summaryrefslogtreecommitdiffstats
path: root/arch/sparc/include/asm/timer_32.h
diff options
context:
space:
mode:
Diffstat (limited to 'arch/sparc/include/asm/timer_32.h')
-rw-r--r--arch/sparc/include/asm/timer_32.h87
1 files changed, 0 insertions, 87 deletions
diff --git a/arch/sparc/include/asm/timer_32.h b/arch/sparc/include/asm/timer_32.h
index 361e53898dd..2ec030ef381 100644
--- a/arch/sparc/include/asm/timer_32.h
+++ b/arch/sparc/include/asm/timer_32.h
@@ -9,96 +9,9 @@
#define _SPARC_TIMER_H
#include <asm/system.h> /* For SUN4M_NCPUS */
-#include <asm/sun4paddr.h>
#include <asm/btfixup.h>
-/* Timer structures. The interrupt timer has two properties which
- * are the counter (which is handled in do_timer in sched.c) and the limit.
- * This limit is where the timer's counter 'wraps' around. Oddly enough,
- * the sun4c timer when it hits the limit wraps back to 1 and not zero
- * thus when calculating the value at which it will fire a microsecond you
- * must adjust by one. Thanks SUN for designing such great hardware ;(
- */
-
-/* Note that I am only going to use the timer that interrupts at
- * Sparc IRQ 10. There is another one available that can fire at
- * IRQ 14. Currently it is left untouched, we keep the PROM's limit
- * register value and let the prom take these interrupts. This allows
- * L1-A to work.
- */
-
-struct sun4c_timer_info {
- __volatile__ unsigned int cur_count10;
- __volatile__ unsigned int timer_limit10;
- __volatile__ unsigned int cur_count14;
- __volatile__ unsigned int timer_limit14;
-};
-
-#define SUN4C_TIMER_PHYSADDR 0xf3000000
-#ifdef CONFIG_SUN4
-#define SUN_TIMER_PHYSADDR SUN4_300_TIMER_PHYSADDR
-#else
-#define SUN_TIMER_PHYSADDR SUN4C_TIMER_PHYSADDR
-#endif
-
-/* A sun4m has two blocks of registers which are probably of the same
- * structure. LSI Logic's L64851 is told to _decrement_ from the limit
- * value. Aurora behaves similarly but its limit value is compacted in
- * other fashion (it's wider). Documented fields are defined here.
- */
-
-/* As with the interrupt register, we have two classes of timer registers
- * which are per-cpu and master. Per-cpu timers only hit that cpu and are
- * only level 14 ticks, master timer hits all cpus and is level 10.
- */
-
-#define SUN4M_PRM_CNT_L 0x80000000
-#define SUN4M_PRM_CNT_LVALUE 0x7FFFFC00
-
-struct sun4m_timer_percpu_info {
- __volatile__ unsigned int l14_timer_limit; /* Initial value is 0x009c4000 */
- __volatile__ unsigned int l14_cur_count;
-
- /* This register appears to be write only and/or inaccessible
- * on Uni-Processor sun4m machines.
- */
- __volatile__ unsigned int l14_limit_noclear; /* Data access error is here */
-
- __volatile__ unsigned int cntrl; /* =1 after POST on Aurora */
- __volatile__ unsigned char space[PAGE_SIZE - 16];
-};
-
-struct sun4m_timer_regs {
- struct sun4m_timer_percpu_info cpu_timers[SUN4M_NCPUS];
- volatile unsigned int l10_timer_limit;
- volatile unsigned int l10_cur_count;
-
- /* Again, this appears to be write only and/or inaccessible
- * on uni-processor sun4m machines.
- */
- volatile unsigned int l10_limit_noclear;
-
- /* This register too, it must be magic. */
- volatile unsigned int foobar;
-
- volatile unsigned int cfg; /* equals zero at boot time... */
-};
-
-#define SUN4D_PRM_CNT_L 0x80000000
-#define SUN4D_PRM_CNT_LVALUE 0x7FFFFC00
-
-struct sun4d_timer_regs {
- volatile unsigned int l10_timer_limit;
- volatile unsigned int l10_cur_countx;
- volatile unsigned int l10_limit_noclear;
- volatile unsigned int ctrl;
- volatile unsigned int l10_cur_count;
-};
-
-extern struct sun4d_timer_regs *sun4d_timers;
-
extern __volatile__ unsigned int *master_l10_counter;
-extern __volatile__ unsigned int *master_l10_limit;
/* FIXME: Make do_[gs]ettimeofday btfixup calls */
BTFIXUPDEF_CALL(int, bus_do_settimeofday, struct timespec *tv)