summaryrefslogtreecommitdiffstats
path: root/arch/ia64/mm/discontig.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/ia64/mm/discontig.c')
-rw-r--r--arch/ia64/mm/discontig.c737
1 files changed, 737 insertions, 0 deletions
diff --git a/arch/ia64/mm/discontig.c b/arch/ia64/mm/discontig.c
new file mode 100644
index 00000000000..3456a9b6971
--- /dev/null
+++ b/arch/ia64/mm/discontig.c
@@ -0,0 +1,737 @@
+/*
+ * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
+ * Copyright (c) 2001 Intel Corp.
+ * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
+ * Copyright (c) 2002 NEC Corp.
+ * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
+ * Copyright (c) 2004 Silicon Graphics, Inc
+ * Russ Anderson <rja@sgi.com>
+ * Jesse Barnes <jbarnes@sgi.com>
+ * Jack Steiner <steiner@sgi.com>
+ */
+
+/*
+ * Platform initialization for Discontig Memory
+ */
+
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/bootmem.h>
+#include <linux/acpi.h>
+#include <linux/efi.h>
+#include <linux/nodemask.h>
+#include <asm/pgalloc.h>
+#include <asm/tlb.h>
+#include <asm/meminit.h>
+#include <asm/numa.h>
+#include <asm/sections.h>
+
+/*
+ * Track per-node information needed to setup the boot memory allocator, the
+ * per-node areas, and the real VM.
+ */
+struct early_node_data {
+ struct ia64_node_data *node_data;
+ pg_data_t *pgdat;
+ unsigned long pernode_addr;
+ unsigned long pernode_size;
+ struct bootmem_data bootmem_data;
+ unsigned long num_physpages;
+ unsigned long num_dma_physpages;
+ unsigned long min_pfn;
+ unsigned long max_pfn;
+};
+
+static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
+
+/**
+ * reassign_cpu_only_nodes - called from find_memory to move CPU-only nodes to a memory node
+ *
+ * This function will move nodes with only CPUs (no memory)
+ * to a node with memory which is at the minimum numa_slit distance.
+ * Any reassigments will result in the compression of the nodes
+ * and renumbering the nid values where appropriate.
+ * The static declarations below are to avoid large stack size which
+ * makes the code not re-entrant.
+ */
+static void __init reassign_cpu_only_nodes(void)
+{
+ struct node_memblk_s *p;
+ int i, j, k, nnode, nid, cpu, cpunid, pxm;
+ u8 cslit, slit;
+ static DECLARE_BITMAP(nodes_with_mem, MAX_NUMNODES) __initdata;
+ static u8 numa_slit_fix[MAX_NUMNODES * MAX_NUMNODES] __initdata;
+ static int node_flip[MAX_NUMNODES] __initdata;
+ static int old_nid_map[NR_CPUS] __initdata;
+
+ for (nnode = 0, p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++)
+ if (!test_bit(p->nid, (void *) nodes_with_mem)) {
+ set_bit(p->nid, (void *) nodes_with_mem);
+ nnode++;
+ }
+
+ /*
+ * All nids with memory.
+ */
+ if (nnode == num_online_nodes())
+ return;
+
+ /*
+ * Change nids and attempt to migrate CPU-only nodes
+ * to the best numa_slit (closest neighbor) possible.
+ * For reassigned CPU nodes a nid can't be arrived at
+ * until after this loop because the target nid's new
+ * identity might not have been established yet. So
+ * new nid values are fabricated above num_online_nodes() and
+ * mapped back later to their true value.
+ */
+ /* MCD - This code is a bit complicated, but may be unnecessary now.
+ * We can now handle much more interesting node-numbering.
+ * The old requirement that 0 <= nid <= numnodes <= MAX_NUMNODES
+ * and that there be no holes in the numbering 0..numnodes
+ * has become simply 0 <= nid <= MAX_NUMNODES.
+ */
+ nid = 0;
+ for_each_online_node(i) {
+ if (test_bit(i, (void *) nodes_with_mem)) {
+ /*
+ * Save original nid value for numa_slit
+ * fixup and node_cpuid reassignments.
