diff options
Diffstat (limited to 'arch/powerpc/include/asm/irq.h')
-rw-r--r-- | arch/powerpc/include/asm/irq.h | 253 |
1 files changed, 1 insertions, 252 deletions
diff --git a/arch/powerpc/include/asm/irq.h b/arch/powerpc/include/asm/irq.h index c0e1bc319e3..cf417e51073 100644 --- a/arch/powerpc/include/asm/irq.h +++ b/arch/powerpc/include/asm/irq.h @@ -9,6 +9,7 @@ * 2 of the License, or (at your option) any later version. */ +#include <linux/irqdomain.h> #include <linux/threads.h> #include <linux/list.h> #include <linux/radix-tree.h> @@ -26,267 +27,15 @@ extern atomic_t ppc_n_lost_interrupts; /* This number is used when no interrupt has been assigned */ #define NO_IRQ (0) -/* This is a special irq number to return from get_irq() to tell that - * no interrupt happened _and_ ignore it (don't count it as bad). Some - * platforms like iSeries rely on that. - */ -#define NO_IRQ_IGNORE ((unsigned int)-1) - /* Total number of virq in the platform */ #define NR_IRQS CONFIG_NR_IRQS -/* Number of irqs reserved for the legacy controller */ -#define NUM_ISA_INTERRUPTS 16 - /* Same thing, used by the generic IRQ code */ #define NR_IRQS_LEGACY NUM_ISA_INTERRUPTS -/* This type is the placeholder for a hardware interrupt number. It has to - * be big enough to enclose whatever representation is used by a given - * platform. - */ -typedef unsigned long irq_hw_number_t; - -/* Interrupt controller "host" data structure. This could be defined as a - * irq domain controller. That is, it handles the mapping between hardware - * and virtual interrupt numbers for a given interrupt domain. The host - * structure is generally created by the PIC code for a given PIC instance - * (though a host can cover more than one PIC if they have a flat number - * model). It's the host callbacks that are responsible for setting the - * irq_chip on a given irq_desc after it's been mapped. - * - * The host code and data structures are fairly agnostic to the fact that - * we use an open firmware device-tree. We do have references to struct - * device_node in two places: in irq_find_host() to find the host matching - * a given interrupt controller node, and of course as an argument to its - * counterpart host->ops->match() callback. However, those are treated as - * generic pointers by the core and the fact that it's actually a device-node - * pointer is purely a convention between callers and implementation. This - * code could thus be used on other architectures by replacing those two - * by some sort of arch-specific void * "token" used to identify interrupt - * controllers. - */ -struct irq_host; -struct radix_tree_root; - -/* Functions below are provided by the host and called whenever a new mapping - * is created or an old mapping is disposed. The host can then proceed to - * whatever internal data structures management is required. It also needs - * to setup the irq_desc when returning from map(). - */ -struct irq_host_ops { - /* Match an interrupt controller device node to a host, returns - * 1 on a match - */ - int (*match)(struct irq_host *h, struct device_node *node); - - /* Create or update a mapping between a virtual irq number and a hw - * irq number. This is called only once for a given mapping. - */ - int (*map)(struct irq_host *h, unsigned int virq, irq_hw_number_t hw); - - /* Dispose of such a mapping */ - void (*unmap)(struct irq_host *h, unsigned int virq); - - /* Translate device-tree interrupt specifier from raw format coming - * from the firmware to a irq_hw_number_t (interrupt line number) and - * type (sense) that can be passed to set_irq_type(). In the absence - * of this callback, irq_create_of_mapping() and irq_of_parse_and_map() - * will return the hw number in the first cell and IRQ_TYPE_NONE for - * the type (which amount to keeping whatever default value the - * interrupt controller has for that line) - */ - int (*xlate)(struct irq_host *h, struct device_node *ctrler, - const u32 *intspec, unsigned int intsize, - irq_hw_number_t *out_hwirq, unsigned int *out_type); -}; - -struct irq_host { - struct list_head link; - - /* type of reverse mapping technique */ - unsigned int revmap_type; -#define IRQ_HOST_MAP_LEGACY 0 /* legacy 8259, gets irqs 1..15 */ -#define IRQ_HOST_MAP_NOMAP 1 /* no fast reverse mapping */ -#define IRQ_HOST_MAP_LINEAR 2 /* linear map of interrupts */ -#define IRQ_HOST_MAP_TREE 3 /* radix tree */ - union { - struct { - unsigned int size; - unsigned int *revmap; - } linear; - struct radix_tree_root tree; - } revmap_data; - struct irq_host_ops *ops; - void *host_data; - irq_hw_number_t inval_irq; - - /* Optional device node pointer */ - struct device_node *of_node; -}; - struct irq_data; extern irq_hw_number_t irqd_to_hwirq(struct irq_data *d); extern irq_hw_number_t virq_to_hw(unsigned int virq); -extern bool virq_is_host(unsigned int virq, struct irq_host *host); - -/** - * irq_alloc_host - Allocate a new irq_host data structure - * @of_node: optional device-tree node of the interrupt controller - * @revmap_type: type of reverse mapping to use - * @revmap_arg: for IRQ_HOST_MAP_LINEAR linear only: size of the map - * @ops: map/unmap host callbacks - * @inval_irq: provide a hw number in that host space that is always invalid - * - * Allocates and initialize and irq_host structure. Note that in the case of - * IRQ_HOST_MAP_LEGACY, the map() callback will be called before this returns - * for all legacy