diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/ABI/testing/sysfs-module | 12 | ||||
-rw-r--r-- | Documentation/DocBook/kernel-api.tmpl | 3 | ||||
-rw-r--r-- | Documentation/block/00-INDEX | 4 | ||||
-rw-r--r-- | Documentation/block/barrier.txt | 261 | ||||
-rw-r--r-- | Documentation/block/writeback_cache_control.txt | 86 | ||||
-rw-r--r-- | Documentation/cgroups/blkio-controller.txt | 106 | ||||
-rw-r--r-- | Documentation/devices.txt | 6 | ||||
-rw-r--r-- | Documentation/dynamic-debug-howto.txt | 22 | ||||
-rw-r--r-- | Documentation/filesystems/proc.txt | 32 | ||||
-rw-r--r-- | Documentation/kernel-parameters.txt | 16 | ||||
-rw-r--r-- | Documentation/lguest/lguest.c | 29 | ||||
-rw-r--r-- | Documentation/powerpc/dts-bindings/fsl/usb.txt | 22 | ||||
-rw-r--r-- | Documentation/scsi/st.txt | 15 | ||||
-rw-r--r-- | Documentation/usb/proc_usb_info.txt | 34 | ||||
-rw-r--r-- | Documentation/workqueue.txt | 29 |
15 files changed, 360 insertions, 317 deletions
diff --git a/Documentation/ABI/testing/sysfs-module b/Documentation/ABI/testing/sysfs-module new file mode 100644 index 00000000000..cfcec3bffc0 --- /dev/null +++ b/Documentation/ABI/testing/sysfs-module @@ -0,0 +1,12 @@ +What: /sys/module/pch_phub/drivers/.../pch_mac +Date: August 2010 +KernelVersion: 2.6.35 +Contact: masa-korg@dsn.okisemi.com +Description: Write/read GbE MAC address. + +What: /sys/module/pch_phub/drivers/.../pch_firmware +Date: August 2010 +KernelVersion: 2.6.35 +Contact: masa-korg@dsn.okisemi.com +Description: Write/read Option ROM data. + diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl index 6899f471fb1..6b4e07f28b6 100644 --- a/Documentation/DocBook/kernel-api.tmpl +++ b/Documentation/DocBook/kernel-api.tmpl @@ -257,7 +257,8 @@ X!Earch/x86/kernel/mca_32.c !Iblock/blk-sysfs.c !Eblock/blk-settings.c !Eblock/blk-exec.c -!Eblock/blk-barrier.c +!Eblock/blk-flush.c +!Eblock/blk-lib.c !Eblock/blk-tag.c !Iblock/blk-tag.c !Eblock/blk-integrity.c diff --git a/Documentation/block/00-INDEX b/Documentation/block/00-INDEX index a406286f6f3..d111e3b23db 100644 --- a/Documentation/block/00-INDEX +++ b/Documentation/block/00-INDEX @@ -1,7 +1,5 @@ 00-INDEX - This file -barrier.txt - - I/O Barriers biodoc.txt - Notes on the Generic Block Layer Rewrite in Linux 2.5 capability.txt @@ -16,3 +14,5 @@ stat.txt - Block layer statistics in /sys/block/<dev>/stat switching-sched.txt - Switching I/O schedulers at runtime +writeback_cache_control.txt + - Control of volatile write back caches diff --git a/Documentation/block/barrier.txt b/Documentation/block/barrier.txt deleted file mode 100644 index 2c2f24f634e..00000000000 --- a/Documentation/block/barrier.txt +++ /dev/null @@ -1,261 +0,0 @@ -I/O Barriers -============ -Tejun Heo <htejun@gmail.com>, July 22 2005 - -I/O barrier requests are used to guarantee ordering around the barrier -requests. Unless you're crazy enough to use disk drives for -implementing synchronization constructs (wow, sounds interesting...), -the ordering is meaningful only for write requests for things like -journal checkpoints. All requests queued before a barrier request -must be finished (made it to the physical medium) before the barrier -request is started, and all requests queued after the barrier request -must be started only after the barrier request is finished (again, -made it to the physical medium). - -In other words, I/O barrier requests have the following two properties. - -1. Request ordering - -Requests cannot pass the barrier request. Preceding requests are -processed before the barrier and following requests after. - -Depending on what features a drive supports, this can be done in one -of the following three ways. - -i. For devices which have queue depth greater than 1 (TCQ devices) and -support ordered tags, block layer can just issue the barrier as an -ordered request and the lower level driver, controller and drive -itself are responsible for making sure that the ordering constraint is -met. Most modern SCSI controllers/drives should support this. - -NOTE: SCSI ordered tag isn't currently used due to limitation in the - SCSI midlayer, see the following random notes section. - -ii. For devices which have queue depth greater than 1 but don't -support ordered tags, block layer ensures that the requests preceding -a barrier request finishes before issuing the barrier request. Also, -it defers requests following the barrier until the barrier request is -finished. Older SCSI controllers/drives and SATA drives fall in this -category. - -iii. Devices which have queue depth of 1. This is a degenerate case -of ii. Just keeping issue order suffices. Ancient SCSI -controllers/drives and IDE drives are in this category. - -2. Forced flushing to physical medium - -Again, if you're not gonna do synchronization with disk drives (dang, -it sounds even more appealing now!), the reason you use I/O barriers -is mainly to protect filesystem integrity when power failure or some -other events abruptly stop the drive from operating and possibly make -the drive lose data in its cache. So, I/O barriers need to guarantee -that requests actually get written to non-volatile medium in order. - -There are four cases, - -i. No