diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/cpu-hotplug.txt | 49 | ||||
-rw-r--r-- | Documentation/hwmon/k10temp | 60 | ||||
-rw-r--r-- | Documentation/powerpc/dts-bindings/fsl/mpic.txt | 42 | ||||
-rw-r--r-- | Documentation/trace/events-kmem.txt | 14 |
4 files changed, 126 insertions, 39 deletions
diff --git a/Documentation/cpu-hotplug.txt b/Documentation/cpu-hotplug.txt index 4d4a644b505..a99d7031cdf 100644 --- a/Documentation/cpu-hotplug.txt +++ b/Documentation/cpu-hotplug.txt @@ -315,41 +315,26 @@ A: The following are what is required for CPU hotplug infrastructure to work Q: I need to ensure that a particular cpu is not removed when there is some work specific to this cpu is in progress. -A: First switch the current thread context to preferred cpu +A: There are two ways. If your code can be run in interrupt context, use + smp_call_function_single(), otherwise use work_on_cpu(). Note that + work_on_cpu() is slow, and can fail due to out of memory: int my_func_on_cpu(int cpu) { - cpumask_t saved_mask, new_mask = CPU_MASK_NONE; - int curr_cpu, err = 0; - - saved_mask = current->cpus_allowed; - cpu_set(cpu, new_mask); - err = set_cpus_allowed(current, new_mask); - - if (err) - return err; - - /* - * If we got scheduled out just after the return from - * set_cpus_allowed() before running the work, this ensures - * we stay locked. - */ - curr_cpu = get_cpu(); - - if (curr_cpu != cpu) { - err = -EAGAIN; - goto ret; - } else { - /* - * Do work : But cant sleep, since get_cpu() disables preempt - */ - } - ret: - put_cpu(); - set_cpus_allowed(current, saved_mask); - return err; - } - + int err; + get_online_cpus(); + if (!cpu_online(cpu)) + err = -EINVAL; + else +#if NEEDS_BLOCKING + err = work_on_cpu(cpu, __my_func_on_cpu, NULL); +#else + smp_call_function_single(cpu, __my_func_on_cpu, &err, + true); +#endif + put_online_cpus(); + return err; + } Q: How do we determine how many CPUs are available for hotplug. A: There is no clear spec defined way from ACPI that can give us that diff --git a/Documentation/hwmon/k10temp b/Documentation/hwmon/k10temp new file mode 100644 index 00000000000..a7a18d453a5 --- /dev/null +++ b/Documentation/hwmon/k10temp @@ -0,0 +1,60 @@ +Kernel driver k10temp +===================== + +Supported chips: +* AMD Family 10h processors: + Socket F: Quad-Core/Six-Core/Embedded Opteron + Socket AM2+: Opteron, Phenom (II) X3/X4 + Socket AM3: Quad-Core Opteron, Athlon/Phenom II X2/X3/X4, Sempron II + Socket S1G3: Athlon II, Sempron, Turion II +* AMD Family 11h processors: + Socket S1G2: Athlon (X2), Sempron (X2), Turion X2 (Ultra) + + Prefix: 'k10temp' + Addresses scanned: PCI space + Datasheets: + BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h Processors: + http://support.amd.com/us/Processor_TechDocs/31116.pdf + BIOS and Kernel Developer's Guide (BKDG) for AMD Family 11h Processors: + http://support.amd.com/us/Processor_TechDocs/41256.pdf + Revision Guide for AMD Family 10h Processors: + http://support.amd.com/us/Processor_TechDocs/41322.pdf + Revision Guide for AMD Family 11h Processors: + http://support.amd.com/us/Processor_TechDocs/41788.pdf + AMD Family 11h Processor Power and Thermal Data Sheet for Notebooks: + http://support.amd.com/us/Processor_TechDocs/43373.pdf + AMD Family 10h Server and Workstation Processor Power and Thermal Data Sheet: + http://support.amd.com/us/Processor_TechDocs/43374.pdf + AMD Family 10h Desktop Processor Power and Thermal Data Sheet: + http://support.amd.com/us/Processor_TechDocs/43375.pdf + +Author: Clemens Ladisch <clemens@ladisch.de> + +Description +----------- + +This driver permits reading of the internal temperature sensor of AMD +Family 10h and 11h processors. + +All these processors have a sensor, but on older revisions of Family 10h +processors, the sensor may return inconsistent values (erratum 319). The +driver will refuse to load on these revisions unless you specify the +"force=1" module parameter. + +There is one temperature measurement value, available as temp1_input in +sysfs. It is measured in degrees Celsius with a resolution of 1/8th degree. +Please note that it is defined as a relative value; to quote the AMD manual: + + Tctl is the processor temperature control value, used by the platform to + control cooling systems. Tctl is a non-physical temperature on an + arbitrary scale measured in degrees. It does _not_ represent an actual + physical temperature like die or case temperature. Instead, it specifies + the processor temperature relative to the point at which the system must + supply the maximum cooling for the processor's specified maximum case + temperature and maximum thermal power dissipation. + +The maximum value for Tctl is available in the file temp1_max. + +If the BIOS has enabled hardware temperature control, the threshold at +which the processor will throttle itself to avoid damage is available in +temp1_crit and temp1_crit_hyst. diff --git a/Documentation/powerpc/dts-bindings/fsl/mpic.txt