diff options
Diffstat (limited to 'arch/x86/kvm/x86.c')
-rw-r--r-- | arch/x86/kvm/x86.c | 787 |
1 files changed, 602 insertions, 185 deletions
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index 3a09c625d52..2288ad829b3 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -6,7 +6,7 @@ * Copyright (C) 2006 Qumranet, Inc. * Copyright (C) 2008 Qumranet, Inc. * Copyright IBM Corporation, 2008 - * Copyright 2010 Red Hat, Inc. and/or its affilates. + * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Avi Kivity <avi@qumranet.com> @@ -55,6 +55,8 @@ #include <asm/mce.h> #include <asm/i387.h> #include <asm/xcr.h> +#include <asm/pvclock.h> +#include <asm/div64.h> #define MAX_IO_MSRS 256 #define CR0_RESERVED_BITS \ @@ -71,7 +73,7 @@ #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) #define KVM_MAX_MCE_BANKS 32 -#define KVM_MCE_CAP_SUPPORTED MCG_CTL_P +#define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) /* EFER defaults: * - enable syscall per default because its emulated by KVM @@ -282,6 +284,8 @@ static void kvm_multiple_exception(struct kvm_vcpu *vcpu, u32 prev_nr; int class1, class2; + kvm_make_request(KVM_REQ_EVENT, vcpu); + if (!vcpu->arch.exception.pending) { queue: vcpu->arch.exception.pending = true; @@ -327,16 +331,28 @@ void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) } EXPORT_SYMBOL_GPL(kvm_requeue_exception); -void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, - u32 error_code) +void kvm_inject_page_fault(struct kvm_vcpu *vcpu) { + unsigned error_code = vcpu->arch.fault.error_code; + ++vcpu->stat.pf_guest; - vcpu->arch.cr2 = addr; + vcpu->arch.cr2 = vcpu->arch.fault.address; kvm_queue_exception_e(vcpu, PF_VECTOR, error_code); } +void kvm_propagate_fault(struct kvm_vcpu *vcpu) +{ + if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested) + vcpu->arch.nested_mmu.inject_page_fault(vcpu); + else + vcpu->arch.mmu.inject_page_fault(vcpu); + + vcpu->arch.fault.nested = false; +} + void kvm_inject_nmi(struct kvm_vcpu *vcpu) { + kvm_make_request(KVM_REQ_EVENT, vcpu); vcpu->arch.nmi_pending = 1; } EXPORT_SYMBOL_GPL(kvm_inject_nmi); @@ -367,18 +383,49 @@ bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) EXPORT_SYMBOL_GPL(kvm_require_cpl); /* + * This function will be used to read from the physical memory of the currently + * running guest. The difference to kvm_read_guest_page is that this function + * can read from guest physical or from the guest's guest physical memory. + */ +int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, + gfn_t ngfn, void *data, int offset, int len, + u32 access) +{ + gfn_t real_gfn; + gpa_t ngpa; + + ngpa = gfn_to_gpa(ngfn); + real_gfn = mmu->translate_gpa(vcpu, ngpa, access); + if (real_gfn == UNMAPPED_GVA) + return -EFAULT; + + real_gfn = gpa_to_gfn(real_gfn); + + return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); +} +EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); + +int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, + void *data, int offset, int len, u32 access) +{ + return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, + data, offset, len, access); +} + +/* * Load the pae pdptrs. Return true is they are all valid. */ -int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) +int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) { gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; int i; int ret; - u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; + u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; - ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte, - offset * sizeof(u64), sizeof(pdpte)); + ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, + offset * sizeof(u64), sizeof(pdpte), + PFERR_USER_MASK|PFERR_WRITE_MASK); if (ret < 0) { ret = 0; goto out; @@ -392,7 +439,7 @@ int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) } ret = 1; - memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs)); + memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); __set_bit(VCPU_EXREG_PDPTR, (unsigned long *)&vcpu->arch.regs_avail); __set_bit(VCPU_EXREG_PDPTR, @@ -405,8 +452,10 @@ EXPORT_SYMBOL_GPL(load_pdptrs); static bool pdptrs_changed(struct kvm_vcpu *vcpu) { - u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; + u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; bool changed = true; + int offset; + gfn_t gfn; int r; if (is_long_mode(vcpu) || !is_pae(vcpu)) @@ -416,10 +465,13 @@ static bool pdptrs_changed(struct kvm_vcpu *vcpu) (unsigned long *)&vcpu->arch.regs_avail)) return true; - r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte)); + gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT; + offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1); + r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), + PFERR_USER_MASK | PFERR_WRITE_MASK); if (r < 0) goto out; - changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0; + changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; out: return changed; @@ -458,7 +510,8 @@ int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) return 1; } else #endif - if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) + if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, + vcpu->arch.cr3)) return 1; } @@ -547,7 +600,7 @@ int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) return 1; } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) && ((cr4 ^ old_cr4) & pdptr_bits) - && !load_pdptrs(vcpu, vcpu->arch.cr3)) + && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)) return 1; if (cr4 & X86_CR4_VMXE) @@ -580,7 +633,8 @@ int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) if (is_pae(vcpu)) { if (cr3 & CR3_PAE_RESERVED_BITS) return 1; - if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) + if (is_paging(vcpu) && + !