diff options
Diffstat (limited to 'arch/ppc64/kernel/eeh.c')
-rw-r--r-- | arch/ppc64/kernel/eeh.c | 937 |
1 files changed, 937 insertions, 0 deletions
diff --git a/arch/ppc64/kernel/eeh.c b/arch/ppc64/kernel/eeh.c new file mode 100644 index 00000000000..d63d41f3eec --- /dev/null +++ b/arch/ppc64/kernel/eeh.c @@ -0,0 +1,937 @@ +/* + * eeh.c + * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include <linux/bootmem.h> +#include <linux/init.h> +#include <linux/list.h> +#include <linux/mm.h> +#include <linux/notifier.h> +#include <linux/pci.h> +#include <linux/proc_fs.h> +#include <linux/rbtree.h> +#include <linux/seq_file.h> +#include <linux/spinlock.h> +#include <asm/eeh.h> +#include <asm/io.h> +#include <asm/machdep.h> +#include <asm/rtas.h> +#include <asm/atomic.h> +#include <asm/systemcfg.h> +#include "pci.h" + +#undef DEBUG + +/** Overview: + * EEH, or "Extended Error Handling" is a PCI bridge technology for + * dealing with PCI bus errors that can't be dealt with within the + * usual PCI framework, except by check-stopping the CPU. Systems + * that are designed for high-availability/reliability cannot afford + * to crash due to a "mere" PCI error, thus the need for EEH. + * An EEH-capable bridge operates by converting a detected error + * into a "slot freeze", taking the PCI adapter off-line, making + * the slot behave, from the OS'es point of view, as if the slot + * were "empty": all reads return 0xff's and all writes are silently + * ignored. EEH slot isolation events can be triggered by parity + * errors on the address or data busses (e.g. during posted writes), + * which in turn might be caused by dust, vibration, humidity, + * radioactivity or plain-old failed hardware. + * + * Note, however, that one of the leading causes of EEH slot + * freeze events are buggy device drivers, buggy device microcode, + * or buggy device hardware. This is because any attempt by the + * device to bus-master data to a memory address that is not + * assigned to the device will trigger a slot freeze. (The idea + * is to prevent devices-gone-wild from corrupting system memory). + * Buggy hardware/drivers will have a miserable time co-existing + * with EEH. + * + * Ideally, a PCI device driver, when suspecting that an isolation + * event has occured (e.g. by reading 0xff's), will then ask EEH + * whether this is the case, and then take appropriate steps to + * reset the PCI slot, the PCI device, and then resume operations. + * However, until that day, the checking is done here, with the + * eeh_check_failure() routine embedded in the MMIO macros. If + * the slot is found to be isolated, an "EEH Event" is synthesized + * and sent out for processing. + */ + +/** Bus Unit ID macros; get low and hi 32-bits of the 64-bit BUID */ +#define BUID_HI(buid) ((buid) >> 32) +#define BUID_LO(buid) ((buid) & 0xffffffff) + +/* EEH event workqueue setup. */ +static DEFINE_SPINLOCK(eeh_eventlist_lock); +LIST_HEAD(eeh_eventlist); +static void eeh_event_handler(void *); +DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL); + +static struct notifier_block *eeh_notifier_chain; + +/* + * If a device driver keeps reading an MMIO register in an interrupt + * handler after a slot isolation event has occurred, we assume it + * is broken and panic. This sets the threshold for how many read + * attempts we allow before panicking. + */ +#define EEH_MAX_FAILS 1000 +static atomic_t eeh_fail_count; + +/* RTAS tokens */ +static int ibm_set_eeh_option; +static int ibm_set_slot_reset; +static int ibm_read_slot_reset_state; +static int ibm_read_slot_reset_state2; +static int ibm_slot_error_detail; + +static int eeh_subsystem_enabled; + +/* Buffer for reporting slot-error-detail rtas calls */ +static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX]; +static DEFINE_SPINLOCK(slot_errbuf_lock); +static int eeh_error_buf_size; + +/* System monitoring statistics */ +static DEFINE_PER_CPU(unsigned long, total_mmio_ffs); +static DEFINE_PER_CPU(unsigned long, false_positives); +static