+ */
+ node_flip[nid] = i;
+
+ if (i == nid) {
+ nid++;
+ continue;
+ }
+
+ for (p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++)
+ if (p->nid == i)
+ p->nid = nid;
+
+ cpunid = nid;
+ nid++;
+ } else
+ cpunid = MAX_NUMNODES;
+
+ for (cpu = 0; cpu < NR_CPUS; cpu++)
+ if (node_cpuid[cpu].nid == i) {
+ /*
+ * For nodes not being reassigned just
+ * fix the cpu's nid and reverse pxm map
+ */
+ if (cpunid < MAX_NUMNODES) {
+ pxm = nid_to_pxm_map[i];
+ pxm_to_nid_map[pxm] =
+ node_cpuid[cpu].nid = cpunid;
+ continue;
+ }
+
+ /*
+ * For nodes being reassigned, find best node by
+ * numa_slit information and then make a temporary
+ * nid value based on current nid and num_online_nodes().
+ */
+ slit = 0xff;
+ k = 2*num_online_nodes();
+ for_each_online_node(j) {
+ if (i == j)
+ continue;
+ else if (test_bit(j, (void *) nodes_with_mem)) {
+ cslit = numa_slit[i * num_online_nodes() + j];
+ if (cslit < slit) {
+ k = num_online_nodes() + j;
+ slit = cslit;
+ }
+ }
+ }
+
+ /* save old nid map so we can update the pxm */
+ old_nid_map[cpu] = node_cpuid[cpu].nid;
+ node_cpuid[cpu].nid = k;
+ }
+ }
+
+ /*
+ * Fixup temporary nid values for CPU-only nodes.
+ */
+ for (cpu = 0; cpu < NR_CPUS; cpu++)
+ if (node_cpuid[cpu].nid == (2*num_online_nodes())) {
+ pxm = nid_to_pxm_map[old_nid_map[cpu]];
+ pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = nnode - 1;
+ } else {
+ for (i = 0; i < nnode; i++) {
+ if (node_flip[i] != (node_cpuid[cpu].nid - num_online_nodes()))
+ continue;
+
+ pxm = nid_to_pxm_map[old_nid_map[cpu]];
+ pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = i;
+ break;
+ }
+ }
+
+ /*
+ * Fix numa_slit by compressing from larger
+ * nid array to reduced nid array.
+ */
+ for (i = 0; i < nnode; i++)
+ for (j = 0; j < nnode; j++)
+ numa_slit_fix[i * nnode + j] =
+ numa_slit[node_flip[i] * num_online_nodes() + node_flip[j]];
+
+ memcpy(numa_slit, numa_slit_fix, sizeof (numa_slit));
+
+ nodes_clear(node_online_map);
+ for (i = 0; i < nnode; i++)
+ node_set_online(i);
+
+ return;
+}
+
+/*
+ * To prevent cache aliasing effects, align per-node structures so that they
+ * start at addresses that are strided by node number.
+ */
+#define NODEDATA_ALIGN(addr, node) \
+ ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE)
+
+/**
+ * build_node_maps - callback to setup bootmem structs for each node
+ * @start: physical start of range
+ * @len: length of range
+ * @node: node where this range resides
+ *
+ * We allocate a struct bootmem_data for each piece of memory that we wish to
+ * treat as a virtually contiguous block (i.e. each node). Each such block
+ * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
+ * if necessary. Any non-existent pages will simply be part of the virtual
+ * memmap. We also update min_low_pfn and max_low_pfn here as we receive
+ * memory ranges from the caller.
+ */
+static int __init build_node_maps(unsigned long start, unsigned long len,
+ int node)
+{
+ unsigned long cstart, epfn, end = start + len;
+ struct bootmem_data *bdp = &mem_data[node].bootmem_data;
+
+ epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
+ cstart = GRANULEROUNDDOWN(start);
+
+ if (!bdp->node_low_pfn) {
+ bdp->node_boot_start = cstart;
+ bdp->node_low_pfn = epfn;
+ } else {
+ bdp->node_boot_start = min(cstart, bdp->node_boot_start);
+ bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
+ }
+
+ min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT);
+ max_low_pfn = max(max_low_pfn, bdp->node_low_pfn);
+
+ return 0;
+}
+
+/**
+ * early_nr_phys_cpus_node - return number of physical cpus on a given node
+ * @node: node to check
+ *
+ * Count the number of physical cpus on @node. These are cpus that actually
+ * exist. We can't use nr_cpus_node() yet because
+ * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
+ * called yet.
