summaryrefslogtreecommitdiffstats
path: root/arch/alpha/lib/ev6-strncpy_from_user.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/alpha/lib/ev6-strncpy_from_user.S')
-rw-r--r--arch/alpha/lib/ev6-strncpy_from_user.S424
1 files changed, 0 insertions, 424 deletions
diff --git a/arch/alpha/lib/ev6-strncpy_from_user.S b/arch/alpha/lib/ev6-strncpy_from_user.S
deleted file mode 100644
index d2e28178cac..00000000000
--- a/arch/alpha/lib/ev6-strncpy_from_user.S
+++ /dev/null
@@ -1,424 +0,0 @@
-/*
- * arch/alpha/lib/ev6-strncpy_from_user.S
- * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
- *
- * Just like strncpy except in the return value:
- *
- * -EFAULT if an exception occurs before the terminator is copied.
- * N if the buffer filled.
- *
- * Otherwise the length of the string is returned.
- *
- * Much of the information about 21264 scheduling/coding comes from:
- * Compiler Writer's Guide for the Alpha 21264
- * abbreviated as 'CWG' in other comments here
- * ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
- * Scheduling notation:
- * E - either cluster
- * U - upper subcluster; U0 - subcluster U0; U1 - subcluster U1
- * L - lower subcluster; L0 - subcluster L0; L1 - subcluster L1
- * A bunch of instructions got moved and temp registers were changed
- * to aid in scheduling. Control flow was also re-arranged to eliminate
- * branches, and to provide longer code sequences to enable better scheduling.
- * A total rewrite (using byte load/stores for start & tail sequences)
- * is desirable, but very difficult to do without a from-scratch rewrite.
- * Save that for the future.
- */
-
-
-#include <asm/errno.h>
-#include <asm/regdef.h>
-
-
-/* Allow an exception for an insn; exit if we get one. */
-#define EX(x,y...) \
- 99: x,##y; \
- .section __ex_table,"a"; \
- .long 99b - .; \
- lda $31, $exception-99b($0); \
- .previous
-
-
- .set noat
- .set noreorder
- .text
-
- .globl __strncpy_from_user
- .ent __strncpy_from_user
- .frame $30, 0, $26
- .prologue 0
-
- .align 4
-__strncpy_from_user:
- and a0, 7, t3 # E : find dest misalignment
- beq a2, $zerolength # U :
-
- /* Are source and destination co-aligned? */
- mov a0, v0 # E : save the string start
- xor a0, a1, t4 # E :
- EX( ldq_u t1, 0(a1) ) # L : Latency=3 load first quadword
- ldq_u t0, 0(a0) # L : load first (partial) aligned dest quadword
-
- addq a2, t3, a2 # E : bias count by dest misalignment
- subq a2, 1, a3 # E :
- addq zero, 1, t10 # E :
- and t4, 7, t4 # E : misalignment between the two
-
- and a3, 7, t6 # E : number of tail bytes
- sll t10, t6, t10 # E : t10 = bitmask of last count byte
- bne t4, $unaligned # U :
- lda t2, -1 # E : build a mask against false zero
-
- /*
- * We are co-aligned; take care of a partial first word.
- * On entry to this basic block:
- * t0 == the first destination word for masking back in
- * t1 == the first source word.
- */
-
- srl a3, 3, a2 # E : a2 = loop counter = (count - 1)/8
- addq a1, 8, a1 # E :
- mskqh t2, a1, t2 # U : detection in the src word
- nop
-
- /* Create the 1st output word and detect 0's in the 1st input word. */
- mskqh t1, a1, t3 # U :
- mskql t0, a1, t0 # U : assemble the first output word
- ornot t1, t2, t2 # E :
- nop
-
- cmpbge zero, t2, t8 # E : bits set iff null found
- or t0, t3, t0 # E :
- beq a2, $a_eoc # U :
- bne t8, $a_eos # U : 2nd branch in a quad. Bad.
-
- /* On entry to this basic block:
- * t0 == a source quad not containing a null.
- * a0 - current aligned destination address
- * a1 - current aligned source address
- * a2 - count of quadwords to move.
- * NOTE: Loop improvement - unrolling this is going to be
- * a huge win, since we're going to stall otherwise.
- * Fix this later. For _really_ large copies, look
- * at using wh64 on a look-ahead basis. See the code
- * in clear_user.S and copy_user.S.
- * Presumably, since (a0) and (a1) do not overlap (by C definition)
- * Lots of nops here:
- * - Separate loads from stores
- * - Keep it to 1 branch/quadpack so the branch predictor
- * can train.
- */
-$a_loop:
- stq_u t0, 0(a0) # L :
- addq a0, 8, a0 # E :
- nop
- subq a2, 1, a2 # E :
-
- EX( ldq_u t0, 0(a1) ) # L :
- addq a1, 8, a1 # E :
- cmpbge zero, t0, t8 # E : Stall 2 cycles on t0
- beq a2, $a_eoc # U :
-
- beq t8, $a_loop # U :
- nop
- nop
- nop
-
- /* Take care of the final (partial) word store. At this point
- * the end-of-count bit is set in t8 iff it applies.
