summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/platforms/iseries/setup.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/powerpc/platforms/iseries/setup.c')
-rw-r--r--arch/powerpc/platforms/iseries/setup.c996
1 files changed, 996 insertions, 0 deletions
diff --git a/arch/powerpc/platforms/iseries/setup.c b/arch/powerpc/platforms/iseries/setup.c
new file mode 100644
index 00000000000..da26639190d
--- /dev/null
+++ b/arch/powerpc/platforms/iseries/setup.c
@@ -0,0 +1,996 @@
+/*
+ * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
+ * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
+ *
+ * Description:
+ * Architecture- / platform-specific boot-time initialization code for
+ * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
+ * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
+ * <dan@net4x.com>.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#undef DEBUG
+
+#include <linux/config.h>
+#include <linux/init.h>
+#include <linux/threads.h>
+#include <linux/smp.h>
+#include <linux/param.h>
+#include <linux/string.h>
+#include <linux/initrd.h>
+#include <linux/seq_file.h>
+#include <linux/kdev_t.h>
+#include <linux/major.h>
+#include <linux/root_dev.h>
+#include <linux/kernel.h>
+
+#include <asm/processor.h>
+#include <asm/machdep.h>
+#include <asm/page.h>
+#include <asm/mmu.h>
+#include <asm/pgtable.h>
+#include <asm/mmu_context.h>
+#include <asm/cputable.h>
+#include <asm/sections.h>
+#include <asm/iommu.h>
+#include <asm/firmware.h>
+#include <asm/system.h>
+#include <asm/time.h>
+#include <asm/paca.h>
+#include <asm/cache.h>
+#include <asm/sections.h>
+#include <asm/abs_addr.h>
+#include <asm/iseries/hv_lp_config.h>
+#include <asm/iseries/hv_call_event.h>
+#include <asm/iseries/hv_call_xm.h>
+#include <asm/iseries/it_lp_queue.h>
+#include <asm/iseries/mf.h>
+#include <asm/iseries/hv_lp_event.h>
+#include <asm/iseries/lpar_map.h>
+
+#include "naca.h"
+#include "setup.h"
+#include "irq.h"
+#include "vpd_areas.h"
+#include "processor_vpd.h"
+#include "main_store.h"
+#include "call_sm.h"
+#include "call_hpt.h"
+
+extern void hvlog(char *fmt, ...);
+
+#ifdef DEBUG
+#define DBG(fmt...) hvlog(fmt)
+#else
+#define DBG(fmt...)
+#endif
+
+/* Function Prototypes */
+static unsigned long build_iSeries_Memory_Map(void);
+static void iseries_shared_idle(void);
+static void iseries_dedicated_idle(void);
+#ifdef CONFIG_PCI
+extern void iSeries_pci_final_fixup(void);
+#else
+static void iSeries_pci_final_fixup(void) { }
+#endif
+
+/* Global Variables */
+int piranha_simulator;
+
+extern int rd_size; /* Defined in drivers/block/rd.c */
+extern unsigned long embedded_sysmap_start;
+extern unsigned long embedded_sysmap_end;
+
+extern unsigned long iSeries_recal_tb;
+extern unsigned long iSeries_recal_titan;
+
+static int mf_initialized;
+
+static unsigned long cmd_mem_limit;
+
+struct MemoryBlock {
+ unsigned long absStart;
+ unsigned long absEnd;
+ unsigned long logicalStart;
+ unsigned long logicalEnd;
+};
+
+/*
+ * Process the main store vpd to determine where the holes in memory are
+ * and return the number of physical blocks and fill in the array of
+ * block data.
+ */
+static unsigned long iSeries_process_Condor_mainstore_vpd(
+ struct MemoryBlock *mb_array, unsigned long max_entries)
+{
+ unsigned long holeFirstChunk, holeSizeChunks;
+ unsigned long numMemoryBlocks = 1;
+ struct IoHriMainStoreSegment4 *msVpd =
+ (struct IoHriMainStoreSegment4 *)xMsVpd;
+ unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
+ unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
+ unsigned long holeSize = holeEnd - holeStart;
+
+ printk("Mainstore_VPD: Condor\n");
+ /*
+ * Determine if absolute memory has any
+ * holes so that we can interpret the
+ * access map we get back from the hypervisor
+ * correctly.