write-back cache. Keeping requests ordered is enough. - -ii. Write-back cache but no flush operation. There's no way to -guarantee physical-medium commit order. This kind of devices can't to -I/O barriers. - -iii. Write-back cache and flush operation but no FUA (forced unit -access). We need two cache flushes - before and after the barrier -request. - -iv. Write-back cache, flush operation and FUA. We still need one -flush to make sure requests preceding a barrier are written to medium, -but post-barrier flush can be avoided by using FUA write on the -barrier itself. - - -How to support barrier requests in drivers ------------------------------------------- - -All barrier handling is done inside block layer proper. All low level -drivers have to are implementing its prepare_flush_fn and using one -the following two functions to indicate what barrier type it supports -and how to prepare flush requests. Note that the term 'ordered' is -used to indicate the whole sequence of performing barrier requests -including draining and flushing. - -typedef void (prepare_flush_fn)(struct request_queue *q, struct request *rq); - -int blk_queue_ordered(struct request_queue *q, unsigned ordered, - prepare_flush_fn *prepare_flush_fn); - -@q : the queue in question -@ordered : the ordered mode the driver/device supports -@prepare_flush_fn : this function should prepare @rq such that it - flushes cache to physical medium when executed - -For example, SCSI disk driver's prepare_flush_fn looks like the -following. - -static void sd_prepare_flush(struct request_queue *q, struct request *rq) -{ - memset(rq->cmd, 0, sizeof(rq->cmd)); - rq->cmd_type = REQ_TYPE_BLOCK_PC; - rq->timeout = SD_TIMEOUT; - rq->cmd[0] = SYNCHRONIZE_CACHE; - rq->cmd_len = 10; -} - -The following seven ordered modes are supported. The following table -shows which mode should be used depending on what features a -device/driver supports. In the leftmost column of table, -QUEUE_ORDERED_ prefix is omitted from the mode names to save space. - -The table is followed by description of each mode. Note that in the -descriptions of QUEUE_ORDERED_DRAIN*, '=>' is used whereas '->' is -used for QUEUE_ORDERED_TAG* descriptions. '=>' indicates that the -preceding step must be complete before proceeding to the next step. -'->' indicates that the next step can start as soon as the previous -step is issued. - - write-back cache ordered tag flush FUA ------------------------------------------------------------------------ -NONE yes/no N/A no N/A -DRAIN no no N/A N/A -DRAIN_FLUSH yes no yes no -DRAIN_FUA yes no yes yes -TAG no yes N/A N/A -TAG_FLUSH yes yes yes no -TAG_FUA yes yes yes yes - - -QUEUE_ORDERED_NONE - I/O barriers are not needed and/or supported. - - Sequence: N/A - -QUEUE_ORDERED_DRAIN - Requests are ordered by draining the request queue and cache - flushing isn't needed. - - Sequence: drain => barrier - -QUEUE_ORDERED_DRAIN_FLUSH - Requests are ordered by draining the request queue and both - pre-barrier and post-barrier cache flushings are needed. - - Sequence: drain => preflush => barrier => postflush - -QUEUE_ORDERED_DRAIN_FUA - Requests are ordered by draining the request queue and - pre-barrier cache flushing is needed. By using FUA on barrier - request, post-barrier flushing can be skipped. - - Sequence: drain => preflush => barrier - -QUEUE_ORDERED_TAG - Requests are ordered by ordered tag and cache flushing isn't - needed. - - Sequence: barrier - -QUEUE_ORDERED_TAG_FLUSH - Requests are ordered by ordered tag and both pre-barrier and - post-barrier cache flushings are needed. - - Sequence: preflush -> barrier -> postflush - -QUEUE_ORDERED_TAG_FUA - Requests are ordered by ordered tag and pre-barrier cache - flushing is needed. By using FUA on barrier request, - post-barrier flushing can be skipped. - - Sequence: preflush -> barrier - - -Random notes/caveats --------------------- - -* SCSI layer currently can't use TAG ordering even if the drive, -controller and driver support it. The problem is that SCSI midlayer -request dispatch function is not atomic. It releases queue lock and -switch to SCSI host lock during issue and it's possible and likely to -happen in time that requests change their relative positions. Once -this problem is solved, TAG ordering can be enabled. - -* Currently, no matter which ordered mode is used, there can be only -one barrier request in progress. All I/O barriers are held off by -block layer until the previous I/O barrier is complete. This doesn't -make any difference for DRAIN ordered devices, but, for TAG ordered -devices with very high command latency, passing multiple I/O barriers -to low level *might* be helpful if they are very frequent. Well, this -certainly is a non-issue. I'm writing this just to make clear that no -two I/O barrier is ever passed to low-level driver. - -* Completion order. Requests in ordered sequence are issued in order -but not required to finish in order. Barrier implementation can -handle out-of-order completion of ordered sequence. IOW, the requests -MUST be processed in order but the hardware/software completion paths -are allowed to reorder completion notifications - eg. current