interrupts except 0 (which is always the invalid irq for - * a legacy controller). For a IRQ_HOST_MAP_LINEAR, the map is allocated by - * this call as well. For a IRQ_HOST_MAP_TREE, the radix tree will be allocated - * later during boot automatically (the reverse mapping will use the slow path - * until that happens). - */ -extern struct irq_host *irq_alloc_host(struct device_node *of_node, - unsigned int revmap_type, - unsigned int revmap_arg, - struct irq_host_ops *ops, - irq_hw_number_t inval_irq); - - -/** - * irq_find_host - Locates a host for a given device node - * @node: device-tree node of the interrupt controller - */ -extern struct irq_host *irq_find_host(struct device_node *node); - - -/** - * irq_set_default_host - Set a "default" host - * @host: default host pointer - * - * For convenience, it's possible to set a "default" host that will be used - * whenever NULL is passed to irq_create_mapping(). It makes life easier for - * platforms that want to manipulate a few hard coded interrupt numbers that - * aren't properly represented in the device-tree. - */ -extern void irq_set_default_host(struct irq_host *host); - - -/** - * irq_set_virq_count - Set the maximum number of virt irqs - * @count: number of linux virtual irqs, capped with NR_IRQS - * - * This is mainly for use by platforms like iSeries who want to program - * the virtual irq number in the controller to avoid the reverse mapping - */ -extern void irq_set_virq_count(unsigned int count); - - -/** - * irq_create_mapping - Map a hardware interrupt into linux virq space - * @host: host owning this hardware interrupt or NULL for default host - * @hwirq: hardware irq number in that host space - * - * Only one mapping per hardware interrupt is permitted. Returns a linux - * virq number. - * If the sense/trigger is to be specified, set_irq_type() should be called - * on the number returned from that call. - */ -extern unsigned int irq_create_mapping(struct irq_host *host, - irq_hw_number_t hwirq); - - -/** - * irq_dispose_mapping - Unmap an interrupt - * @virq: linux virq number of the interrupt to unmap - */ -extern void irq_dispose_mapping(unsigned int virq); - -/** - * irq_find_mapping - Find a linux virq from an hw irq number. - * @host: host owning this hardware interrupt - * @hwirq: hardware irq number in that host space - * - * This is a slow path, for use by generic code. It's expected that an - * irq controller implementation directly calls the appropriate low level - * mapping function. - */ -extern unsigned int irq_find_mapping(struct irq_host *host, - irq_hw_number_t hwirq); - -/** - * irq_create_direct_mapping - Allocate a virq for direct mapping - * @host: host to allocate the virq for or NULL for default host - * - * This routine is used for irq controllers which can choose the hardware - * interrupt numbers they generate. In such a case it's simplest to use - * the linux virq as the hardware interrupt number. - */ -extern unsigned int irq_create_direct_mapping(struct irq_host *host); - -/** - * irq_radix_revmap_insert - Insert a hw irq to linux virq number mapping. - * @host: host owning this hardware interrupt - * @virq: linux irq number - * @hwirq: hardware irq number in that host space - * - * This is for use by irq controllers that use a radix tree reverse - * mapping for fast lookup. - */ -extern void irq_radix_revmap_insert(struct irq_host *host, unsigned int virq, - irq_hw_number_t hwirq); - -/** - * irq_radix_revmap_lookup - Find a linux virq from a hw irq number. - * @host: host owning this hardware interrupt - * @hwirq: hardware irq number in that host space - * - * This is a fast path, for use by irq controller code that uses radix tree - * revmaps - */ -extern unsigned int irq_radix_revmap_lookup(struct irq_host *host, - irq_hw_number_t hwirq); - -/** - * irq_linear_revmap - Find a linux virq from a hw irq number. - * @host: host owning this hardware interrupt - * @hwirq: hardware irq number in that host space - * - * This is a fast path, for use by irq controller code that uses linear - * revmaps. It does fallback to the slow path if the revmap doesn't exist - * yet and will create the revmap entry with appropriate locking - */ - -extern unsigned int irq_linear_revmap(struct irq_host *host, - irq_hw_number_t hwirq); - - - -/** - * irq_alloc_virt - Allocate virtual irq numbers - * @host: host owning these new virtual irqs - * @count: number of consecutive numbers to allocate - * @hint: pass a hint number, the allocator will try to use a 1:1 mapping - * - * This is a low level function that is used internally by irq_create_mapping() - * and that can be used by some irq controllers implementations for things - * like allocating ranges of numbers for MSIs. The revmaps are left untouched. - */ -extern unsigned int irq_alloc_virt(struct irq_host *host, - unsigned int count, - unsigned int hint); - -/** - * irq_free_virt - Free virtual irq numbers - * @virq: virtual irq number of the first interrupt to free - * @count: number of interrupts to free - * - * This function is the opposite of irq_alloc_virt. It will not clear reverse - * maps, this should be done previously by unmap'ing the interrupt. In fact, - * all interrupts covered by the range being freed should have been unmapped - * prior to calling this. - */ -extern void irq_free_virt(unsigned int virq, unsigned int count); /** * irq_early_init - Init irq remapping subsystem |