+ */
+ mb_array[0].logicalStart = 0;
+ mb_array[0].logicalEnd = 0x100000000;
+ mb_array[0].absStart = 0;
+ mb_array[0].absEnd = 0x100000000;
+
+ if (holeSize) {
+ numMemoryBlocks = 2;
+ holeStart = holeStart & 0x000fffffffffffff;
+ holeStart = addr_to_chunk(holeStart);
+ holeFirstChunk = holeStart;
+ holeSize = addr_to_chunk(holeSize);
+ holeSizeChunks = holeSize;
+ printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
+ holeFirstChunk, holeSizeChunks );
+ mb_array[0].logicalEnd = holeFirstChunk;
+ mb_array[0].absEnd = holeFirstChunk;
+ mb_array[1].logicalStart = holeFirstChunk;
+ mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
+ mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
+ mb_array[1].absEnd = 0x100000000;
+ }
+ return numMemoryBlocks;
+}
+
+#define MaxSegmentAreas 32
+#define MaxSegmentAdrRangeBlocks 128
+#define MaxAreaRangeBlocks 4
+
+static unsigned long iSeries_process_Regatta_mainstore_vpd(
+ struct MemoryBlock *mb_array, unsigned long max_entries)
+{
+ struct IoHriMainStoreSegment5 *msVpdP =
+ (struct IoHriMainStoreSegment5 *)xMsVpd;
+ unsigned long numSegmentBlocks = 0;
+ u32 existsBits = msVpdP->msAreaExists;
+ unsigned long area_num;
+
+ printk("Mainstore_VPD: Regatta\n");
+
+ for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
+ unsigned long numAreaBlocks;
+ struct IoHriMainStoreArea4 *currentArea;
+
+ if (existsBits & 0x80000000) {
+ unsigned long block_num;
+
+ currentArea = &msVpdP->msAreaArray[area_num];
+ numAreaBlocks = currentArea->numAdrRangeBlocks;
+ printk("ms_vpd: processing area %2ld blocks=%ld",
+ area_num, numAreaBlocks);
+ for (block_num = 0; block_num < numAreaBlocks;
+ ++block_num ) {
+ /* Process an address range block */
+ struct MemoryBlock tempBlock;
+ unsigned long i;
+
+ tempBlock.absStart =
+ (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
+ tempBlock.absEnd =
+ (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
+ tempBlock.logicalStart = 0;
+ tempBlock.logicalEnd = 0;
+ printk("\n block %ld absStart=%016lx absEnd=%016lx",
+ block_num, tempBlock.absStart,
+ tempBlock.absEnd);
+
+ for (i = 0; i < numSegmentBlocks; ++i) {
+ if (mb_array[i].absStart ==
+ tempBlock.absStart)
+ break;
+ }
+ if (i == numSegmentBlocks) {
+ if (numSegmentBlocks == max_entries)
+ panic("iSeries_process_mainstore_vpd: too many memory blocks");
+ mb_array[numSegmentBlocks] = tempBlock;
+ ++numSegmentBlocks;
+ } else
+ printk(" (duplicate)");
+ }
+ printk("\n");
+ }
+ existsBits <<= 1;
+ }
+ /* Now sort the blocks found into ascending sequence */
+ if (numSegmentBlocks > 1) {
+ unsigned long m, n;
+
+ for (m = 0; m < numSegmentBlocks - 1; ++m) {
+ for (n = numSegmentBlocks - 1; m < n; --n) {
+ if (mb_array[n].absStart <
+ mb_array[n-1].absStart) {
+ struct MemoryBlock tempBlock;
+
+ tempBlock = mb_array[n];
+ mb_array[n] = mb_array[n-1];
+ mb_array[n-1] = tempBlock;
+ }
+ }
+ }
+ }
+ /*
+ * Assign "logical" addresses to each block. These
+ * addresses correspond to the hypervisor "bitmap" space.
+ * Convert all addresses into units of 256K chunks.