DEFINE_PER_CPU(unsigned long, ignored_failures); +static DEFINE_PER_CPU(unsigned long, slot_resets); + +/** + * The pci address cache subsystem. This subsystem places + * PCI device address resources into a red-black tree, sorted + * according to the address range, so that given only an i/o + * address, the corresponding PCI device can be **quickly** + * found. It is safe to perform an address lookup in an interrupt + * context; this ability is an important feature. + * + * Currently, the only customer of this code is the EEH subsystem; + * thus, this code has been somewhat tailored to suit EEH better. + * In particular, the cache does *not* hold the addresses of devices + * for which EEH is not enabled. + * + * (Implementation Note: The RB tree seems to be better/faster + * than any hash algo I could think of for this problem, even + * with the penalty of slow pointer chases for d-cache misses). + */ +struct pci_io_addr_range +{ + struct rb_node rb_node; + unsigned long addr_lo; + unsigned long addr_hi; + struct pci_dev *pcidev; + unsigned int flags; +}; + +static struct pci_io_addr_cache +{ + struct rb_root rb_root; + spinlock_t piar_lock; +} pci_io_addr_cache_root; + +static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr) +{ + struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node; + + while (n) { + struct pci_io_addr_range *piar; + piar = rb_entry(n, struct pci_io_addr_range, rb_node); + + if (addr < piar->addr_lo) { + n = n->rb_left; + } else { + if (addr > piar->addr_hi) { + n = n->rb_right; + } else { + pci_dev_get(piar->pcidev); + return piar->pcidev; + } + } + } + + return NULL; +} + +/** + * pci_get_device_by_addr - Get device, given only address + * @addr: mmio (PIO) phys address or i/o port number + * + * Given an mmio phys address, or a port number, find a pci device + * that implements this address. Be sure to pci_dev_put the device + * when finished. I/O port numbers are assumed to be offset + * from zero (that is, they do *not* have pci_io_addr added in). + * It is safe to call this function within an interrupt. + */ +static struct pci_dev *pci_get_device_by_addr(unsigned long addr) +{ + struct pci_dev *dev; + unsigned long flags; + + spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); + dev = __pci_get_device_by_addr(addr); + spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); + return dev; +} + +#ifdef DEBUG +/* + * Handy-dandy debug print routine, does nothing more + * than print out the contents of our addr cache. + */ +static void pci_addr_cache_print(struct pci_io_addr_cache *cache) +{ + struct rb_node *n; + int cnt = 0; + + n = rb_first(&cache->rb_root); + while (n) { + struct pci_io_addr_range *piar; + piar = rb_entry(n, struct pci_io_addr_range, rb_node); + printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s %s\n", + (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt, + piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev), + pci_pretty_name(piar->pcidev)); + cnt++; + n = rb_next(n); + } +} +#endif + +/* Insert address range into the rb tree. */ +static struct pci_io_addr_range * +pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo, + unsigned long ahi, unsigned int flags) +{ + struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node; + struct rb_node *parent = NULL; + struct pci_io_addr_range *piar; + + /* Walk tree, find a place to insert into tree */ + while (*p) { + parent = *p; + piar = rb_entry(parent, struct pci_io_addr_range, rb_node); + if (alo < piar->addr_lo) { + p = &parent->rb_left; + } else if (ahi > piar->addr_hi) { + p = &parent->rb_right; + } else { + if (dev != piar->pcidev || + alo != piar->addr_lo || ahi != piar->addr_hi) { + printk(KERN_WARNING "PIAR: overlapping address range\n"); + } + return piar; + } + } + piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC); + if (!piar) + return NULL; + + piar->addr_lo = alo; + piar->addr_hi = ahi; + piar->pcidev = dev; + piar->flags = flags; + + rb_link_node(&piar->rb_node, parent, p); + rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root); + + return piar; +} + +static void __pci_addr_cache_insert_device(struct pci_dev *dev) +{ + struct device_node *dn; + int i; + int inserted = 0; + + dn = pci_device_to_OF_node(dev); + if (!dn) { + printk(KERN_WARNING "PCI: no pci dn found for dev=%s %s\n", + pci_name(dev), pci_pretty_name(dev)); + return; + } + + /* Skip any devices for which EEH is not enabled. */ + if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) || + dn->eeh_mode & EEH_MODE_NOCHECK) { +#ifdef DEBUG + printk(KERN_INFO "PCI: skip building address cache for=%s %s\n", + pci_name(dev), pci_pretty_name(dev)); +#endif + return; + } + + /* The cache holds a reference to the device... */ + pci_dev_get(dev); + + /* Walk resources on this device, poke them into the tree */ + for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { + unsigned long start = pci_resource_start(dev,i); + unsigned long end = pci_resource_end(dev,i); + unsigned int flags = pci_resource_flags(dev,i); + + /* We are interested only bus addresses, not dma or other stuff */ + if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM))) + continue; + if (start == 0 || ~start == 0 || end == 0 || ~end == 0) + continue; + pci_addr_cache_insert(dev, start, end, flags); + inserted = 1; + } + + /* If there was nothing to add, the cache has no reference... */ + if (!inserted) + pci_dev_put(dev); +} + +/** + * pci_addr_cache_insert_device - Add a device to the address cache + * @dev: PCI device whose I/O addresses we are interested in. + * + * In order to support the fast lookup of devices based on addresses, + * we maintain a cache of devices that can be quickly searched. + * This routine adds a device to that cache. + */ +void pci_addr_cache_insert_device(struct pci_dev *dev) +{ + unsigned long flags; + + spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); + __pci_addr_cache_insert_device(dev); + spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); +} + +static inline void __pci_addr_cache_remove_device(struct pci_dev *dev) +{ + struct rb_node *n; + int removed = 0; + +restart: + n = rb_first(&pci_io_addr_cache_root.rb_root); + while (n) { + struct pci_io_addr_range *piar; + piar = rb_entry(n, struct pci_io_addr_range, rb_node); + + if (piar->pcidev == dev) { + rb_erase(n, &pci_io_addr_cache_root.rb_root); + removed = 1; + kfree(piar); + goto restart; + } + n = rb_next(n); + } + + /* The cache no longer holds its reference to this device... */ + if (removed) + pci_dev_put(dev); +} + +/** + * pci_addr_cache_remove_device - remove pci device from addr cache + * @dev: device to remove + * + * Remove a device from the addr-cache tree. + * This is potentially expensive, since it will walk + * the tree multiple times (once per resource). + * But so what; device removal doesn't need to be that fast. + */ +void pci_addr_cache_remove_device(struct pci_dev *dev) +{ + unsigned long flags; + + spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags); + __pci_addr_cache_remove_device(dev); + spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags); +} + +/** + * pci_addr_cache_build - Build a cache of I/O addresses + * + * Build a cache of pci i/o addresses. This cache will be used to + * find the pci device that corresponds to a given address. + * This routine scans all pci busses to build the cache. + * Must be run late in boot process, after the pci controllers + * have been scaned for devices (after all device resources are known). + */ +void __init pci_addr_cache_build(void) +{ + struct pci_dev *dev = NULL; + + spin_lock_init(&pci_io_addr_cache_root.piar_lock); + + while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { + /* Ignore PCI bridges ( XXX why ??) */ + if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) { + continue; + } + pci_addr_cache_insert_device(dev); + } + +#ifdef DEBUG + /* Verify tree built up above, echo back the list of addrs. */ + pci_addr_cache_print(&pci_io_addr_cache_root); +#endif +} + +/* --------------------------------------------------------------- */ +/* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */ + +/** + * eeh_register_notifier - Register to find out about EEH events. + * @nb: notifier block to callback on events + */ +int eeh_register_notifier(struct notifier_block *nb) +{ + return notifier_chain_register(&eeh_notifier_chain, nb); +} + +/** + * eeh_unregister_notifier - Unregister to an EEH event notifier. + * @nb: notifier block to callback on events + */ +int eeh_unregister_notifier(struct notifier_block *nb) +{ + return notifier_chain_unregister(&eeh_notifier_chain, nb); +} + +/** + * read_slot_reset_state - Read the reset state of a device node's slot + * @dn: device node to read + * @rets: array to return results in + */ +static int read_slot_reset_state(struct device_node *dn, int rets[]) +{ + int token, outputs; + + if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) { + token = ibm_read_slot_reset_state2; + outputs = 4; + } else { + token = ibm_read_slot_reset_state; + outputs = 3; + } + + return rtas_call(token, 3, outputs, rets, dn->eeh_config_addr, + BUID_HI(dn->phb->buid), BUID_LO(dn->phb->buid)); +} + +/** + * eeh_panic - call panic() for an eeh event that cannot be handled. + * The philosophy of this routine is that it is better to panic and + * halt the OS than it is to risk possible data corruption by + * oblivious device drivers that don't know better. + * + * @dev pci device that had an eeh event + * @reset_state current reset state of the device slot + */ +static void eeh_panic(struct pci_dev *dev, int reset_state) +{ + /* + * XXX We should create a separate sysctl for this. + * + * Since the panic_on_oops sysctl is used to halt the system + * in light of potential corruption, we can use it here. + */ + if (panic_on_oops) + panic("EEH: MMIO failure (%d) on device:%s %s\n", reset_state, + pci_name(dev), pci_pretty_name(dev)); + else { + __get_cpu_var(ignored_failures)++; + printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s %s\n", + reset_state, pci_name(dev), pci_pretty_name(dev)); + } +} + +/** + * eeh_event_handler - dispatch EEH events. The detection of a frozen + * slot can occur inside an interrupt, where it can be hard to do + * anything about it. The goal of this routine is to pull these + * detection events out of the context of the interrupt handler, and + * re-dispatch them for processing at a later time in a normal context. + * + * @dummy - unused + */ +static void eeh_event_handler(void *dummy) +{ + unsigned long flags; + struct eeh_event *event; + + while (1) { + spin_lock_irqsave(&eeh_eventlist_lock, flags); + event = NULL; + if (!list_empty(&eeh_eventlist)) { + event = list_entry(eeh_eventlist.next, struct eeh_event, list); + list_del(&event->list); + } + spin_unlock_irqrestore(&eeh_eventlist_lock, flags); + if (event == NULL) + break; + + printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device " + "%s %s\n", event->reset_state, + pci_name(event->dev), pci_pretty_name(event->dev)); + + atomic_set(&eeh_fail_count, 0); + notifier_call_chain (&eeh_notifier_chain, + EEH_NOTIFY_FREEZE, event); + + __get_cpu_var(slot_resets)++; + + pci_dev_put(event->dev); + kfree(event); + } +} + +/** + * eeh_token_to_phys - convert EEH address token to phys address + * @token i/o token, should be address in the form 0xE.... + */ +static inline unsigned long eeh_token_to_phys(unsigned long token) +{ + pte_t *ptep; + unsigned long pa; + + ptep = find_linux_pte(ioremap_mm.pgd, token); + if (!ptep) + return token; + pa = pte_pfn(*ptep) << PAGE_SHIFT; + + return pa | (token & (PAGE_SIZE-1)); +} + +/** + * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze + * @dn device node + * @dev pci device, if known + * + * Check for an EEH failure for the given device node. Call this + * routine if the result of a read was all 0xff's and you want to + * find out if this is due to an EEH slot freeze. This routine + * will query firmware for the EEH status. + * + * Returns 0 if there has not been an EEH error; otherwise returns + * a non-zero value and queues up a solt isolation event notification. + * + * It is safe to call this routine in an interrupt context. + */ +int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev) +{ + int ret; + int rets[3]; + unsigned long flags; + int rc, reset_state; + struct eeh_event *event; + + __get_cpu_var(total_mmio_ffs)++; + + if (!eeh_subsystem_enabled) + return 0; + + if (!dn) + return 0; + + /* Access to IO BARs might get this far and still not want checking. */ + if (!