SCSI -midlayer doesn't preserve completion order during error handling. - -* Requeueing order. Low-level drivers are free to requeue any request -after they removed it from the request queue with -blkdev_dequeue_request(). As barrier sequence should be kept in order -when requeued, generic elevator code takes care of putting requests in -order around barrier. See blk_ordered_req_seq() and -ELEVATOR_INSERT_REQUEUE handling in __elv_add_request() for details. - -Note that block drivers must not requeue preceding requests while -completing latter requests in an ordered sequence. Currently, no -error checking is done against this. - -* Error handling. Currently, block layer will report error to upper -layer if any of requests in an ordered sequence fails. Unfortunately, -this doesn't seem to be enough. Look at the following request flow. -QUEUE_ORDERED_TAG_FLUSH is in use. - - [0] [1] [2] [3] [pre] [barrier] [post] < [4] [5] [6] ... > - still in elevator - -Let's say request [2], [3] are write requests to update file system -metadata (journal or whatever) and [barrier] is used to mark that -those updates are valid. Consider the following sequence. - - i. Requests [0] ~ [post] leaves the request queue and enters - low-level driver. - ii. After a while, unfortunately, something goes wrong and the - drive fails [2]. Note that any of [0], [1] and [3] could have - completed by this time, but [pre] couldn't have been finished - as the drive must process it in order and it failed before - processing that command. - iii. Error handling kicks in and determines that the error is - unrecoverable and fails [2], and resumes operation. - iv. [pre] [barrier] [post] gets processed. - v. *BOOM* power fails - -The problem here is that the barrier request is *supposed* to indicate -that filesystem update requests [2] and [3] made it safely to the -physical medium and, if the machine crashes after the barrier is -written, filesystem recovery code can depend on that. Sadly, that -isn't true in this case anymore. IOW, the success of a I/O barrier -should also be dependent on success of some of the preceding requests, -where only upper layer (filesystem) knows what 'some' is. - -This can be solved by implementing a way to tell the block layer which -requests affect the success of the following barrier request and -making lower lever drivers to resume operation on error only after -block layer tells it to do so. - -As the probability of this happening is very low and the drive should -be faulty, implementing the fix is probably an overkill. But, still, -it's there. - -* In previous drafts of barrier implementation, there was fallback -mechanism such that, if FUA or ordered TAG fails, less fancy ordered -mode can be selected and the failed barrier request is retried -automatically. The rationale for this feature was that as FUA is -pretty new in ATA world and ordered tag was never used widely, there -could be devices which report to support those features but choke when -actually given such requests. - - This was removed for two reasons 1. it's an overkill 2. it's -impossible to implement properly when TAG ordering is used as low -level drivers resume after an error automatically. If it's ever -needed adding it back and modifying low level drivers accordingly -shouldn't be difficult. diff --git a/Documentation/block/writeback_cache_control.txt b/Documentation/block/writeback_cache_control.txt new file mode 100644 index 00000000000..83407d36630 --- /dev/null +++ b/Documentation/block/writeback_cache_control.txt @@ -0,0 +1,86 @@ + +Explicit volatile write back cache control +===================================== + +Introduction +------------ + +Many storage devices, especially in the consumer market, come with volatile +write back caches. That means the devices signal I/O completion to the +operating system before data actually has hit the non-volatile storage. This +behavior obviously speeds up various workloads, but it means the operating +system needs to force data out to the non-volatile storage when it performs +a data integrity operation like fsync, sync or an unmount. + +The Linux block layer provides two simple mechanisms that let filesystems +control the caching behavior of the storage device. These mechanisms are +a forced cache flush, and the Force Unit Access (FUA) flag for requests. + + +Explicit cache flushes +---------------------- + +The REQ_FLUSH flag can be OR ed into the r/w flags of a bio submitted from +the filesystem and will make sure the volatile cache of the storage device +has been flushed before the actual I/O operation is started. This explicitly +guarantees that previously completed write requests are on non-volatile +storage before the flagged bio starts. In addition the REQ_FLUSH flag can be +set on an otherwise empty bio structure, which causes only an explicit cache +flush without any dependent I/O. It is recommend to use +the blkdev_issue_flush() helper for a pure cache flush. + + +Forced Unit Access +----------------- + +The REQ_FUA flag can be OR ed into the r/w flags of a bio submitted from the +filesystem and will make sure that I/O completion for this request is only +signaled after