+ */
+static int early_nr_phys_cpus_node(int node)
+{
+ int cpu, n = 0;
+
+ for (cpu = 0; cpu < NR_CPUS; cpu++)
+ if (node == node_cpuid[cpu].nid)
+ if ((cpu == 0) || node_cpuid[cpu].phys_id)
+ n++;
+
+ return n;
+}
+
+
+/**
+ * early_nr_cpus_node - return number of cpus on a given node
+ * @node: node to check
+ *
+ * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
+ * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
+ * called yet. Note that node 0 will also count all non-existent cpus.
+ */
+static int early_nr_cpus_node(int node)
+{
+ int cpu, n = 0;
+
+ for (cpu = 0; cpu < NR_CPUS; cpu++)
+ if (node == node_cpuid[cpu].nid)
+ n++;
+
+ return n;
+}
+
+/**
+ * find_pernode_space - allocate memory for memory map and per-node structures
+ * @start: physical start of range
+ * @len: length of range
+ * @node: node where this range resides
+ *
+ * This routine reserves space for the per-cpu data struct, the list of
+ * pg_data_ts and the per-node data struct. Each node will have something like
+ * the following in the first chunk of addr. space large enough to hold it.
+ *
+ * ________________________
+ * | |
+ * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
+ * | PERCPU_PAGE_SIZE * | start and length big enough
+ * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
+ * |------------------------|
+ * | local pg_data_t * |
+ * |------------------------|
+ * | local ia64_node_data |
+ * |------------------------|
+ * | ??? |
+ * |________________________|
+ *
+ * Once this space has been set aside, the bootmem maps are initialized. We
+ * could probably move the allocation of the per-cpu and ia64_node_data space
+ * outside of this function and use alloc_bootmem_node(), but doing it here
+ * is straightforward and we get the alignments we want so...
+ */
+static int __init find_pernode_space(unsigned long start, unsigned long len,
+ int node)
+{
+ unsigned long epfn, cpu, cpus, phys_cpus;
+ unsigned long pernodesize = 0, pernode, pages, mapsize;
+ void *cpu_data;
+ struct bootmem_data *bdp = &mem_data[node].bootmem_data;
+
+ epfn = (start + len) >> PAGE_SHIFT;
+
+ pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
+ mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
+
+ /*
+ * Make sure this memory falls within this node's usable memory
+ * since we may have thrown some away in build_maps().
+ */
+ if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
+ return 0;
+
+ /* Don't setup this node's local space twice... */
+ if (mem_data[node].pernode_addr)
+ return 0;
+
+ /*
+ * Calculate total size needed, incl. what's necessary
+ * for good alignment and alias prevention.
+ */
+ cpus = early_nr_cpus_node(node);
+ phys_cpus = early_nr_phys_cpus_node(node);
+ pernodesize += PERCPU_PAGE_SIZE * cpus;
+ pernodesize += node * L1_CACHE_BYTES;
+ pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
+ pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
+ pernodesize = PAGE_ALIGN(pernodesize);
+ pernode = NODEDATA_ALIGN(start, node);
+
+ /* Is this range big enough for what we want to store here? */
+ if (start + len > (pernode + pernodesize + mapsize)) {
+ mem_data[node].pernode_addr = pernode;
+ mem_data[node].pernode_size = pernodesize;
+ memset(__va(pernode), 0, pernodesize);
+
+ cpu_data = (void *)pernode;
+ pernode += PERCPU_PAGE_SIZE * cpus;
+ pernode += node * L1_CACHE_BYTES;
+
+ mem_data[node].pgdat = __va(pernode);
+ pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
+
+ mem_data[node].node_data = __va(pernode);
+ pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
+
+ mem_data[node].pgdat->bdata = bdp;
+ pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
+
+ /*
+ * Copy the static per-cpu data into the region we
+ * just set aside and then setup __per_cpu_offset
+ * for each CPU on this node.
