladesZ index 024a69443cc..024a69443cc 100644 --- a/Documentation/README.cycladesZ +++ b/Documentation/serial/README.cycladesZ diff --git a/Documentation/computone.txt b/Documentation/serial/computone.txt index 5e2a0c76bfa..c57ea4781e5 100644 --- a/Documentation/computone.txt +++ b/Documentation/serial/computone.txt @@ -247,7 +247,7 @@ shar archive to make it easier to extract the script from the documentation. To create the ip2mkdev shell script change to a convenient directory (/tmp works just fine) and run the following command: - unshar Documentation/computone.txt + unshar Documentation/serial/computone.txt (This file) You should now have a file ip2mkdev in your current working directory with diff --git a/Documentation/digiepca.txt b/Documentation/serial/digiepca.txt index f2560e22f2c..f2560e22f2c 100644 --- a/Documentation/digiepca.txt +++ b/Documentation/serial/digiepca.txt diff --git a/Documentation/hayes-esp.txt b/Documentation/serial/hayes-esp.txt index 09b5d585675..09b5d585675 100644 --- a/Documentation/hayes-esp.txt +++ b/Documentation/serial/hayes-esp.txt diff --git a/Documentation/moxa-smartio b/Documentation/serial/moxa-smartio index 5337e80a5b9..5337e80a5b9 100644 --- a/Documentation/moxa-smartio +++ b/Documentation/serial/moxa-smartio diff --git a/Documentation/riscom8.txt b/Documentation/serial/riscom8.txt index 14f61fdad7c..14f61fdad7c 100644 --- a/Documentation/riscom8.txt +++ b/Documentation/serial/riscom8.txt diff --git a/Documentation/rocket.txt b/Documentation/serial/rocket.txt index 1d858299043..1d858299043 100644 --- a/Documentation/rocket.txt +++ b/Documentation/serial/rocket.txt diff --git a/Documentation/specialix.txt b/Documentation/serial/specialix.txt index 6eb6f3a3331..6eb6f3a3331 100644 --- a/Documentation/specialix.txt +++ b/Documentation/serial/specialix.txt diff --git a/Documentation/stallion.txt b/Documentation/serial/stallion.txt index 5c4902d9a5b..5c4902d9a5b 100644 --- a/Documentation/stallion.txt +++ b/Documentation/serial/stallion.txt diff --git a/Documentation/sx.txt b/Documentation/serial/sx.txt index cb4efa0fb5c..cb4efa0fb5c 100644 --- a/Documentation/sx.txt +++ b/Documentation/serial/sx.txt diff --git a/Documentation/tty.txt b/Documentation/serial/tty.txt index 8e65c4498c5..8e65c4498c5 100644 --- a/Documentation/tty.txt +++ b/Documentation/serial/tty.txt diff --git a/Documentation/sound/alsa/ALSA-Configuration.txt b/Documentation/sound/alsa/ALSA-Configuration.txt index e0e54a27fc1..394d7d378dc 100644 --- a/Documentation/sound/alsa/ALSA-Configuration.txt +++ b/Documentation/sound/alsa/ALSA-Configuration.txt @@ -1063,6 +1063,7 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. STAC9227/9228/9229/927x ref Reference board + ref-no-jd Reference board without HP/Mic jack detection 3stack D965 3stack 5stack D965 5stack + SPDIF dell-3stack Dell Dimension E520 @@ -1072,10 +1073,14 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed. ref Reference board dell-m4-1 Dell desktops dell-m4-2 Dell desktops + dell-m4-3 Dell desktops STAC92HD73* ref Reference board - dell-m6 Dell desktops + no-jd BIOS setup but without jack-detection + dell-m6-amic Dell desktops/laptops with analog mics + dell-m6-dmic Dell desktops/laptops with digital mics + dell-m6 Dell desktops/laptops with both type of mics STAC9872 vaio Setup for VAIO FE550G/SZ110 diff --git a/Documentation/spi/spi-summary b/Documentation/spi/spi-summary index 8bae2f018d3..0f5122eb282 100644 --- a/Documentation/spi/spi-summary +++ b/Documentation/spi/spi-summary @@ -215,7 +215,7 @@ So for example arch/.../mach-*/board-*.c files might have code like: /* if your mach-* infrastructure doesn't support kernels that can * run on multiple boards, pdata wouldn't benefit from "__init". */ - static struct mysoc_spi_data __init pdata = { ... }; + static