(dn->eeh_mode & EEH_MODE_SUPPORTED) || + dn->eeh_mode & EEH_MODE_NOCHECK) { + return 0; + } + + if (!dn->eeh_config_addr) { + return 0; + } + + /* + * If we already have a pending isolation event for this + * slot, we know it's bad already, we don't need to check... + */ + if (dn->eeh_mode & EEH_MODE_ISOLATED) { + atomic_inc(&eeh_fail_count); + if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) { + /* re-read the slot reset state */ + if (read_slot_reset_state(dn, rets) != 0) + rets[0] = -1; /* reset state unknown */ + eeh_panic(dev, rets[0]); + } + return 0; + } + + /* + * Now test for an EEH failure. This is VERY expensive. + * Note that the eeh_config_addr may be a parent device + * in the case of a device behind a bridge, or it may be + * function zero of a multi-function device. + * In any case they must share a common PHB. + */ + ret = read_slot_reset_state(dn, rets); + if (!(ret == 0 && rets[1] == 1 && (rets[0] == 2 || rets[0] == 4))) { + __get_cpu_var(false_positives)++; + return 0; + } + + /* prevent repeated reports of this failure */ + dn->eeh_mode |= EEH_MODE_ISOLATED; + + reset_state = rets[0]; + + spin_lock_irqsave(&slot_errbuf_lock, flags); + memset(slot_errbuf, 0, eeh_error_buf_size); + + rc = rtas_call(ibm_slot_error_detail, + 8, 1, NULL, dn->eeh_config_addr, + BUID_HI(dn->phb->buid), + BUID_LO(dn->phb->buid), NULL, 0, + virt_to_phys(slot_errbuf), + eeh_error_buf_size, + 1 /* Temporary Error */); + + if (rc == 0) + log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0); + spin_unlock_irqrestore(&slot_errbuf_lock, flags); + + printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n", + rets[0], dn->name, dn->full_name); + event = kmalloc(sizeof(*event), GFP_ATOMIC); + if (event == NULL) { + eeh_panic(dev, reset_state); + return 1; + } + + event->dev = dev; + event->dn = dn; + event->reset_state = reset_state; + + /* We may or may not be called in an interrupt context */ + spin_lock_irqsave(&eeh_eventlist_lock, flags); + list_add(&event->list, &eeh_eventlist); + spin_unlock_irqrestore(&eeh_eventlist_lock, flags); + + /* Most EEH events are due to device driver bugs. Having + * a stack trace will help the device-driver authors figure + * out what happened. So print that out. */ + dump_stack(); + schedule_work(&eeh_event_wq); + + return 0; +} + +EXPORT_SYMBOL(eeh_dn_check_failure); + +/** + * eeh_check_failure - check if all 1's data is due to EEH slot freeze + * @token i/o token, should be address in the form 0xA.... + * @val value, should be all 1's (XXX why do we need this arg??) + * + * Check for an eeh failure at the given token address. + * Check for an EEH failure at the given token address. Call this + * routine if the result of a read was all 0xff's and you want to + * find out if this is due to an EEH slot freeze event. This routine + * will query firmware for the EEH status. + * + * Note this routine is safe to call in an interrupt context. + */ +unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val) +{ + unsigned long addr; + struct pci_dev *dev; + struct device_node *dn; + + /* Finding the phys addr + pci device; this is pretty quick. */ + addr = eeh_token_to_phys((unsigned long __force) token); + dev = pci_get_device_by_addr(addr); + if (!dev) + return val; + + dn = pci_device_to_OF_node(dev); + eeh_dn_check_failure (dn, dev); + + pci_dev_put(dev); + return val; +} + +EXPORT_SYMBOL(eeh_check_failure); + +struct eeh_early_enable_info { + unsigned int buid_hi; + unsigned