+ */
+ for (cpu = 0; cpu < NR_CPUS; cpu++) {
+ if (node == node_cpuid[cpu].nid) {
+ memcpy(__va(cpu_data), __phys_per_cpu_start,
+ __per_cpu_end - __per_cpu_start);
+ __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
+ __per_cpu_start;
+ cpu_data += PERCPU_PAGE_SIZE;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * free_node_bootmem - free bootmem allocator memory for use
+ * @start: physical start of range
+ * @len: length of range
+ * @node: node where this range resides
+ *
+ * Simply calls the bootmem allocator to free the specified ranged from
+ * the given pg_data_t's bdata struct. After this function has been called
+ * for all the entries in the EFI memory map, the bootmem allocator will
+ * be ready to service allocation requests.
+ */
+static int __init free_node_bootmem(unsigned long start, unsigned long len,
+ int node)
+{
+ free_bootmem_node(mem_data[node].pgdat, start, len);
+
+ return 0;
+}
+
+/**
+ * reserve_pernode_space - reserve memory for per-node space
+ *
+ * Reserve the space used by the bootmem maps & per-node space in the boot
+ * allocator so that when we actually create the real mem maps we don't
+ * use their memory.
+ */
+static void __init reserve_pernode_space(void)
+{
+ unsigned long base, size, pages;
+ struct bootmem_data *bdp;
+ int node;
+
+ for_each_online_node(node) {
+ pg_data_t *pdp = mem_data[node].pgdat;
+
+ bdp = pdp->bdata;
+
+ /* First the bootmem_map itself */
+ pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
+ size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
+ base = __pa(bdp->node_bootmem_map);
+ reserve_bootmem_node(pdp, base, size);
+
+ /* Now the per-node space */
+ size = mem_data[node].pernode_size;
+ base = __pa(mem_data[node].pernode_addr);
+ reserve_bootmem_node(pdp, base, size);
+ }
+}
+
+/**
+ * initialize_pernode_data - fixup per-cpu & per-node pointers
+ *
+ * Each node's per-node area has a copy of the global pg_data_t list, so
+ * we copy that to each node here, as well as setting the per-cpu pointer
+ * to the local node data structure. The active_cpus field of the per-node
+ * structure gets setup by the platform_cpu_init() function later.
+ */
+static void __init initialize_pernode_data(void)
+{
+ int cpu, node;
+ pg_data_t *pgdat_list[MAX_NUMNODES];
+
+ for_each_online_node(node)
+ pgdat_list[node] = mem_data[node].pgdat;
+
+ /* Copy the pg_data_t list to each node and init the node field */
+ for_each_online_node(node) {
+ memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list,
+ sizeof(pgdat_list));
+ }
+
+ /* Set the node_data pointer for each per-cpu struct */
+ for (cpu = 0; cpu < NR_CPUS; cpu++) {
+ node = node_cpuid[cpu].nid;
+ per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
+ }
+}
+
+/**
+ * find_memory - walk the EFI memory map and setup the bootmem allocator
+ *
+ * Called early in boot to setup the bootmem allocator, and to
+ * allocate the per-cpu and per-node structures.