+ */
+ {
+ unsigned long i, nextBitmapAddress;
+
+ printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
+ nextBitmapAddress = 0;
+ for (i = 0; i < numSegmentBlocks; ++i) {
+ unsigned long length = mb_array[i].absEnd -
+ mb_array[i].absStart;
+
+ mb_array[i].logicalStart = nextBitmapAddress;
+ mb_array[i].logicalEnd = nextBitmapAddress + length;
+ nextBitmapAddress += length;
+ printk(" Bitmap range: %016lx - %016lx\n"
+ " Absolute range: %016lx - %016lx\n",
+ mb_array[i].logicalStart,
+ mb_array[i].logicalEnd,
+ mb_array[i].absStart, mb_array[i].absEnd);
+ mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
+ 0x000fffffffffffff);
+ mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
+ 0x000fffffffffffff);
+ mb_array[i].logicalStart =
+ addr_to_chunk(mb_array[i].logicalStart);
+ mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
+ }
+ }
+
+ return numSegmentBlocks;
+}
+
+static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
+ unsigned long max_entries)
+{
+ unsigned long i;
+ unsigned long mem_blocks = 0;
+
+ if (cpu_has_feature(CPU_FTR_SLB))
+ mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
+ max_entries);
+ else
+ mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
+ max_entries);
+
+ printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
+ for (i = 0; i < mem_blocks; ++i) {
+ printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
+ " abs chunks %016lx - %016lx\n",
+ i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
+ mb_array[i].absStart, mb_array[i].absEnd);
+ }
+ return mem_blocks;
+}
+
+static void __init iSeries_get_cmdline(void)
+{
+ char *p, *q;
+
+ /* copy the command line parameter from the primary VSP */
+ HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
+ HvLpDma_Direction_RemoteToLocal);
+
+ p = cmd_line;
+ q = cmd_line + 255;
+ while(p < q) {
+ if (!*p || *p == '\n')
+ break;
+ ++p;
+ }
+ *p = 0;
+}
+
+static void __init iSeries_init_early(void)
+{
+ DBG(" -> iSeries_init_early()\n");
+
+ ppc64_firmware_features = FW_FEATURE_ISERIES;
+
+ ppc64_interrupt_controller = IC_ISERIES;
+
+#if defined(CONFIG_BLK_DEV_INITRD)
+ /*
+ * If the init RAM disk has been configured and there is
+ * a non-zero starting address for it, set it up
+ */
+ if (naca.xRamDisk) {
+ initrd_start = (unsigned long)__va(naca.xRamDisk);
+ initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
+ initrd_below_start_ok = 1; // ramdisk in kernel space
+ ROOT_DEV = Root_RAM0;
+ if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
+ rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
+ } else
+#endif /* CONFIG_BLK_DEV_INITRD */
+ {
+ /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
+ }
+
+ iSeries_recal_tb = get_tb();
+ iSeries_recal_titan = HvCallXm_loadTod();
+
+ /*
+ * Initialize the hash table management pointers
+ */
+ hpte_init_iSeries();
+
+ /*
+ * Initialize the DMA/TCE management
+ */
+ iommu_init_early_iSeries();
+
+ /* Initialize machine-dependency vectors */
+#ifdef CONFIG_SMP
+ smp_init_iSeries();
+#endif
+ if (itLpNaca.xPirEnvironMode == 0)
+ piranha_simulator = 1;
+
+ /* Associate Lp Event Queue 0 with processor 0 */
+ HvCallEvent_setLpEventQueueInterruptProc(0, 0);
+
+ mf_init();
+ mf_initialized = 1;
+ mb();
+
+ /* If we were passed an initrd, set the ROOT_DEV properly if the values
+ * look sensible. If not, clear initrd reference.
+ */
+#ifdef CONFIG_BLK_DEV_INITRD
+ if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
+ initrd_end > initrd_start)
+ ROOT_DEV = Root_RAM0;
+ else
+ initrd_start = initrd_end = 0;
+#endif /* CONFIG_BLK_DEV_INITRD */
+
+ DBG(" <- iSeries_init_early()\n");
+}
+
+struct mschunks_map mschunks_map = {
+ /* XXX We don't use these, but Piranha might need them. */
+ .chunk_size = MSCHUNKS_CHUNK_SIZE,
+ .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
+ .chunk_mask = MSCHUNKS_OFFSET_MASK,
+};
+EXPORT_SYMBOL(mschunks_map);
+
+void mschunks_alloc(unsigned long num_chunks)
+{
+ klimit = _ALIGN(klimit, sizeof(u32));
+ mschunks_map.mapping = (u32 *)klimit;
+ klimit += num_chunks * sizeof(u32);
+ mschunks_map.num_chunks = num_chunks;
+}
+
+/*
+ * The iSeries may have very large memories ( > 128 GB ) and a partition
+ * may get memory in "chunks" that may be anywhere in the 2**52 real
+ * address space. The chunks are 256K in size. To map this to the
+ * memory model Linux expects, the AS/400 specific code builds a
+ * translation table to translate what Linux thinks are "physical"
+ * addresses to the actual real addresses. This allows us to make
+ * it appear to Linux that we have contiguous memory starting at
+ * physical address zero while in fact this could be far from the truth.