- *
- * On entry to this basic block we have:
- * t0 == the source word containing the null
- * t8 == the cmpbge mask that found it.
- */
-$a_eos:
- negq t8, t12 # E : find low bit set
- and t8, t12, t12 # E :
-
- /* We're doing a partial word store and so need to combine
- our source and original destination words. */
- ldq_u t1, 0(a0) # L :
- subq t12, 1, t6 # E :
-
- or t12, t6, t8 # E :
- zapnot t0, t8, t0 # U : clear src bytes > null
- zap t1, t8, t1 # U : clear dst bytes <= null
- or t0, t1, t0 # E :
-
- stq_u t0, 0(a0) # L :
- br $finish_up # L0 :
- nop
- nop
-
- /* Add the end-of-count bit to the eos detection bitmask. */
- .align 4
-$a_eoc:
- or t10, t8, t8
- br $a_eos
- nop
- nop
-
-
-/* The source and destination are not co-aligned. Align the destination
- and cope. We have to be very careful about not reading too much and
- causing a SEGV. */
-
- .align 4
-$u_head:
- /* We know just enough now to be able to assemble the first
- full source word. We can still find a zero at the end of it
- that prevents us from outputting the whole thing.
-
- On entry to this basic block:
- t0 == the first dest word, unmasked
- t1 == the shifted low bits of the first source word
- t6 == bytemask that is -1 in dest word bytes */
-
- EX( ldq_u t2, 8(a1) ) # L : load second src word
- addq a1, 8, a1 # E :
- mskql t0, a0, t0 # U : mask trailing garbage in dst
- extqh t2, a1, t4 # U :
-
- or t1, t4, t1 # E : first aligned src word complete
- mskqh t1, a0, t1 # U : mask leading garbage in src
- or t0, t1, t0 # E : first output word complete
- or t0, t6, t6 # E : mask original data for zero test
-
- cmpbge zero, t6, t8 # E :
- beq a2, $u_eocfin # U :
- bne t8, $u_final # U : bad news - 2nd branch in a quad
- lda t6, -1 # E : mask out the bits we have
-
- mskql t6, a1, t6 # U : already seen
- stq_u t0, 0(a0) # L : store first output word
- or t6, t2, t2 # E :
- cmpbge zero, t2, t8 # E : find nulls in second partial
-
- addq a0, 8, a0 # E :
- subq a2, 1, a2 # E :
- bne t8, $u_late_head_exit # U :
- nop
-
- /* Finally, we've got all the stupid leading edge cases taken care
- of and we can set up to enter the main loop. */
-
- extql t2, a1, t1 # U : position hi-bits of lo word
- EX( ldq_u t2, 8(a1) ) # L : read next high-order source word
- addq a1, 8, a1 # E :
- cmpbge zero, t2, t8 # E :
-
- beq a2, $u_eoc # U :
- bne t8, $u_eos # U :
- nop
- nop
-
- /* Unaligned copy main loop. In order to avoid reading too much,
- the loop is structured to detect zeros in aligned source words.
- This has, unfortunately, effectively pulled half of a loop
- iteration out into the head and half into the tail, but it does
- prevent nastiness from accumulating in the very thing we want
- to run as fast as possible.
-
- On entry to this basic block:
- t1 == the shifted high-order bits from the previous source word
- t2 == the unshifted current source word
-
- We further know that t2 does not contain a null terminator. */
-
- /*
- * Extra nops here:
- * separate load quads from store quads
- * only one branch/quad to permit predictor training
- */
-
- .align 4
-$u_loop:
- extqh t2, a1, t0 # U : extract high bits for current word
- addq a1, 8, a1 # E :
- extql t2, a1, t3 # U : extract low bits for next time
- addq a0, 8, a0 # E :
-
- or t0, t1, t0 # E : current dst word now complete
- EX( ldq_u t2, 0(a1) ) # L : load high word for next time
- subq a2, 1, a2 # E :
- nop
-
- stq_u t0, -8(a0) # L : save the current word
- mov t3, t1 # E :
- cmpbge zero, t2, t8 # E : test new word for eos
- beq a2, $u_eoc # U :
-
- beq t8, $u_loop # U :
- nop
- nop
- nop
-
- /* We've found a zero somewhere in the source word we just read.
- If it resides in the lower half, we have one (probably partial)
- word to write out, and if it resides in the upper half, we
- have one full and one partial word left to write out.
-
- On entry to this basic block:
- t1 == the shifted high-order bits from the previous source word
- t2 == the unshifted current source word. */
- .align 4
-$u_eos:
- extqh t2, a1, t0 # U :
- or t0, t1, t0 # E : first (partial) source word complete
- cmpbge zero, t0, t8 # E : is the null in this first bit?