the data has been committed to non-volatile storage. + + +Implementation details for filesystems +-------------------------------------- + +Filesystems can simply set the REQ_FLUSH and REQ_FUA bits and do not have to +worry if the underlying devices need any explicit cache flushing and how +the Forced Unit Access is implemented. The REQ_FLUSH and REQ_FUA flags +may both be set on a single bio. + + +Implementation details for make_request_fn based block drivers +-------------------------------------------------------------- + +These drivers will always see the REQ_FLUSH and REQ_FUA bits as they sit +directly below the submit_bio interface. For remapping drivers the REQ_FUA +bits need to be propagated to underlying devices, and a global flush needs +to be implemented for bios with the REQ_FLUSH bit set. For real device +drivers that do not have a volatile cache the REQ_FLUSH and REQ_FUA bits +on non-empty bios can simply be ignored, and REQ_FLUSH requests without +data can be completed successfully without doing any work. Drivers for +devices with volatile caches need to implement the support for these +flags themselves without any help from the block layer. + + +Implementation details for request_fn based block drivers +-------------------------------------------------------------- + +For devices that do not support volatile write caches there is no driver +support required, the block layer completes empty REQ_FLUSH requests before +entering the driver and strips off the REQ_FLUSH and REQ_FUA bits from +requests that have a payload. For devices with volatile write caches the +driver needs to tell the block layer that it supports flushing caches by +doing: + + blk_queue_flush(sdkp->disk->queue, REQ_FLUSH); + +and handle empty REQ_FLUSH requests in its prep_fn/request_fn. Note that +REQ_FLUSH requests with a payload are automatically turned into a sequence +of an empty REQ_FLUSH request followed by the actual write by the block +layer. For devices that also support the FUA bit the block layer needs +to be told to pass through the REQ_FUA bit using: + + blk_queue_flush(sdkp->disk->queue, REQ_FLUSH | REQ_FUA); + +and the driver must handle write requests that have the REQ_FUA bit set +in prep_fn/request_fn. If the FUA bit is not natively supported the block +layer turns it into an empty REQ_FLUSH request after the actual write. diff --git a/Documentation/cgroups/blkio-controller.txt b/Documentation/cgroups/blkio-controller.txt index 6919d62591d..d6da611f8f6 100644 --- a/Documentation/cgroups/blkio-controller.txt +++ b/Documentation/cgroups/blkio-controller.txt @@ -8,12 +8,17 @@ both at leaf nodes as well as at intermediate nodes in a storage hierarchy. Plan is to use the same cgroup based management interface for blkio controller and based on user options switch IO policies in the background. -In the first phase, this patchset implements proportional weight time based -division of disk policy. It is implemented in CFQ. Hence this policy takes -effect only on leaf nodes when CFQ is being used. +Currently two IO control policies are implemented. First one is proportional +weight time based division of disk policy. It is implemented in CFQ. Hence +this policy takes effect only on leaf nodes when CFQ is being used. The second +one is throttling policy which can be used to specify upper IO rate limits +on devices. This policy is implemented in generic block layer and can be +used on leaf nodes as well as higher level logical devices like device mapper. HOWTO ===== +Proportional Weight division of bandwidth +----------------------------------------- You can do a very simple testing of running two dd threads in two different cgroups. Here is what you can do. @@ -55,6 +60,35 @@ cgroups. Here is what you can do. group dispatched to the disk. We provide fairness in terms of disk time, so ideally io.disk_time of cgroups should be in proportion to the weight. +Throttling/Upper Limit policy +----------------------------- +- Enable Block IO controller + CONFIG_BLK_CGROUP=y + +- Enable throttling in block layer + CONFIG_BLK_DEV_THROTTLING=y + +- Mount blkio controller + mount -t cgroup -o blkio none /cgroup/blkio + +- Specify a bandwidth rate on particular device for root group. The format + for policy is "<major>:<minor> <byes_per_second>". + + echo "8:16 1048576" > /cgroup/blkio/blkio.read_bps_device + + Above will put a limit of 1MB/second on reads happening for root group + on device having major/minor number 8:16. + +- Run dd to read a file and see if rate is throttled to 1MB/s or not. + + # dd if=/mnt/common/zerofile of=/dev/null bs=4K count=1024 + # iflag=direct + 1024+0 records in + 1024+0 records out + 4194304 bytes (4.2 MB) copied, 4.0001 s, 1.0 MB/s + + Limits for writes can be put using blkio.write_bps_device file. + Various user visible config options =================================== CONFIG_BLK_CGROUP @@ -68,8 +102,13 @@ CONFIG_CFQ_GROUP_IOSCHED - Enables group scheduling in CFQ. Currently only 1 level of group creation is allowed. +CONFIG_BLK_DEV_THROTTLING + - Enable block device throttling support in block layer. + Details of cgroup files ======================= +Proportional weight policy files +-------------------------------- - blkio.weight - Specifies per cgroup weight. This is default weight of the group on all the devices until and unless overridden by per device rule. @@ -210,6 +249,67 @@ Details of cgroup files and minor number of the device and third field specifies the number of times a group was dequeued from a particular device. +Throttling/Upper limit policy files +----------------------------------- +- blkio.throttle.read_bps_device + - Specifies upper limit on READ rate from the device. IO rate is + specified in bytes per second. Rules are per deivce. Following is + the format. + + echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.read_bps_device + +- blkio.throttle.write_bps_device + - Specifies upper limit on WRITE rate to the device. IO rate is + specified in bytes per second. Rules are per deivce. Following is + the format. + + echo "<major>:<minor> <rate_bytes_per_second>" > /cgrp/blkio.write_bps_device + +- blkio.throttle.read_iops_device + - Specifies upper limit on READ rate from the device. IO rate is + specified in IO per second. Rules are per deivce. Following is + the format. + + echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.read_iops_device + +- blkio.throttle.write_iops_device + - Specifies upper limit on WRITE rate to the device. IO rate is + specified in io per second. Rules are per deivce. Following is + the format. + + echo "<major>:<minor> <rate_io_per_second>" > /cgrp/blkio.write_iops_device + +Note: If both BW and IOPS rules are specified for a device, then IO is + subjectd to both the constraints. + +- blkio.throttle.io_serviced + - Number of IOs (bio) completed to/from the disk by the group (as + seen by throttling policy). These are further divided by the type + of operation - read or write, sync or async. First two fields specify + the major and minor number of the device, third field specifies the + operation type and the fourth field specifies the number of IOs. + + blkio.io_serviced does accounting as seen by CFQ and counts are in + number of requests (struct request). On the other hand, + blkio.throttle.io_serviced counts number of IO in terms of number + of bios as seen by throttling policy. These bios can later be + merged by elevator and total number of requests completed can be + lesser. + +- blkio.throttle.io_service_bytes + - Number of bytes transferred to/from the disk by the group. These + are further divided by the type of operation - read or write, sync + or async. First two fields specify the major and minor number of the + device, third field specifies the operation type and the fourth field + specifies the number of bytes. + + These numbers should roughly be same as blkio.io_service_bytes as + updated by CFQ. The difference between two is that + blkio.io_service_bytes will not be updated if CFQ is not operating + on request queue. + +Common files among various policies +----------------------------------- - blkio.reset_stats - Writing an int to this file will result in resetting all the stats for that cgroup. diff --git a/Documentation/devices.txt b/Documentation/devices.txt index d0d1df6cb5d..c58abf1ccc7 100644 --- a/Documentation/devices.txt +++ b/Documentation/devices.txt @@ -239,6 +239,7 @@ Your cooperation is appreciated. 0 = /dev/tty Current TTY device 1 = /dev/console System console 2 = /dev/ptmx PTY master multiplex + 3 = /dev/ttyprintk User messages via printk TTY device 64 = /dev/cua0 Callout device for ttyS0 ... 255 = /dev/cua191 Callout device for ttyS191 @@ -2553,7 +2554,10 @@ Your cooperation is appreciated. 175 = /dev/usb/legousbtower15 16th USB Legotower device 176 = /dev/usb/usbtmc1 First USB TMC device ... - 192 = /dev/usb/usbtmc16 16th USB TMC device + 191 = /dev/usb/usbtmc16 16th USB TMC device + 192 = /dev/usb/yurex1 First USB Yurex device + ... + 209 = /dev/usb/yurex16 16th USB Yurex device 240 = /dev/usb/dabusb0 First daubusb device ... 243 = /dev/usb/dabusb3 Fourth dabusb device diff --git a/Documentation/dynamic-debug-howto.txt b/Documentation/dynamic-debug-howto.txt index 674c5663d34..58ea64a9616 100644 --- a/Documentation/dynamic-debug-howto.txt +++ b/Documentation/dynamic-debug-howto.txt @@ -24,7 +24,7 @@ Dynamic debug has even more useful features: read to display the complete list of known debug statements, to help guide you Controlling dynamic debug Behaviour -=============================== +=================================== The behaviour of pr_debug()/dev_debug()s are controlled via writing to a control file in the 'debugfs' filesystem. Thus, you must first mount the debugfs @@ -212,6 +212,26 @@ Note the regexp ^[-+=][scp]+$ matches a flags specification. Note also that there is no convenient syntax to remove all the flags at once, you need to use "-psc". + +Debug messages during boot process +================================== + +To be able to activate debug messages during the boot process, +even before userspace and debugfs exists, use the boot parameter: +ddebug_query="QUERY" + +QUERY follows the syntax described above, but must not exceed 1023 +characters. The enablement of debug messages is done as an arch_initcall. +Thus you can enable debug messages in all code processed