+ */
+void __init find_memory(void)
+{
+ int node;
+
+ reserve_memory();
+
+ if (num_online_nodes() == 0) {
+ printk(KERN_ERR "node info missing!\n");
+ node_set_online(0);
+ }
+
+ min_low_pfn = -1;
+ max_low_pfn = 0;
+
+ if (num_online_nodes() > 1)
+ reassign_cpu_only_nodes();
+
+ /* These actually end up getting called by call_pernode_memory() */
+ efi_memmap_walk(filter_rsvd_memory, build_node_maps);
+ efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
+
+ /*
+ * Initialize the boot memory maps in reverse order since that's
+ * what the bootmem allocator expects
+ */
+ for (node = MAX_NUMNODES - 1; node >= 0; node--) {
+ unsigned long pernode, pernodesize, map;
+ struct bootmem_data *bdp;
+
+ if (!node_online(node))
+ continue;
+
+ bdp = &mem_data[node].bootmem_data;
+ pernode = mem_data[node].pernode_addr;
+ pernodesize = mem_data[node].pernode_size;
+ map = pernode + pernodesize;
+
+ /* Sanity check... */
+ if (!pernode)
+ panic("pernode space for node %d "
+ "could not be allocated!", node);
+
+ init_bootmem_node(mem_data[node].pgdat,
+ map>>PAGE_SHIFT,
+ bdp->node_boot_start>>PAGE_SHIFT,
+ bdp->node_low_pfn);
+ }
+
+ efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
+
+ reserve_pernode_space();
+ initialize_pernode_data();
+
+ max_pfn = max_low_pfn;
+
+ find_initrd();
+}
+
+/**
+ * per_cpu_init - setup per-cpu variables
+ *
+ * find_pernode_space() does most of this already, we just need to set
+ * local_per_cpu_offset
+ */
+void *per_cpu_init(void)
+{
+ int cpu;
+
+ if (smp_processor_id() == 0) {
+ for (cpu = 0; cpu < NR_CPUS; cpu++) {
+ per_cpu(local_per_cpu_offset, cpu) =
+ __per_cpu_offset[cpu];
+ }
+ }
+
+ return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
+}
+
+/**
+ * show_mem - give short summary of memory stats
+ *
+ * Shows a simple page count of reserved and used pages in the system.
+ * For discontig machines, it does this on a per-pgdat basis.
+ */
+void show_mem(void)
+{
+ int i, total_reserved = 0;
+ int total_shared = 0, total_cached = 0;
+ unsigned long total_present = 0;
+ pg_data_t *pgdat;
+
+ printk("Mem-info:\n");
+ show_free_areas();
+ printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
+ for_each_pgdat(pgdat) {
+ unsigned long present = pgdat->node_present_pages;
+ int shared = 0, cached = 0, reserved = 0;
+ printk("Node ID: %d\n", pgdat->node_id);
+ for(i = 0; i < pgdat->node_spanned_pages; i++) {
+ if (!ia64_pfn_valid(pgdat->node_start_pfn+i))
+ continue;
+ if (PageReserved(pgdat->node_mem_map+i))
+ reserved++;
+ else if (PageSwapCache(pgdat->node_mem_map+i))
+ cached++;
+ else if (page_count(pgdat->node_mem_map+i))
+ shared += page_count(pgdat->node_mem_map+i)-1;
+ }
+ total_present += present;
+ total_reserved += reserved;
+ total_cached += cached;
+ total_shared += shared;
+ printk("\t%ld pages of RAM\n", present);
+ printk("\t%d reserved pages\n", reserved);
+ printk("\t%d pages shared\n", shared);
+ printk("\t%d pages swap cached\n", cached);
+ }
+ printk("%ld pages of RAM\n", total_present);
+ printk("%d reserved pages\n", total_reserved);
+ printk("%d pages shared\n", total_shared);
+ printk("%d pages swap cached\n", total_cached);
+ printk("Total of %ld pages in page table cache\n", pgtable_cache_size);
+ printk("%d free buffer pages\n", nr_free_buffer_pages());
+}
+
+/**
+ * call_pernode_memory - use SRAT to call callback functions with node info
+ * @start: physical start of range
+ * @len: length of range
+ * @arg: function to call for each range
+ *
+ * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
+ * out to which node a block of memory belongs. Ignore memory that we cannot
+ * identify, and split blocks that run across multiple nodes.
+ *
+ * Take this opportunity to round the start address up and the end address
+ * down to page boundaries.