struct mysoc_spi_data __initdata pdata = { ... }; static __init board_init(void) { diff --git a/Documentation/tracers/mmiotrace.txt b/Documentation/tracers/mmiotrace.txt index 5bbbe209622..cde23b4a12a 100644 --- a/Documentation/tracers/mmiotrace.txt +++ b/Documentation/tracers/mmiotrace.txt @@ -37,7 +37,7 @@ $ echo mmiotrace > /debug/tracing/current_tracer $ cat /debug/tracing/trace_pipe > mydump.txt & Start X or whatever. $ echo "X is up" > /debug/tracing/trace_marker -$ echo none > /debug/tracing/current_tracer +$ echo nop > /debug/tracing/current_tracer Check for lost events. @@ -66,7 +66,7 @@ which action. It is recommended to place descriptive markers about what you do. Shut down mmiotrace (requires root privileges): -$ echo none > /debug/tracing/current_tracer +$ echo nop > /debug/tracing/current_tracer The 'cat' process exits. If it does not, kill it by issuing 'fg' command and pressing ctrl+c. @@ -81,7 +81,9 @@ are: $ cat /debug/tracing/trace_entries gives you a number. Approximately double this number and write it back, for instance: +$ echo 0 > /debug/tracing/tracing_enabled $ echo 128000 > /debug/tracing/trace_entries +$ echo 1 > /debug/tracing/tracing_enabled Then start again from the top. If you are doing a trace for a driver project, e.g. Nouveau, you should also diff --git a/Documentation/usb/gadget_serial.txt b/Documentation/usb/gadget_serial.txt index 9b22bd14c34..eac7df94d8e 100644 --- a/Documentation/usb/gadget_serial.txt +++ b/Documentation/usb/gadget_serial.txt @@ -114,11 +114,11 @@ modules. Then you must load the gadget serial driver. To load it as an ACM device (recommended for interoperability), do this: - modprobe g_serial use_acm=1 + modprobe g_serial To load it as a vendor specific bulk in/out device, do this: - modprobe g_serial + modprobe g_serial use_acm=0 This will also automatically load the underlying gadget peripheral controller driver. This must be done each time you reboot the gadget diff --git a/Documentation/usb/proc_usb_info.txt b/Documentation/usb/proc_usb_info.txt index 077e9032d0c..fafcd472326 100644 --- a/Documentation/usb/proc_usb_info.txt +++ b/Documentation/usb/proc_usb_info.txt @@ -49,8 +49,10 @@ it and 002/048 sometime later. These files can be read as binary data. The binary data consists of first the device descriptor, then the descriptors for each -configuration of the device. That information is also shown in -text form by the /proc/bus/usb/devices file, described later. +configuration of the device. Multi-byte fields in the device and +configuration descriptors, but not other descriptors, are converted +to host endianness by the kernel. This information is also shown +in text form by the /proc/bus/usb/devices file, described later. These files may also be used to write user-level drivers for the USB devices. You would open the /proc/bus/usb/BBB/DDD file read/write, diff --git a/Documentation/usb/usbmon.txt b/Documentation/usb/usbmon.txt index 2917ce4ffdc..270481906dc 100644 --- a/Documentation/usb/usbmon.txt +++ b/Documentation/usb/usbmon.txt @@ -34,11 +34,12 @@ if usbmon is built into the kernel. Verify that bus sockets are present. # ls /sys/kernel/debug/usbmon -0s 0t 0u 1s 1t 1u 2s 2t 2u 3s 3t 3u 4s 4t 4u +0s 0u 1s 1t 1u 2s 2t 2u 3s 3t 3u 4s 4t 4u # -Now you can choose to either use the sockets numbered '0' (to capture packets on -all buses), and skip to step #3, or find the bus used by your device with step #2. +Now you can choose to either use the socket '0u' (to capture packets on all +buses), and skip to step #3, or find the bus used by your device with step #2. +This allows to filter away annoying devices that talk continuously. 