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) return 1; } /* @@ -737,7 +791,7 @@ static u32 msrs_to_save[] = { #ifdef CONFIG_X86_64 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, #endif - MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA + MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA }; static unsigned num_msrs_to_save; @@ -838,7 +892,7 @@ static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) /* * The guest calculates current wall clock time by adding - * system time (updated by kvm_write_guest_time below) to the + * system time (updated by kvm_guest_time_update below) to the * wall clock specified here. guest system time equals host * system time for us, thus we must fill in host boot time here. */ @@ -866,65 +920,229 @@ static uint32_t div_frac(uint32_t dividend, uint32_t divisor) return quotient; } -static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock) +static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, + s8 *pshift, u32 *pmultiplier) { - uint64_t nsecs = 1000000000LL; + uint64_t scaled64; int32_t shift = 0; uint64_t tps64; uint32_t tps32; - tps64 = tsc_khz * 1000LL; - while (tps64 > nsecs*2) { + tps64 = base_khz * 1000LL; + scaled64 = scaled_khz * 1000LL; + while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { tps64 >>= 1; shift--; } tps32 = (uint32_t)tps64; - while (tps32 <= (uint32_t)nsecs) { - tps32 <<= 1; + while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { + if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) + scaled64 >>= 1; + else + tps32 <<= 1; shift++; } - hv_clock->tsc_shift = shift; - hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32); + *pshift = shift; + *pmultiplier = div_frac(scaled64, tps32); - pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n", - __func__, tsc_khz, hv_clock->tsc_shift, - hv_clock->tsc_to_system_mul); + pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", + __func__, base_khz, scaled_khz, shift, *pmultiplier); +} + +static inline u64 get_kernel_ns(void) +{ + struct timespec ts; + + WARN_ON(preemptible()); + ktime_get_ts(&ts); + monotonic_to_bootbased(&ts); + return timespec_to_ns(&ts); } static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); +unsigned long max_tsc_khz; -static void kvm_write_guest_time(struct kvm_vcpu *v) +static inline int kvm_tsc_changes_freq(void) +{ + int cpu = get_cpu(); + int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && + cpufreq_quick_get(cpu) != 0; + put_cpu(); + return ret; +} + +static inline u64 nsec_to_cycles(u64 nsec) +{ + u64 ret; + + WARN_ON(preemptible()); + if (kvm_tsc_changes_freq()) + printk_once(KERN_WARNING + "kvm: unreliable cycle conversion on adjustable rate TSC\n"); + ret = nsec * __get_cpu_var(cpu_tsc_khz); + do_div(ret, USEC_PER_SEC); + return ret; +} + +static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz) +{ + /* Compute a scale to convert nanoseconds in TSC cycles */ + kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, + &kvm->arch.virtual_tsc_shift, + &kvm->arch.virtual_tsc_mult); + kvm->arch.virtual_tsc_khz = this_tsc_khz; +} + +static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) +{ + u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec, + vcpu->kvm->arch.virtual_tsc_mult, + vcpu->kvm->arch.virtual_tsc_shift); + tsc += vcpu->arch.last_tsc_write; + return tsc; +} + +void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data) +{ + struct kvm *kvm = vcpu->kvm; + u64 offset, ns, elapsed; + unsigned long flags; + s64 sdiff; + + spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); + offset = data - native_read_tsc(); + ns = get_kernel_ns(); + elapsed = ns - kvm->arch.last_tsc_nsec; + sdiff = data - kvm->arch.last_tsc_write; + if (sdiff < 0) + sdiff = -sdiff; + + /* + * Special case: close write to TSC within 5 seconds of + * another CPU is interpreted as an attempt to synchronize + * The 5 seconds is to accomodate host load / swapping as + * well as any reset of TSC during the boot process. + * + * In that case, for a reliable TSC, we can match TSC offsets, + * or make a best guest using elapsed value. + */ + if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) && + elapsed < 5ULL * NSEC_PER_SEC) { + if (!check_tsc_unstable()) { + offset = kvm->arch.last_tsc_offset; + pr_debug("kvm: matched tsc offset for %llu\n", data); + } else { + u64 delta = nsec_to_cycles(elapsed); + offset += delta; + pr_debug("kvm: adjusted tsc offset by %llu\n", delta); + } + ns = kvm->arch.last_tsc_nsec; + } + kvm->arch.last_tsc_nsec = ns; + kvm->arch.last_tsc_write = data; + kvm->arch.last_tsc_offset = offset; + kvm_x86_ops->write_tsc_offset(vcpu, offset); + spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); + + /* Reset of TSC must disable overshoot protection below */ + vcpu->arch.hv_clock.tsc_timestamp = 0; + vcpu->arch.last_tsc_write = data; + vcpu->arch.last_tsc_nsec = ns; +} +EXPORT_SYMBOL_GPL(kvm_write_tsc); + +static int kvm_guest_time_update(struct kvm_vcpu *v) { - struct timespec ts; unsigned long flags; struct kvm_vcpu_arch *vcpu = &v->arch; void *shared_kaddr; unsigned long this_tsc_khz; + s64 kernel_ns, max_kernel_ns; + u64 tsc_timestamp; - if ((!vcpu->time_page)) - return; + /* Keep irq disabled to prevent changes to the clock */ + local_irq_save(flags); + kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp); + kernel_ns = get_kernel_ns(); + this_tsc_khz = __get_cpu_var(cpu_tsc_khz); - this_tsc_khz = get_cpu_var(cpu_tsc_khz); - if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) { - kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock); - vcpu->hv_clock_tsc_khz = this_tsc_khz; + if (unlikely(this_tsc_khz == 0)) { + local_irq_restore(flags); + kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); + return 1; + } + + /* + * We may have to catch up the TSC to match elapsed wall clock + * time for two reasons, even if kvmclock is used. + * 1) CPU could have been running below the maximum TSC rate + * 2) Broken TSC compensation resets the base at each VCPU + * entry to avoid unknown leaps of TSC even when running + * again on the same CPU. This may cause apparent elapsed + * time to disappear, and the guest to stand still or run + * very slowly. + */ + if (vcpu->tsc_catchup) { + u64 tsc = compute_guest_tsc(v, kernel_ns); + if (tsc > tsc_timestamp) { + kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp); + tsc_timestamp = tsc; + } } - put_cpu_var(cpu_tsc_khz); - /* Keep irq disabled to prevent changes to the clock */ - local_irq_save(flags); - kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp); - ktime_get_ts(&ts); - monotonic_to_bootbased(&ts); local_irq_restore(flags); - /* With all the info we got, fill in the values */ + if (!vcpu->time_page) + return 0; - vcpu->hv_clock.system_time = ts.tv_nsec + - (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset; + /* + * Time as measured by the TSC may go backwards when resetting the base + * tsc_timestamp. The reason for this is that the TSC resolution is + * higher than the resolution of the other clock scales. Thus, many + * possible measurments of the TSC correspond to one measurement of any + * other clock, and so a spread of values is possible. This is not a + * problem for the computation of the nanosecond clock; with TSC rates + * around 1GHZ, there can only be a few cycles which correspond to one + * nanosecond value, and any path through this code will inevitably + * take longer than that. However, with the kernel_ns value itself, + * the precision may be much lower, down to HZ granularity. If the + * first sampling of TSC against kernel_ns ends in the low part of the + * range, and the second in the high end of the range, we can get: + * + * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new + * + * As the sampling errors potentially range in the thousands of cycles, + * it is possible such a time value has already been observed by the + * guest. To protect against this, we must compute the system time as + * observed by the guest and ensure the new system time is greater. + */ + max_kernel_ns = 0; + if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) { + max_kernel_ns = vcpu->last_guest_tsc - + vcpu->hv_clock.tsc_timestamp; + max_kernel_ns = pvclock_scale_delta(max_kernel_ns, + vcpu->hv_clock.tsc_to_system_mul, + vcpu->hv_clock.tsc_shift); + max_kernel_ns += vcpu->last_kernel_ns; + } + if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { + kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, + &vcpu->hv_clock.tsc_shift, + &vcpu->hv_clock.tsc_to_system_mul); + vcpu->hw_tsc_khz = this_tsc_khz; + } + + if (max_kernel_ns > kernel_ns) + kernel_ns = max_kernel_ns; + + /* With all the info we got, fill in the values */ + vcpu->hv_clock.tsc_timestamp = tsc_timestamp; + vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; + vcpu->last_kernel_ns = kernel_ns; + vcpu->last_guest_tsc = tsc_timestamp; vcpu->hv_clock.flags = 0; /* @@ -942,16 +1160,7 @@ static void kvm_write_guest_time(struct kvm_vcpu *v) kunmap_atomic(shared_kaddr, KM_USER0); mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); -} - -static int kvm_request_guest_time_update(struct kvm_vcpu *v) -{ - struct kvm_vcpu_arch *vcpu = &v->arch; - - if (!vcpu->time_page) - return 0; - kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v); - return 1; + return 0; } static bool msr_mtrr_valid(unsigned msr) @@ -1277,6 +1486,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) } vcpu->arch.time = data; + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); /* we verify if the enable bit is set... */ if (!