after this +arch_initcall via this boot parameter. +On an x86 system for example ACPI enablement is a subsys_initcall and +ddebug_query="file ec.c +p" +will show early Embedded Controller transactions during ACPI setup if +your machine (typically a laptop) has an Embedded Controller. +PCI (or other devices) initialization also is a hot candidate for using +this boot parameter for debugging purposes. + + Examples ======== diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index a6aca874088..98223a67694 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -1075,6 +1075,7 @@ Table 1-11: Files in /proc/tty drivers list of drivers and their usage ldiscs registered line disciplines driver/serial usage statistic and status of single tty lines + consoles registered system console lines .............................................................................. To see which tty's are currently in use, you can simply look into the file @@ -1093,6 +1094,37 @@ To see which tty's are currently in use, you can simply look into the file /dev/tty /dev/tty 5 0 system:/dev/tty unknown /dev/tty 4 1-63 console +To see which character device lines are currently used for the system console +/dev/console, you may simply look into the file /proc/tty/consoles: + + > cat /proc/tty/consoles + tty0 -WU (ECp) 4:7 + ttyS0 -W- (Ep) 4:64 + +The columns are: + + device name of the device + operations R = can do read operations + W = can do write operations + U = can do unblank + flags E = it is enabled + C = it is prefered console + B = it is primary boot console + p = it is used for printk buffer + b = it is not a TTY but a Braille device + a = it is safe to use when cpu is offline + * = it is standard input of the reading process + major:minor major and minor number of the device separated by a colon + +If the reading process holds /dev/console open at the regular standard input +stream the active device will be marked by an asterisk: + + > cat /proc/tty/consoles < /dev/console + tty0 -WU (ECp*) 4:7 + ttyS0 -W- (Ep) 4:64 + > tty + /dev/pts/3 + 1.8 Miscellaneous kernel statistics in /proc/stat ------------------------------------------------- diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 02f21d9220c..4cd8b86e00e 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -43,10 +43,11 @@ parameter is applicable: AVR32 AVR32 architecture is enabled. AX25 Appropriate AX.25 support is enabled. BLACKFIN Blackfin architecture is enabled. - DRM Direct Rendering Management support is enabled. EDD BIOS Enhanced Disk Drive Services (EDD) is enabled EFI EFI Partitioning (GPT) is enabled EIDE EIDE/ATAPI support is enabled. + DRM Direct Rendering Management support is enabled. + DYNAMIC_DEBUG Build in debug messages and enable them at runtime FB The frame buffer device is enabled. GCOV GCOV profiling is enabled. HW Appropriate hardware is enabled. @@ -570,6 +571,10 @@ and is between 256 and 4096 characters. It is defined in the file Format: <port#>,<type> See also Documentation/input/joystick-parport.txt + ddebug_query= [KNL,DYNAMIC_DEBUG] Enable debug messages at early boot + time. See Documentation/dynamic-debug-howto.txt for + details. + debug [KNL] Enable kernel debugging (events log level). debug_locks_verbose= @@ -2370,6 +2375,15 @@ and is between 256 and 4096 characters. It is defined in the file switches= [HW,M68k] + sysfs.deprecated=0|1 [KNL] + Enable/disable old style sysfs layout for old udev + on older distributions. When this option is enabled + very new udev will not work anymore. When this option + is disabled (or CONFIG_SYSFS_DEPRECATED not compiled) + in older udev will not work anymore. + Default depends on CONFIG_SYSFS_DEPRECATED_V2 set in + the kernel configuration. + sysrq_always_enabled [KNL] Ignore sysrq setting - this boot parameter will diff --git a/Documentation/lguest/lguest.c b/Documentation/lguest/lguest.c index 8a6a8c6d498..dc73bc54cc4 100644 --- a/Documentation/lguest/lguest.c +++ b/Documentation/lguest/lguest.c @@ -1640,15 +1640,6 @@ static void blk_request(struct virtqueue *vq) off = out->sector * 512; /* - * The block device implements "barriers", where the Guest indicates - * that it wants all previous writes to occur before this write. We - * don't have a way of asking our kernel to do a barrier, so we just - * synchronize all the data in the file. Pretty poor, no? - */ - if (out->type & VIRTIO_BLK_T_BARRIER) - fdatasync(vblk->fd); - - /* * In general the virtio block driver is allowed to try SCSI commands. * It'd be nice if we supported eject, for example, but we don't. */ @@ -1680,6 +1671,13 @@ static void blk_request(struct virtqueue *vq) /* Die, bad Guest, die. */ errx(1, "Write past end %llu+%u", off, ret); } + + wlen = sizeof(*in); + *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR); + } else if (out->type & VIRTIO_BLK_T_FLUSH) { + /* Flush */ + ret = fdatasync(vblk->fd); + verbose("FLUSH fdatasync: %i\n", ret); wlen = sizeof(*in); *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR); } else { @@ -1703,15 +1701,6 @@ static void blk_request(struct virtqueue *vq) } } - /* - * OK, so we noted that it was pretty poor to use an fdatasync as a - * barrier. But Christoph Hellwig