2. Find which bus connects to the desired device @@ -99,8 +100,9 @@ on the event type, but there is a set of words, common for all types. Here is the list of words, from left to right: -- URB Tag. This is used to identify URBs is normally a kernel mode address - of the URB structure in hexadecimal. +- URB Tag. This is used to identify URBs, and is normally an in-kernel address + of the URB structure in hexadecimal, but can be a sequence number or any + other unique string, within reason. - Timestamp in microseconds, a decimal number. The timestamp's resolution depends on available clock, and so it can be much worse than a microsecond diff --git a/Documentation/video4linux/README.cx88 b/Documentation/video4linux/README.cx88 index 06a33a4f52f..166d5960b1a 100644 --- a/Documentation/video4linux/README.cx88 +++ b/Documentation/video4linux/README.cx88 @@ -27,8 +27,8 @@ audio sound card) should be possible, but there is no code yet ... vbi - - some code present. Doesn't crash any more, but also doesn't - work yet ... + - Code present. Works for NTSC closed caption. PAL and other + TV norms may or may not work. how to add support for new cards diff --git a/Documentation/video4linux/si470x.txt b/Documentation/video4linux/si470x.txt new file mode 100644 index 00000000000..11c5fd22a33 --- /dev/null +++ b/Documentation/video4linux/si470x.txt @@ -0,0 +1,118 @@ +Driver for USB radios for the Silicon Labs Si470x FM Radio Receivers + +Copyright (c) 2008 Tobias Lorenz <tobias.lorenz@gmx.net> + + +Information from Silicon Labs +============================= +Silicon Laboratories is the manufacturer of the radio ICs, that nowadays are the +most often used radio receivers in cell phones. Usually they are connected with +I2C. But SiLabs also provides a reference design, which integrates this IC, +together with a small microcontroller C8051F321, to form a USB radio. +Part of this reference design is also a radio application in binary and source +code. The software also contains an automatic firmware upgrade to the most +current version. Information on these can be downloaded here: +http://www.silabs.com/usbradio + + +Supported ICs +============= +The following ICs have a very similar register set, so that they are or will be +supported somewhen by the driver: +- Si4700: FM radio receiver +- Si4701: FM radio receiver, RDS Support +- Si4702: FM radio receiver +- Si4703: FM radio receiver, RDS Support +- Si4704: FM radio receiver, no external antenna required +- Si4705: FM radio receiver, no external antenna required, RDS support, Dig I/O +- Si4706: Enhanced FM RDS/TMC radio receiver, no external antenna required, RDS + Support +- Si4707: Dedicated weather band radio receiver with SAME decoder, RDS Support +- Si4708: Smallest FM receivers +- Si4709: Smallest FM receivers, RDS Support +More information on these can be downloaded here: +http://www.silabs.com/products/mcu/Pages/USBFMRadioRD.aspx + + +Supported USB devices +===================== +Currently the following USB radios (vendor:product) with the Silicon Labs si470x +chips are known to work: +- 10c4:818a: Silicon Labs USB FM Radio Reference Design +- 06e1:a155: ADS/Tech FM Radio Receiver (formerly Instant FM Music) (RDX-155-EF) +- 1b80:d700: KWorld USB FM Radio SnapMusic Mobile 700 (FM700) + + +Software +======== +Testing is usually done with most application under Debian/testing: +- fmtools - Utility for managing FM tuner cards +- gnomeradio - FM-radio tuner for the GNOME desktop +- gradio - GTK FM radio tuner +- kradio - Comfortable Radio Application for KDE +- radio - ncurses-based radio application + +There is also a library libv4l, which can be used. It's going to have a function +for frequency seeking, either by using hardware functionality as in radio-si470x +or by implementing a function as we currently have in every of the mentioned +programs. Somewhen the radio programs should make use of libv4l. + +For processing RDS