+ */
+void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
+{
+ unsigned long rs, re, end = start + len;
+ void (*func)(unsigned long, unsigned long, int);
+ int i;
+
+ start = PAGE_ALIGN(start);
+ end &= PAGE_MASK;
+ if (start >= end)
+ return;
+
+ func = arg;
+
+ if (!num_node_memblks) {
+ /* No SRAT table, so assume one node (node 0) */
+ if (start < end)
+ (*func)(start, end - start, 0);
+ return;
+ }
+
+ for (i = 0; i < num_node_memblks; i++) {
+ rs = max(start, node_memblk[i].start_paddr);
+ re = min(end, node_memblk[i].start_paddr +
+ node_memblk[i].size);
+
+ if (rs < re)
+ (*func)(rs, re - rs, node_memblk[i].nid);
+
+ if (re == end)
+ break;
+ }
+}
+
+/**
+ * count_node_pages - callback to build per-node memory info structures
+ * @start: physical start of range
+ * @len: length of range
+ * @node: node where this range resides
+ *
+ * Each node has it's own number of physical pages, DMAable pages, start, and
+ * end page frame number. This routine will be called by call_pernode_memory()
+ * for each piece of usable memory and will setup these values for each node.
+ * Very similar to build_maps().
+ */
+static __init int count_node_pages(unsigned long start, unsigned long len, int node)
+{
+ unsigned long end = start + len;
+
+ mem_data[node].num_physpages += len >> PAGE_SHIFT;
+ if (start <= __pa(MAX_DMA_ADDRESS))
+ mem_data[node].num_dma_physpages +=
+ (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
+ start = GRANULEROUNDDOWN(start);
+ start = ORDERROUNDDOWN(start);
+ end = GRANULEROUNDUP(end);
+ mem_data[node].max_pfn = max(mem_data[node].max_pfn,
+ end >> PAGE_SHIFT);
+ mem_data[node].min_pfn = min(mem_data[node].min_pfn,
+ start >> PAGE_SHIFT);
+
+ return 0;
+}
+
+/**
+ * paging_init - setup page tables
+ *
+ * paging_init() sets up the page tables for each node of the system and frees
+ * the bootmem allocator memory for general use.
+ */
+void __init paging_init(void)
+{
+ unsigned long max_dma;
+ unsigned long zones_size[MAX_NR_ZONES];
+ unsigned long zholes_size[MAX_NR_ZONES];
+ unsigned long pfn_offset = 0;
+ int node;
+
+ max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
+
+ /* so min() will work in count_node_pages */
+ for_each_online_node(node)
+ mem_data[node].min_pfn = ~0UL;
+
+ efi_memmap_walk(filter_rsvd_memory, count_node_pages);
+
+ for_each_online_node(node) {
+ memset(zones_size, 0, sizeof(zones_size));
+ memset(zholes_size, 0, sizeof(zholes_size));
+
+ num_physpages += mem_data[node].num_physpages;
+
+ if (mem_data[node].min_pfn >= max_dma) {
+ /* All of this node's memory is above ZONE_DMA */
+ zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
+ mem_data[node].min_pfn;
+ zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn -
+ mem_data[node].min_pfn -
+ mem_data[node].num_physpages;
+ } else if (mem_data[node].max_pfn < max_dma) {
+ /* All of this node's memory is in ZONE_DMA */
+ zones_size[ZONE_DMA] = mem_data[node].max_pfn -
+ mem_data[node].min_pfn;
+ zholes_size[ZONE_DMA] = mem_data[node].max_pfn -
+ mem_data[node].min_pfn -
+ mem_data[node].num_dma_physpages;
+ } else {
+ /* This node has memory in both zones */
+ zones_size[ZONE_DMA] = max_dma -
+ mem_data[node].min_pfn;
+ zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] -
+ mem_data[node].num_dma_physpages;
+ zones_size[ZONE_NORMAL] = mem_data[node].max_pfn -
+ max_dma;
+ zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] -
+ (mem_data[node].num_physpages -
+ mem_data[node].num_dma_physpages);
+ }
+
+ if (node == 0) {
+ vmalloc_end -=
+ PAGE_ALIGN(max_low_pfn * sizeof(struct page));
+ vmem_map = (struct page *) vmalloc_end;
+
+ efi_memmap_walk(create_mem_map_page_table, NULL);
+ printk("Virtual mem_map starts at 0x%p\n", vmem_map);
+ }
+
+ pfn_offset = mem_data[node].min_pfn;
+
+ NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
+ free_area_init_node(node, NODE_DATA(node), zones_size,
+ pfn_offset, zholes_size);
+ }
+
+ zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
+}