- nop
-
- bne t8, $u_final # U :
- stq_u t0, 0(a0) # L : the null was in the high-order bits
- addq a0, 8, a0 # E :
- subq a2, 1, a2 # E :
-
- .align 4
-$u_late_head_exit:
- extql t2, a1, t0 # U :
- cmpbge zero, t0, t8 # E :
- or t8, t10, t6 # E :
- cmoveq a2, t6, t8 # E :
-
- /* Take care of a final (probably partial) result word.
- On entry to this basic block:
- t0 == assembled source word
- t8 == cmpbge mask that found the null. */
- .align 4
-$u_final:
- negq t8, t6 # E : isolate low bit set
- and t6, t8, t12 # E :
- ldq_u t1, 0(a0) # L :
- subq t12, 1, t6 # E :
-
- or t6, t12, t8 # E :
- zapnot t0, t8, t0 # U : kill source bytes > null
- zap t1, t8, t1 # U : kill dest bytes <= null
- or t0, t1, t0 # E :
-
- stq_u t0, 0(a0) # E :
- br $finish_up # U :
- nop
- nop
-
- .align 4
-$u_eoc: # end-of-count
- extqh t2, a1, t0 # U :
- or t0, t1, t0 # E :
- cmpbge zero, t0, t8 # E :
- nop
-
- .align 4
-$u_eocfin: # end-of-count, final word
- or t10, t8, t8 # E :
- br $u_final # U :
- nop
- nop
-
- /* Unaligned copy entry point. */
- .align 4
-$unaligned:
-
- srl a3, 3, a2 # U : a2 = loop counter = (count - 1)/8
- and a0, 7, t4 # E : find dest misalignment
- and a1, 7, t5 # E : find src misalignment
- mov zero, t0 # E :
-
- /* Conditionally load the first destination word and a bytemask
- with 0xff indicating that the destination byte is sacrosanct. */
-
- mov zero, t6 # E :
- beq t4, 1f # U :
- ldq_u t0, 0(a0) # L :
- lda t6, -1 # E :
-
- mskql t6, a0, t6 # E :
- nop
- nop
- nop
-
- .align 4
-1:
- subq a1, t4, a1 # E : sub dest misalignment from src addr
- /* If source misalignment is larger than dest misalignment, we need
- extra startup checks to avoid SEGV. */
- cmplt t4, t5, t12 # E :
- extql t1, a1, t1 # U : shift src into place
- lda t2, -1 # E : for creating masks later
-
- beq t12, $u_head # U :
- mskqh t2, t5, t2 # U : begin src byte validity mask
- cmpbge zero, t1, t8 # E : is there a zero?
- nop
-
- extql t2, a1, t2 # U :
- or t8, t10, t5 # E : test for end-of-count too
- cmpbge zero, t2, t3 # E :
- cmoveq a2, t5, t8 # E : Latency=2, extra map slot
-
- nop # E : goes with cmov
- andnot t8, t3, t8 # E :
- beq t8, $u_head # U :
- nop
-
- /* At this point we've found a zero in the first partial word of
- the source. We need to isolate the valid source data and mask
- it into the original destination data. (Incidentally, we know
- that we'll need at least one byte of that original dest word.) */
-
- ldq_u t0, 0(a0) # L :
- negq t8, t6 # E : build bitmask of bytes <= zero
- mskqh t1, t4, t1 # U :
- and t6, t8, t12 # E :
-
- subq t12, 1, t6 # E :
- or t6, t12, t8 # E :
- zapnot t2, t8, t2 # U : prepare source word; mirror changes
- zapnot t1, t8, t1 # U : to source validity mask
-
- andnot t0, t2, t0 # E : zero place for source to reside
- or t0, t1, t0 # E : and put it there
- stq_u t0, 0(a0) # L :
- nop
-
- .align 4
-$finish_up:
- zapnot t0, t12, t4 # U : was last byte written null?
- and t12, 0xf0, t3 # E : binary search for the address of the
- cmovne t4, 1, t4 # E : Latency=2, extra map slot
- nop # E : with cmovne
-
- and t12, 0xcc, t2 # E : last byte written
- and t12, 0xaa, t1 # E :
- cmovne t3, 4, t3 # E : Latency=2, extra map slot
- nop # E : with cmovne
-
- bic a0, 7, t0
- cmovne t2, 2, t2 # E : Latency=2, extra map slot
- nop # E : with cmovne
- nop
-
- cmovne t1, 1, t1 # E : Latency=2, extra map slot
- nop # E : with cmovne
- addq t0, t3, t0 # E :
- addq t1, t2, t1 # E :
-
- addq t0, t1, t0 # E :
- addq t0, t4, t0 # add one if we filled the buffer
- subq t0, v0, v0 # find string length
- ret # L0 :
-
- .align 4
-$zerolength:
- nop
- nop
- nop
- clr v0
-
-$exception:
- nop
- nop
- nop
- ret
-
- .end __strncpy_from_user