+ * To avoid confusion, I'll let the words physical and/or real address
+ * apply to the Linux addresses while I'll use "absolute address" to
+ * refer to the actual hardware real address.
+ *
+ * build_iSeries_Memory_Map gets information from the Hypervisor and
+ * looks at the Main Store VPD to determine the absolute addresses
+ * of the memory that has been assigned to our partition and builds
+ * a table used to translate Linux's physical addresses to these
+ * absolute addresses. Absolute addresses are needed when
+ * communicating with the hypervisor (e.g. to build HPT entries)
+ *
+ * Returns the physical memory size
+ */
+
+static unsigned long __init build_iSeries_Memory_Map(void)
+{
+ u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
+ u32 nextPhysChunk;
+ u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
+ u32 totalChunks,moreChunks;
+ u32 currChunk, thisChunk, absChunk;
+ u32 currDword;
+ u32 chunkBit;
+ u64 map;
+ struct MemoryBlock mb[32];
+ unsigned long numMemoryBlocks, curBlock;
+
+ /* Chunk size on iSeries is 256K bytes */
+ totalChunks = (u32)HvLpConfig_getMsChunks();
+ mschunks_alloc(totalChunks);
+
+ /*
+ * Get absolute address of our load area
+ * and map it to physical address 0
+ * This guarantees that the loadarea ends up at physical 0
+ * otherwise, it might not be returned by PLIC as the first
+ * chunks
+ */
+
+ loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
+ loadAreaSize = itLpNaca.xLoadAreaChunks;
+
+ /*
+ * Only add the pages already mapped here.
+ * Otherwise we might add the hpt pages
+ * The rest of the pages of the load area
+ * aren't in the HPT yet and can still
+ * be assigned an arbitrary physical address
+ */
+ if ((loadAreaSize * 64) > HvPagesToMap)
+ loadAreaSize = HvPagesToMap / 64;
+
+ loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
+
+ /*
+ * TODO Do we need to do something if the HPT is in the 64MB load area?
+ * This would be required if the itLpNaca.xLoadAreaChunks includes
+ * the HPT size
+ */
+
+ printk("Mapping load area - physical addr = 0000000000000000\n"
+ " absolute addr = %016lx\n",
+ chunk_to_addr(loadAreaFirstChunk));
+ printk("Load area size %dK\n", loadAreaSize * 256);
+
+ for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
+ mschunks_map.mapping[nextPhysChunk] =
+ loadAreaFirstChunk + nextPhysChunk;
+
+ /*
+ * Get absolute address of our HPT and remember it so
+ * we won't map it to any physical address
+ */
+ hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
+ hptSizePages = (u32)HvCallHpt_getHptPages();
+ hptSizeChunks = hptSizePages >>
+ (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
+ hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
+
+ printk("HPT absolute addr = %016lx, size = %dK\n",
+ chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
+
+ ppc64_pft_size = __ilog2(hptSizePages * HW_PAGE_SIZE);
+
+ /*
+ * The actual hashed page table is in the hypervisor,
+ * we have no direct access
+ */
+ htab_address = NULL;
+
+ /*
+ * Determine if absolute memory has any
+ * holes so that we can interpret the
+ * access map we get back from the hypervisor
+ * correctly.