points out that we need a sync - * *afterwards* as well: "Barriers specify no reordering to the front - * or the back." And Jens Axboe confirmed it, so here we are: - */ - if (out->type & VIRTIO_BLK_T_BARRIER) - fdatasync(vblk->fd); - /* Finished that request. */ add_used(vq, head, wlen); } @@ -1736,8 +1725,8 @@ static void setup_block_file(const char *filename) vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE); vblk->len = lseek64(vblk->fd, 0, SEEK_END); - /* We support barriers. */ - add_feature(dev, VIRTIO_BLK_F_BARRIER); + /* We support FLUSH. */ + add_feature(dev, VIRTIO_BLK_F_FLUSH); /* Tell Guest how many sectors this device has. */ conf.capacity = cpu_to_le64(vblk->len / 512); diff --git a/Documentation/powerpc/dts-bindings/fsl/usb.txt b/Documentation/powerpc/dts-bindings/fsl/usb.txt index b0015240269..bd5723f0b67 100644 --- a/Documentation/powerpc/dts-bindings/fsl/usb.txt +++ b/Documentation/powerpc/dts-bindings/fsl/usb.txt @@ -8,6 +8,7 @@ and additions : Required properties : - compatible : Should be "fsl-usb2-mph" for multi port host USB controllers, or "fsl-usb2-dr" for dual role USB controllers + or "fsl,mpc5121-usb2-dr" for dual role USB controllers of MPC5121 - phy_type : For multi port host USB controllers, should be one of "ulpi", or "serial". For dual role USB controllers, should be one of "ulpi", "utmi", "utmi_wide", or "serial". @@ -33,6 +34,12 @@ Recommended properties : - interrupt-parent : the phandle for the interrupt controller that services interrupts for this device. +Optional properties : + - fsl,invert-drvvbus : boolean; for MPC5121 USB0 only. Indicates the + port power polarity of internal PHY signal DRVVBUS is inverted. + - fsl,invert-pwr-fault : boolean; for MPC5121 USB0 only. Indicates + the PWR_FAULT signal polarity is inverted. + Example multi port host USB controller device node : usb@22000 { compatible = "fsl-usb2-mph"; @@ -57,3 +64,18 @@ Example dual role USB controller device node : dr_mode = "otg"; phy = "ulpi"; }; + +Example dual role USB controller device node for MPC5121ADS: + + usb@4000 { + compatible = "fsl,mpc5121-usb2-dr"; + reg = <0x4000 0x1000>; + #address-cells = <1>; + #size-cells = <0>; + interrupt-parent = < &ipic >; + interrupts = <44 0x8>; + dr_mode = "otg"; + phy_type = "utmi_wide"; + fsl,invert-drvvbus; + fsl,invert-pwr-fault; + }; diff --git a/Documentation/scsi/st.txt b/Documentation/scsi/st.txt index 40752602c05..691ca292c24 100644 --- a/Documentation/scsi/st.txt +++ b/Documentation/scsi/st.txt @@ -2,7 +2,7 @@ This file contains brief information about the SCSI tape driver. The driver is currently maintained by Kai Mäkisara (email Kai.Makisara@kolumbus.fi) -Last modified: Sun Feb 24 21:59:07 2008 by kai.makisara +Last modified: Sun Aug 29 18:25:47 2010 by kai.makisara BASICS @@ -85,6 +85,17 @@ writing and the last operation has been a write. Two filemarks can be optionally written. In both cases end of data is signified by returning zero bytes for two consecutive reads. +Writing filemarks without the immediate bit set in the SCSI command block acts +as a synchronization point, i.e., all remaining data form the drive buffers is +written to tape before the command returns. This makes sure that write errors +are caught at that point, but this takes time. In some applications, several +consecutive files must be written fast. The MTWEOFI operation can be used to +write the filemarks without flushing the drive buffer. Writing filemark at +close() is always flushing the drive buffers. However, if the previous +operation is MTWEOFI, close() does not write a filemark. This can be used if +the program wants to close/open the tape device between files and wants to +skip waiting. + If rewind, offline, bsf, or seek is done and previous tape operation was write, a filemark is written before moving tape. @@ -301,6 +312,8 @@ MTBSR Space backward over count records. MTFSS Space forward over count setmarks. MTBSS Space backward over count setmarks. MTWEOF Write count filemarks. +MTWEOFI Write count filemarks with immediate bit set (i.e., does not + wait until data is on tape) MTWSM Write count setmarks. MTREW Rewind tape. MTOFFL Set device off line (often rewind plus eject). diff --git a/Documentation/usb/proc_usb_info.txt b/Documentation/usb/proc_usb_info.txt index fafcd472326..afe596d5f20 100644 --- a/Documentation/usb/proc_usb_info.txt +++ b/Documentation/usb/proc_usb_info.txt @@ -1,12 +1,17 @@ /proc/bus/usb filesystem output =============================== -(version 2003.05.30) +(version 2010.09.13) The usbfs filesystem for USB devices is traditionally mounted at /proc/bus/usb. It provides the /proc/bus/usb/devices file, as well as the /proc/bus/usb/BBB/DDD files. +In many modern systems the usbfs filsystem isn't used at all. Instead +USB device nodes are created under /dev/usb/ or someplace similar. The +"devices" file is available in debugfs, typically as +/sys/kernel/debug/usb/devices. + **NOTE**: If /proc/bus/usb appears empty, and a host controller driver has been linked, then you need to mount the @@ -106,8 +111,8 @@ Legend: Topology info: -T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=ddd MxCh=dd -| | | | | | | | |__MaxChildren +T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=dddd MxCh=dd +| | | | | | | | |__MaxChildren | | | | | | | |__Device Speed in Mbps | | | | | | |__DeviceNumber | | | | | |__Count of devices at this level @@ -120,8 +125,13 @@ T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=ddd MxCh=dd Speed may be: 1.5 Mbit/s for low speed USB 12 Mbit/s for full speed USB - 480 Mbit/s for high speed USB (added for USB 2.0) + 480 Mbit/s for high speed USB (added for USB 2.0); + also used for Wireless USB, which has no fixed speed + 5000 Mbit/s for SuperSpeed USB (added for USB 3.0) + For reasons lost in the mists of time, the Port number is always + too low by 1. For example, a device plugged into port 4 will + show up with "Port=03". Bandwidth info: B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd @@ -291,7 +301,7 @@ Here's an example, from a system which has a UHCI root hub, an external hub connected to the root hub, and a mouse and a serial converter connected to the external hub. -T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 +T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 B: Alloc= 28/900 us ( 3%), #Int= 2, #Iso= 0 D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 P: Vendor=0000 ProdID=0000 Rev= 0.00 @@ -301,21 +311,21 @@ C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms -T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 +T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 P: Vendor=0451 ProdID=1446 Rev= 1.00 C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub E: Ad=81(I) Atr=03(Int.) MxPS= 1 Ivl=255ms -T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 +T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 P: Vendor=04b4 ProdID=0001 Rev= 0.00 C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse E: Ad=81(I) Atr=03(Int.) MxPS= 3 Ivl= 10ms -T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 +T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 P: Vendor=0565 ProdID=0001 Rev= 1.08 S: Manufacturer=Peracom Networks, Inc. @@ -330,12 +340,12 @@ E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl= 8ms Selecting only the "T:" and "I:" lines from this (for example, by using "procusb ti"), we have: -T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 -T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 +T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 +T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub -T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 +T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse -T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 +T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial diff --git a/Documentation/workqueue.txt b/Documentation/workqueue.txt index e4498a2872c..996a27d9b8d 100644 --- a/Documentation/workqueue.txt +++ b/Documentation/workqueue.txt @@ -196,11 +196,11 @@ resources, scheduled and executed. suspend operations. Work items on the wq are drained and no new work item starts execution until thawed. - WQ_RESCUER + WQ_MEM_RECLAIM All wq which might be used in the memory reclaim paths _MUST_ - have this flag set. This reserves one worker exclusively for - the execution of this wq under memory pressure. + have this flag set. The wq is guaranteed to have at least one + execution context regardless of memory pressure. WQ_HIGHPRI @@ -356,11 +356,11 @@ If q1 has WQ_CPU_INTENSIVE set, 6. Guidelines -* Do not forget to use WQ_RESCUER if a wq may process work items which - are used during memory reclaim. Each wq with WQ_RESCUER set has one - rescuer thread reserved for it. If there is dependency among - multiple work items used during memory reclaim, they should be - queued to separate wq each with WQ_RESCUER. +* Do not forget to use WQ_MEM_RECLAIM if a wq may process work items + which are used during memory reclaim. Each wq with WQ_MEM_RECLAIM + set has an execution context reserved for it. If there is + dependency among multiple work items used during memory reclaim, + they should be queued to separate wq each with WQ_MEM_RECLAIM. * Unless strict ordering is required, there is no need to use ST wq. @@ -368,12 +368,13 @@ If q1 has WQ_CPU_INTENSIVE set, recommended. In most use cases, concurrency level usually stays well under the default limit. -* A wq serves as a domain for forward progress guarantee (WQ_RESCUER), - flush and work item attributes. Work items which are not involved - in memory reclaim and don't need to be flushed as a part of a group - of work items, and don't require any special attribute, can use one - of the system wq. There is no difference in execution - characteristics between using a dedicated wq and a system wq. +* A wq serves as a domain for forward progress guarantee + (WQ_MEM_RECLAIM, flush and work item attributes. Work items which + are not involved in memory reclaim and don't need to be flushed as a + part of a group of work items, and don't require any special + attribute, can use one of the system wq. There is no difference in + execution characteristics between using a dedicated wq and a system + wq. * Unless work items are expected to consume a huge amount of CPU cycles, using a bound wq is usually beneficial due to the increased |