information, there is a project ongoing at: +http://rdsd.berlios.de/ + +There is currently no project for making TMC sentences human readable. + + +Audio Listing +============= +USB Audio is provided by the ALSA snd_usb_audio module. It is recommended to +also select SND_USB_AUDIO, as this is required to get sound from the radio. For +listing you have to redirect the sound, for example using one of the following +commands. + +If you just want to test audio (very poor quality): +cat /dev/dsp1 > /dev/dsp + +If you use OSS try: +sox -2 --endian little -r 96000 -t oss /dev/dsp1 -t oss /dev/dsp + +If you use arts try: +arecord -D hw:1,0 -r96000 -c2 -f S16_LE | artsdsp aplay -B - + + +Module Parameters +================= +After loading the module, you still have access to some of them in the sysfs +mount under /sys/module/radio_si470x/parameters. The contents of read-only files +(0444) are not updated, even if space, band and de are changed using private +video controls. The others are runtime changeable. + + +Errors +====== +Increase tune_timeout, if you often get -EIO errors. + +When timed out or band limit is reached, hw_freq_seek returns -EAGAIN. + +If you get any errors from snd_usb_audio, please report them to the ALSA people. + + +Open Issues +=========== +V4L minor device allocation and parameter setting is not perfect. A solution is +currently under discussion. + +There is an USB interface for downloading/uploading new firmware images. Support +for it can be implemented using the request_firmware interface. + +There is a RDS interrupt mode. The driver is already using the same interface +for polling RDS information, but is currently not using the interrupt mode. + +There is a LED interface, which can be used to override the LED control +programmed in the firmware. This can be made available using the LED support +functions in the kernel. + + +Other useful information and links +================================== +http://www.silabs.com/usbradio diff --git a/Documentation/w1/masters/omap-hdq b/Documentation/w1/masters/omap-hdq new file mode 100644 index 00000000000..ca722e09b6a --- /dev/null +++ b/Documentation/w1/masters/omap-hdq @@ -0,0 +1,46 @@ +Kernel driver for omap HDQ/1-wire module. +======================================== + +Supported chips: +================ + HDQ/1-wire controller on the TI OMAP 2430/3430 platforms. + +A useful link about HDQ basics: +=============================== +http://focus.ti.com/lit/an/slua408/slua408.pdf + +Description: +============ +The HDQ/1-Wire module of TI OMAP2430/3430 platforms implement the hardware +protocol of the master functions of the Benchmark HDQ and the Dallas +Semiconductor 1-Wire protocols. These protocols use a single wire for +communication between the master (HDQ/1-Wire controller) and the slave +(HDQ/1-Wire external compliant device). + +A typical application of the HDQ/1-Wire module is the communication with battery +monitor (gas gauge) integrated circuits. + +The controller supports operation in both HDQ and 1-wire mode. The essential +difference between the HDQ and 1-wire mode is how the slave device responds to +initialization pulse.In HDQ mode, the firmware does not require the host to +create an initialization pulse to the slave.However, the slave can be reset by +using an initialization pulse (also referred to as a break pulse).The slave +does not respond with a presence pulse as it does in the 1-Wire protocol. + +Remarks: +======== +The driver (drivers/w1/masters/omap_hdq.c) supports the HDQ mode of the +controller. In this mode, as we can not read the ID which obeys the W1 +spec(family:id:crc), a module parameter can be passed to the driver which will +be used to calculate the CRC and pass back an appropriate slave ID to the W1 +core. + +By default the master driver