+ */
+ numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
+
+ /*
+ * Process the main store access map from the hypervisor
+ * to build up our physical -> absolute translation table
+ */
+ curBlock = 0;
+ currChunk = 0;
+ currDword = 0;
+ moreChunks = totalChunks;
+
+ while (moreChunks) {
+ map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
+ currDword);
+ thisChunk = currChunk;
+ while (map) {
+ chunkBit = map >> 63;
+ map <<= 1;
+ if (chunkBit) {
+ --moreChunks;
+ while (thisChunk >= mb[curBlock].logicalEnd) {
+ ++curBlock;
+ if (curBlock >= numMemoryBlocks)
+ panic("out of memory blocks");
+ }
+ if (thisChunk < mb[curBlock].logicalStart)
+ panic("memory block error");
+
+ absChunk = mb[curBlock].absStart +
+ (thisChunk - mb[curBlock].logicalStart);
+ if (((absChunk < hptFirstChunk) ||
+ (absChunk > hptLastChunk)) &&
+ ((absChunk < loadAreaFirstChunk) ||
+ (absChunk > loadAreaLastChunk))) {
+ mschunks_map.mapping[nextPhysChunk] =
+ absChunk;
+ ++nextPhysChunk;
+ }
+ }
+ ++thisChunk;
+ }
+ ++currDword;
+ currChunk += 64;
+ }
+
+ /*
+ * main store size (in chunks) is
+ * totalChunks - hptSizeChunks
+ * which should be equal to
+ * nextPhysChunk
+ */
+ return chunk_to_addr(nextPhysChunk);
+}
+
+/*
+ * Document me.
+ */
+static void __init iSeries_setup_arch(void)
+{
+ if (get_paca()->lppaca.shared_proc) {
+ ppc_md.idle_loop = iseries_shared_idle;
+ printk(KERN_INFO "Using shared processor idle loop\n");
+ } else {
+ ppc_md.idle_loop = iseries_dedicated_idle;
+ printk(KERN_INFO "Using dedicated idle loop\n");
+ }
+
+ /* Setup the Lp Event Queue */
+ setup_hvlpevent_queue();
+
+ printk("Max logical processors = %d\n",
+ itVpdAreas.xSlicMaxLogicalProcs);
+ printk("Max physical processors = %d\n",
+ itVpdAreas.xSlicMaxPhysicalProcs);
+}
+
+static void iSeries_show_cpuinfo(struct seq_file *m)
+{
+ seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
+}
+
+/*
+ * Document me.
+ * and Implement me.
+ */
+static int iSeries_get_irq(struct pt_regs *regs)
+{
+ /* -2 means ignore this interrupt */
+ return -2;
+}
+
+/*
+ * Document me.
+ */
+static void iSeries_restart(char *cmd)
+{
+ mf_reboot();
+}
+
+/*
+ * Document me.
+ */
+static void iSeries_power_off(void)
+{
+ mf_power_off();
+}
+
+/*
+ * Document me.
+ */
+static void iSeries_halt(void)
+{
+ mf_power_off();
+}
+
+static void __init iSeries_progress(char * st, unsigned short code)
+{
+ printk("Progress: [%04x] - %s\n", (unsigned)code, st);
+ if (!piranha_simulator && mf_initialized) {
+ if (code != 0xffff)
+ mf_display_progress(code);
+ else
+ mf_clear_src();
+ }
+}
+
+static void __init iSeries_fixup_klimit(void)
+{
+ /*
+ * Change klimit to take into account any ram disk
+ * that may be included
+ */
+ if (naca.xRamDisk)
+ klimit = KERNELBASE + (u64)naca.xRamDisk +
+ (naca.xRamDiskSize * HW_PAGE_SIZE);
+ else {
+ /*
+ * No ram disk was included - check and see if there
+ * was an embedded system map. Change klimit to take
+ * into account any embedded system map
+ */
+ if (embedded_sysmap_end)
+ klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
+ 0xfffffffffffff000);
+ }
+}
+
+static int __init iSeries_src_init(void)
+{
+ /* clear the progress line */
+ ppc_md.progress(" ", 0xffff);
+ return 0;
+}
+
+late_initcall(iSeries_src_init);
+
+static inline void process_iSeries_events(void)
+{
+ asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
+}
+
+static void yield_shared_processor(void)
+{
+ unsigned long tb;
+
+ HvCall_setEnabledInterrupts(HvCall_MaskIPI |
+ HvCall_MaskLpEvent |
+ HvCall_MaskLpProd |
+ HvCall_MaskTimeout);
+
+ tb = get_tb();
+ /* Compute future tb value when yield should expire */
+ HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
+
+ /*
+ * The decrementer stops during the yield. Force a fake decrementer
+ * here and let the timer_interrupt code sort out the actual time.