int buid_lo; +}; + +/* Enable eeh for the given device node. */ +static void *early_enable_eeh(struct device_node *dn, void *data) +{ + struct eeh_early_enable_info *info = data; + int ret; + char *status = get_property(dn, "status", NULL); + u32 *class_code = (u32 *)get_property(dn, "class-code", NULL); + u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL); + u32 *device_id = (u32 *)get_property(dn, "device-id", NULL); + u32 *regs; + int enable; + + dn->eeh_mode = 0; + + if (status && strcmp(status, "ok") != 0) + return NULL; /* ignore devices with bad status */ + + /* Ignore bad nodes. */ + if (!class_code || !vendor_id || !device_id) + return NULL; + + /* There is nothing to check on PCI to ISA bridges */ + if (dn->type && !strcmp(dn->type, "isa")) { + dn->eeh_mode |= EEH_MODE_NOCHECK; + return NULL; + } + + /* + * Now decide if we are going to "Disable" EEH checking + * for this device. We still run with the EEH hardware active, + * but we won't be checking for ff's. This means a driver + * could return bad data (very bad!), an interrupt handler could + * hang waiting on status bits that won't change, etc. + * But there are a few cases like display devices that make sense. + */ + enable = 1; /* i.e. we will do checking */ + if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY) + enable = 0; + + if (!enable) + dn->eeh_mode |= EEH_MODE_NOCHECK; + + /* Ok... see if this device supports EEH. Some do, some don't, + * and the only way to find out is to check each and every one. */ + regs = (u32 *)get_property(dn, "reg", NULL); + if (regs) { + /* First register entry is addr (00BBSS00) */ + /* Try to enable eeh */ + ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL, + regs[0], info->buid_hi, info->buid_lo, + EEH_ENABLE); + if (ret == 0) { + eeh_subsystem_enabled = 1; + dn->eeh_mode |= EEH_MODE_SUPPORTED; + dn->eeh_config_addr = regs[0]; +#ifdef DEBUG + printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name); +#endif + } else { + + /* This device doesn't support EEH, but it may have an + * EEH parent, in which case we mark it as supported. */ + if (dn->parent && (dn->parent->eeh_mode & EEH_MODE_SUPPORTED)) { + /* Parent supports EEH. */ + dn->eeh_mode |= EEH_MODE_SUPPORTED; + dn->eeh_config_addr = dn->parent->eeh_config_addr; + return NULL; + } + } + } else { + printk(KERN_WARNING "EEH: %s: unable to get reg property.\n", + dn->full_name); + } + + return NULL; +} + +/* + * Initialize EEH by trying to enable it for all of the adapters in the system. + * As a side effect we can determine here if eeh is supported at all. + * Note that we leave EEH on so failed config cycles won't cause a machine + * check. If a user turns off EEH for a particular adapter they are really + * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't + * grant access to a slot if EEH isn't enabled, and so we always enable + * EEH for all slots/all devices. + * + * The eeh-force-off option disables EEH checking globally, for all slots. + * Even if force-off is set, the EEH hardware is still enabled, so that + * newer systems can boot. + */ +void __init eeh_init(void) +{ + struct device_node *phb, *np; + struct eeh_early_enable_info info; + + np = of_find_node_by_path("/rtas"); + if (np == NULL) + return; + + ibm_set_eeh_option = rtas_token("ibm,set-eeh-option"); + ibm_set_slot_reset = rtas_token("ibm,set-slot-reset"); + ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2"); + ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state"); + ibm_slot_error_detail = rtas_token("ibm,slot-error-detail"); + + if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE) + return; + + eeh_error_buf_size = rtas_token("rtas-error-log-max"); + if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) { + eeh_error_buf_size = 1024; + } + if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) { + printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated " + "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX); + eeh_error_buf_size = RTAS_ERROR_LOG_MAX; + } + + /* Enable EEH for all adapters. Note that eeh requires buid's */ + for (phb = of_find_node_by_name(NULL, "pci"); phb; + phb = of_find_node_by_name(phb, "pci")) { + unsigned long buid; + + buid = get_phb_buid(phb); + if (buid == 0) + continue; + + info.buid_lo = BUID_LO(buid); + info.buid_hi = BUID_HI(buid); + traverse_pci_devices(phb, early_enable_eeh, &info); + } + + if (eeh_subsystem_enabled) + printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n"); + else + printk(KERN_WARNING "EEH: No capable adapters found\n"); +} + +/** + * eeh_add_device_early - enable EEH for the indicated device_node + * @dn: device node for which to set up EEH + * + * This routine must be used to perform EEH initialization for PCI + * devices that were added after system boot (e.g. hotplug, dlpar). + * This routine must be called before any i/o is performed to the + * adapter (inluding any config-space i/o). + * Whether this actually enables EEH or not for this device depends + * on the CEC architecture, type of the device, on earlier boot + * command-line arguments & etc. + */ +void eeh_add_device_early(struct device_node *dn) +{ + struct pci_controller *phb; + struct eeh_early_enable_info info; + + if (!dn) + return; + phb = dn->phb; + if (NULL == phb || 0 == phb->buid) { + printk(KERN_WARNING "EEH: Expected buid but found none\n"); + return; + } + + info.buid_hi = BUID_HI(phb->buid); + info.buid_lo = BUID_LO(phb->buid); + early_enable_eeh(dn, &info); +} +EXPORT_SYMBOL(eeh_add_device_early); + +/** + * eeh_add_device_late - perform EEH initialization for the indicated pci device + * @dev: pci device for which to set up EEH + * + * This routine must be used to complete EEH initialization for PCI + * devices that were added after system boot (e.g. hotplug, dlpar). + */ +void eeh_add_device_late(struct pci_dev *dev) +{ + if (!dev || !eeh_subsystem_enabled) + return; + +#ifdef DEBUG + printk(KERN_DEBUG "EEH: adding device %s %s\n", pci_name(dev), + pci_pretty_name(dev)); +#endif + + pci_addr_cache_insert_device (dev); +} +EXPORT_SYMBOL(eeh_add_device_late); + +/** + * eeh_remove_device - undo EEH setup for the indicated pci device + * @dev: pci device to be removed + * + * This routine should be when a device is removed from a running + * system (e.g. by hotplug or dlpar). + */ +void eeh_remove_device(struct pci_dev *dev) +{ + if (!dev || !eeh_subsystem_enabled) + return; + + /* Unregister the device with the EEH/PCI address search system */ +#ifdef DEBUG + printk(KERN_DEBUG "EEH: remove device %s %s\n", pci_name(dev), + pci_pretty_name(dev)); +#endif + pci_addr_cache_remove_device(dev); +} +EXPORT_SYMBOL(eeh_remove_device); + +static int proc_eeh_show(struct seq_file *m, void *v) +{ + unsigned int cpu; + unsigned long ffs = 0, positives = 0, failures = 0; + unsigned long resets = 0; + + for_each_cpu(cpu) { + ffs += per_cpu(total_mmio_ffs, cpu); + positives += per_cpu(false_positives, cpu); + failures += per_cpu(ignored_failures, cpu); + resets += per_cpu(slot_resets, cpu); + } + + if (0 == eeh_subsystem_enabled) { + seq_printf(m, "EEH Subsystem is globally disabled\n"); + seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs); + } else { + seq_printf(m, "EEH Subsystem is enabled\n"); + seq_printf(m, "eeh_total_mmio_ffs=%ld\n" + "eeh_false_positives=%ld\n" + "eeh_ignored_failures=%ld\n" + "eeh_slot_resets=%ld\n" + "eeh_fail_count=%d\n", + ffs, positives, failures, resets, + eeh_fail_count.counter); + } + + return 0; +} + +static int proc_eeh_open(struct inode *inode, struct file *file) +{ + return single_open(file, proc_eeh_show, NULL); +} + +static struct file_operations proc_eeh_operations = { + .open = proc_eeh_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +static int __init eeh_init_proc(void) +{ + struct proc_dir_entry *e; + + if (systemcfg->platform & PLATFORM_PSERIES) { + e = create_proc_entry("ppc64/eeh", 0, NULL); + if (e) + e->proc_fops = &proc_eeh_operations; + } + + return 0; +} +__initcall(eeh_init_proc); |