and the BQ slave i/f +driver(drivers/w1/slaves/w1_bq27000.c) sets the ID to 1. +Please note to load both the modules with a different ID if required, but note +that the ID used should be same for both master and slave driver loading. + +e.g: +insmod omap_hdq.ko W1_ID=2 +inamod w1_bq27000.ko F_ID=2 + diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt index 83c0033ee9e..fcdc62b3c3d 100644 --- a/Documentation/x86/boot.txt +++ b/Documentation/x86/boot.txt @@ -349,7 +349,7 @@ Protocol: 2.00+ 3 SYSLINUX 4 EtherBoot 5 ELILO - 7 GRuB + 7 GRUB 8 U-BOOT 9 Xen A Gujin @@ -537,8 +537,8 @@ Type: read Offset/size: 0x248/4 Protocol: 2.08+ - If non-zero then this field contains the offset from the end of the - real-mode code to the payload. + If non-zero then this field contains the offset from the beginning + of the protected-mode code to the payload. The payload may be compressed. The format of both the compressed and uncompressed data should be determined using the standard magic diff --git a/Documentation/x86/pat.txt b/Documentation/x86/pat.txt index c93ff5f4c0d..cf08c9fff3c 100644 --- a/Documentation/x86/pat.txt +++ b/Documentation/x86/pat.txt @@ -80,6 +80,30 @@ pci proc | -- | -- | WC | | | | | ------------------------------------------------------------------- +Advanced APIs for drivers +------------------------- +A. Exporting pages to users with remap_pfn_range, io_remap_pfn_range, +vm_insert_pfn + +Drivers wanting to export some pages to userspace do it by using mmap +interface and a combination of +1) pgprot_noncached() +2) io_remap_pfn_range() or remap_pfn_range() or vm_insert_pfn() + +With PAT support, a new API pgprot_writecombine is being added. So, drivers can +continue to use the above sequence, with either pgprot_noncached() or +pgprot_writecombine() in step 1, followed by step 2. + +In addition, step 2 internally tracks the region as UC or WC in memtype +list in order to ensure no conflicting mapping. + +Note that this set of APIs only works with IO (non RAM) regions. If driver +wants to export a RAM region, it has to do set_memory_uc() or set_memory_wc() +as step 0 above and also track the usage of those pages and use set_memory_wb() +before the page is freed to free pool. + + + Notes: -- in the above table mean "Not suggested usage for the API". Some of the --'s diff --git a/Documentation/x86/x86_64/boot-options.txt b/Documentation/x86/x86_64/boot-options.txt index f6d561a1a9b..34c13040a71 100644 --- a/Documentation/x86/x86_64/boot-options.txt +++ b/Documentation/x86/x86_64/boot-options.txt @@ -79,17 +79,6 @@ Timing Report when timer interrupts are lost because some code turned off interrupts for too long. - nmi_watchdog=NUMBER[,panic] - NUMBER can be: - 0 don't use an NMI watchdog - 1 use the IO-APIC timer for the NMI watchdog - 2 use the local APIC for the NMI watchdog using a performance counter. Note - This will use one performance counter and the local APIC's performance - vector. - When panic is specified panic when an NMI watchdog timeout occurs. - This is useful when you use a panic=... timeout and need the box - quickly up again. - nohpet Don't use the HPET timer. diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt index efce7509736..29b52b14d0b 100644 --- a/Documentation/x86/x86_64/mm.txt +++ b/Documentation/x86/x86_64/mm.txt @@ -6,7 +6,7 @@ Virtual memory map with 4 level page tables: 0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm hole caused by [48:63] sign extension ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole -ffff810000000000 - ffffc0ffffffffff (=46 bits) direct mapping of all phys. memory +ffff880000000000 - ffffc0ffffffffff (=57 TB) direct mapping of all phys. memory ffffc10000000000 - ffffc1ffffffffff (=40 bits) hole ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB) |