+ */
+ get_paca()->lppaca.int_dword.fields.decr_int = 1;
+ process_iSeries_events();
+}
+
+static void iseries_shared_idle(void)
+{
+ while (1) {
+ while (!need_resched() && !hvlpevent_is_pending()) {
+ local_irq_disable();
+ ppc64_runlatch_off();
+
+ /* Recheck with irqs off */
+ if (!need_resched() && !hvlpevent_is_pending())
+ yield_shared_processor();
+
+ HMT_medium();
+ local_irq_enable();
+ }
+
+ ppc64_runlatch_on();
+
+ if (hvlpevent_is_pending())
+ process_iSeries_events();
+
+ preempt_enable_no_resched();
+ schedule();
+ preempt_disable();
+ }
+}
+
+static void iseries_dedicated_idle(void)
+{
+ set_thread_flag(TIF_POLLING_NRFLAG);
+
+ while (1) {
+ if (!need_resched()) {
+ while (!need_resched()) {
+ ppc64_runlatch_off();
+ HMT_low();
+
+ if (hvlpevent_is_pending()) {
+ HMT_medium();
+ ppc64_runlatch_on();
+ process_iSeries_events();
+ }
+ }
+
+ HMT_medium();
+ }
+
+ ppc64_runlatch_on();
+ preempt_enable_no_resched();
+ schedule();
+ preempt_disable();
+ }
+}
+
+#ifndef CONFIG_PCI
+void __init iSeries_init_IRQ(void) { }
+#endif
+
+static int __init iseries_probe(int platform)
+{
+ return PLATFORM_ISERIES_LPAR == platform;
+}
+
+struct machdep_calls __initdata iseries_md = {
+ .setup_arch = iSeries_setup_arch,
+ .show_cpuinfo = iSeries_show_cpuinfo,
+ .init_IRQ = iSeries_init_IRQ,
+ .get_irq = iSeries_get_irq,
+ .init_early = iSeries_init_early,
+ .pcibios_fixup = iSeries_pci_final_fixup,
+ .restart = iSeries_restart,
+ .power_off = iSeries_power_off,
+ .halt = iSeries_halt,
+ .get_boot_time = iSeries_get_boot_time,
+ .set_rtc_time = iSeries_set_rtc_time,
+ .get_rtc_time = iSeries_get_rtc_time,
+ .calibrate_decr = generic_calibrate_decr,
+ .progress = iSeries_progress,
+ .probe = iseries_probe,
+ /* XXX Implement enable_pmcs for iSeries */
+};
+
+struct blob {
+ unsigned char data[PAGE_SIZE];
+ unsigned long next;
+};
+
+struct iseries_flat_dt {
+ struct boot_param_header header;
+ u64 reserve_map[2];
+ struct blob dt;
+ struct blob strings;
+};
+
+struct iseries_flat_dt iseries_dt;
+
+void dt_init(struct iseries_flat_dt *dt)
+{
+ dt->header.off_mem_rsvmap =
+ offsetof(struct iseries_flat_dt, reserve_map);
+ dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
+ dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
+ dt->header.totalsize = sizeof(struct iseries_flat_dt);
+ dt->header.dt_strings_size = sizeof(struct blob);
+
+ /* There is no notion of hardware cpu id on iSeries */
+ dt->header.boot_cpuid_phys = smp_processor_id();
+
+ dt->dt.next = (unsigned long)&dt->dt.data;
+ dt->strings.next = (unsigned long)&dt->strings.data;
+
+ dt->header.magic = OF_DT_HEADER;
+ dt->header.version = 0x10;
+ dt->header.last_comp_version = 0x10;
+
+ dt->reserve_map[0] = 0;
+ dt->reserve_map[1] = 0;
+}
+
+void dt_check_blob(struct blob *b)
+{
+ if (b->next >= (unsigned long)&b->next) {
+ DBG("Ran out of space in flat device tree blob!\n");
+ BUG();
+ }
+}
+
+void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
+{
+ *((u32*)dt->dt.next) = value;
+ dt->dt.next += sizeof(u32);
+
+ dt_check_blob(&dt->dt);
+}
+
+void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
+{
+ *((u64*)dt->dt.next) = value;
+ dt->dt.next += sizeof(u64);
+
+ dt_check_blob(&dt->dt);
+}
+
+unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
+{
+ unsigned long start = blob->next - (unsigned long)blob->data;
+
+ memcpy((char *)blob->next, data, len);
+ blob->next = _ALIGN(blob->next + len, 4);
+
+ dt_check_blob(blob);
+
+ return start;
+}
+
+void dt_start_node(struct iseries_flat_dt *dt, char *name)
+{
+ dt_push_u32(dt, OF_DT_BEGIN_NODE);
+ dt_push_bytes(&dt->dt, name, strlen(name) + 1);
+}
+
+#define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
+
+void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
+{