b/Documentation/powerpc/dts-bindings/fsl/mpic.txt new file mode 100644 index 00000000000..71e39cf3215 --- /dev/null +++ b/Documentation/powerpc/dts-bindings/fsl/mpic.txt @@ -0,0 +1,42 @@ +* OpenPIC and its interrupt numbers on Freescale's e500/e600 cores + +The OpenPIC specification does not specify which interrupt source has to +become which interrupt number. This is up to the software implementation +of the interrupt controller. The only requirement is that every +interrupt source has to have an unique interrupt number / vector number. +To accomplish this the current implementation assigns the number zero to +the first source, the number one to the second source and so on until +all interrupt sources have their unique number. +Usually the assigned vector number equals the interrupt number mentioned +in the documentation for a given core / CPU. This is however not true +for the e500 cores (MPC85XX CPUs) where the documentation distinguishes +between internal and external interrupt sources and starts counting at +zero for both of them. + +So what to write for external interrupt source X or internal interrupt +source Y into the device tree? Here is an example: + +The memory map for the interrupt controller in the MPC8544[0] shows, +that the first interrupt source starts at 0x5_0000 (PIC Register Address +Map-Interrupt Source Configuration Registers). This source becomes the +number zero therefore: + External interrupt 0 = interrupt number 0 + External interrupt 1 = interrupt number 1 + External interrupt 2 = interrupt number 2 + ... +Every interrupt number allocates 0x20 bytes register space. So to get +its number it is sufficient to shift the lower 16bits to right by five. +So for the external interrupt 10 we have: + 0x0140 >> 5 = 10 + +After the external sources, the internal sources follow. The in core I2C +controller on the MPC8544 for instance has the internal source number +27. Oo obtain its interrupt number we take the lower 16bits of its memory +address (0x5_0560) and shift it right: + 0x0560 >> 5 = 43 + +Therefore the I2C device node for the MPC8544 CPU has to have the +interrupt number 43 specified in the device tree. + +[0] MPC8544E PowerQUICCTM III, Integrated Host Processor Family Reference Manual + MPC8544ERM Rev. 1 10/2007 diff --git a/Documentation/trace/events-kmem.txt b/Documentation/trace/events-kmem.txt index 6ef2a8652e1..aa82ee4a5a8 100644 --- a/Documentation/trace/events-kmem.txt +++ b/Documentation/trace/events-kmem.txt @@ -1,7 +1,7 @@ Subsystem Trace Points: kmem -The tracing system kmem captures events related to object and page allocation -within the kernel. Broadly speaking there are four major subheadings. +The kmem tracing system captures events related to object and page allocation +within the kernel. Broadly speaking there are five major subheadings. o Slab allocation of small objects of unknown type (kmalloc) o Slab allocation of small objects of known type @@ -9,7 +9,7 @@ within the kernel. Broadly speaking there are four major subheadings. o Per-CPU Allocator Activity o External Fragmentation -This document will describe what each of the tracepoints are and why they +This document describes what each of the tracepoints is and why they might be useful. 1. Slab allocation of small objects of unknown type @@ -34,7 +34,7 @@ kmem_cache_free call_site=%lx ptr=%p These events are similar in usage to the kmalloc-related events except that it is likely easier to pin the event down to a specific cache. At the time of writing, no information is available on what slab is being allocated from, -but the call_site can usually be used to extrapolate that information +but the call_site can usually be used to extrapolate that information. 3. Page allocation ================== @@ -80,9 +80,9 @@ event indicating whether it is for a percpu_refill or not. When the per-CPU list is too full, a number of pages are freed, each one which triggers a mm_page_pcpu_drain event. -The individual nature of the events are so that pages can be tracked +The individual nature of the events is so that pages can be tracked between allocation and freeing. A number of drain or refill pages that occur -consecutively imply the zone->lock being taken once. Large amounts of PCP +consecutively imply the zone->lock being taken once. Large amounts of per-CPU refills and drains could imply an imbalance between CPUs where too much work is being concentrated in one place. It could also indicate that the per-CPU lists should be a larger size. Finally, large amounts of refills on one CPU @@ -102,6 +102,6 @@ is important. Large numbers of this event implies that memory is fragmenting and high-order allocations will start failing at some time in the future. One -means of reducing the occurange of this event is to increase the size of +means of reducing the occurrence of this event is to increase the size of min_free_kbytes in increments of 3*pageblock_size*nr_online_nodes where pageblock_size is usually the size of the default hugepage size. |