+ unsigned long offset;
+
+ dt_push_u32(dt, OF_DT_PROP);
+
+ /* Length of the data */
+ dt_push_u32(dt, len);
+
+ /* Put the property name in the string blob. */
+ offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
+
+ /* The offset of the properties name in the string blob. */
+ dt_push_u32(dt, (u32)offset);
+
+ /* The actual data. */
+ dt_push_bytes(&dt->dt, data, len);
+}
+
+void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
+{
+ dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
+}
+
+void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
+{
+ dt_prop(dt, name, (char *)&data, sizeof(u32));
+}
+
+void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
+{
+ dt_prop(dt, name, (char *)&data, sizeof(u64));
+}
+
+void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
+{
+ dt_prop(dt, name, (char *)data, sizeof(u64) * n);
+}
+
+void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
+{
+ dt_prop(dt, name, NULL, 0);
+}
+
+void dt_cpus(struct iseries_flat_dt *dt)
+{
+ unsigned char buf[32];
+ unsigned char *p;
+ unsigned int i, index;
+ struct IoHriProcessorVpd *d;
+
+ /* yuck */
+ snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
+ p = strchr(buf, ' ');
+ if (!p) p = buf + strlen(buf);
+
+ dt_start_node(dt, "cpus");
+ dt_prop_u32(dt, "#address-cells", 1);
+ dt_prop_u32(dt, "#size-cells", 0);
+
+ for (i = 0; i < NR_CPUS; i++) {
+ if (paca[i].lppaca.dyn_proc_status >= 2)
+ continue;
+
+ snprintf(p, 32 - (p - buf), "@%d", i);
+ dt_start_node(dt, buf);
+
+ dt_prop_str(dt, "device_type", "cpu");
+
+ index = paca[i].lppaca.dyn_hv_phys_proc_index;
+ d = &xIoHriProcessorVpd[index];
+
+ dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
+ dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
+
+ dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
+ dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
+
+ /* magic conversions to Hz copied from old code */
+ dt_prop_u32(dt, "clock-frequency",
+ ((1UL << 34) * 1000000) / d->xProcFreq);
+ dt_prop_u32(dt, "timebase-frequency",
+ ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
+
+ dt_prop_u32(dt, "reg", i);
+
+ dt_end_node(dt);
+ }
+
+ dt_end_node(dt);
+}
+
+void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
+{
+ u64 tmp[2];
+
+ dt_init(dt);
+
+ dt_start_node(dt, "");
+
+ dt_prop_u32(dt, "#address-cells", 2);
+ dt_prop_u32(dt, "#size-cells", 2);
+
+ /* /memory */
+ dt_start_node(dt, "memory@0");
+ dt_prop_str(dt, "name", "memory");
+ dt_prop_str(dt, "device_type", "memory");
+ tmp[0] = 0;
+ tmp[1] = phys_mem_size;
+ dt_prop_u64_list(dt, "reg", tmp, 2);
+ dt_end_node(dt);
+
+ /* /chosen */
+ dt_start_node(dt, "chosen");
+ dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
+ if (cmd_mem_limit)
+ dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
+ dt_end_node(dt);
+
+ dt_cpus(dt);
+
+ dt_end_node(dt);
+
+ dt_push_u32(dt, OF_DT_END);
+}
+
+void * __init iSeries_early_setup(void)
+{
+ unsigned long phys_mem_size;
+
+ iSeries_fixup_klimit();
+
+ /*
+ * Initialize the table which translate Linux physical addresses to
+ * AS/400 absolute addresses
+ */
+ phys_mem_size = build_iSeries_Memory_Map();
+
+ iSeries_get_cmdline();
+
+ /* Save unparsed command line copy for /proc/cmdline */
+ strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
+
+ /* Parse early parameters, in particular mem=x */
+ parse_early_param();
+
+ build_flat_dt(&iseries_dt, phys_mem_size);
+
+ return (void *) __pa(&iseries_dt);
+}
+
+/*
+ * On iSeries we just parse the mem=X option from the command line.
+ * On pSeries it's a bit more complicated, see prom_init_mem()
+ */
+static int __init early_parsemem(char *p)
+{
+ if (p)
+ cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
+ return 0;
+}
+early_param("mem", early_parsemem);