(data & 1)) @@ -1292,8 +1502,6 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) kvm_release_page_clean(vcpu->arch.time_page); vcpu->arch.time_page = NULL; } - - kvm_request_guest_time_update(vcpu); break; } case MSR_IA32_MCG_CTL: @@ -1330,6 +1538,16 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) pr_unimpl(vcpu, "unimplemented perfctr wrmsr: " "0x%x data 0x%llx\n", msr, data); break; + case MSR_K7_CLK_CTL: + /* + * Ignore all writes to this no longer documented MSR. + * Writes are only relevant for old K7 processors, + * all pre-dating SVM, but a recommended workaround from + * AMD for these chips. It is possible to speicify the + * affected processor models on the command line, hence + * the need to ignore the workaround. + */ + break; case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: if (kvm_hv_msr_partition_wide(msr)) { int r; @@ -1522,6 +1740,20 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) case 0xcd: /* fsb frequency */ data = 3; break; + /* + * MSR_EBC_FREQUENCY_ID + * Conservative value valid for even the basic CPU models. + * Models 0,1: 000 in bits 23:21 indicating a bus speed of + * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, + * and 266MHz for model 3, or 4. Set Core Clock + * Frequency to System Bus Frequency Ratio to 1 (bits + * 31:24) even though these are only valid for CPU + * models > 2, however guests may end up dividing or + * multiplying by zero otherwise. + */ + case MSR_EBC_FREQUENCY_ID: + data = 1 << 24; + break; case MSR_IA32_APICBASE: data = kvm_get_apic_base(vcpu); break; @@ -1555,6 +1787,18 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) case MSR_IA32_MCG_STATUS: case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: return get_msr_mce(vcpu, msr, pdata); + case MSR_K7_CLK_CTL: + /* + * Provide expected ramp-up count for K7. All other + * are set to zero, indicating minimum divisors for + * every field. + * + * This prevents guest kernels on AMD host with CPU + * type 6, model 8 and higher from exploding due to + * the rdmsr failing. + */ + data = 0x20000000; + break; case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: if (kvm_hv_msr_partition_wide(msr)) { int r; @@ -1808,19 +2052,28 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) } kvm_x86_ops->vcpu_load(vcpu, cpu); - if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) { - unsigned long khz = cpufreq_quick_get(cpu); - if (!khz) - khz = tsc_khz; - per_cpu(cpu_tsc_khz, cpu) = khz; + if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { + /* Make sure TSC doesn't go backwards */ + s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : + native_read_tsc() - vcpu->arch.last_host_tsc; + if (tsc_delta < 0) + mark_tsc_unstable("KVM discovered backwards TSC"); + if (check_tsc_unstable()) { + kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta); + vcpu->arch.tsc_catchup = 1; + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); + } + if (vcpu->cpu != cpu) + kvm_migrate_timers(vcpu); + vcpu->cpu = cpu; } - kvm_request_guest_time_update(vcpu); } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { kvm_x86_ops->vcpu_put(vcpu); kvm_put_guest_fpu(vcpu); + vcpu->arch.last_host_tsc = native_read_tsc(); } static int is_efer_nx(void) @@ -1991,13 +2244,14 @@ static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ | 0 /* Reserved, DCA */ | F(XMM4_1) | F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | - 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX); + 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | + F(F16C); /* cpuid 0x80000001.ecx */ const u32 kvm_supported_word6_x86_features = - F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ | + F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | - F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) | - 0 /* SKINIT */ | 0 /* WDT */; + F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) | + 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM); /* all calls to cpuid_count() should be made on the same cpu */ get_cpu(); @@ -2203,6 +2457,7 @@ static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, return -ENXIO; kvm_queue_interrupt(vcpu, irq->irq, false); + kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } @@ -2356,6 +2611,8 @@ static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR) vcpu->arch.sipi_vector = events->sipi_vector; + kvm_make_request(KVM_REQ_EVENT, vcpu); + return 0; } @@ -2759,7 +3016,7 @@ static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) { - return kvm->arch.n_alloc_mmu_pages; + return kvm->arch.n_max_mmu_pages; } static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) @@ -2795,18 +3052,18 @@ static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) r = 0; switch (chip->chip_id) { case KVM_IRQCHIP_PIC_MASTER: - raw_spin_lock(&pic_irqchip(kvm)->lock); + spin_lock(&pic_irqchip(kvm)->lock); memcpy(&pic_irqchip(kvm)->pics[0], &chip->chip.pic, sizeof(struct kvm_pic_state)); - raw_spin_unlock(&pic_irqchip(kvm)->lock); + spin_unlock(&pic_irqchip(kvm)->lock); break; case KVM_IRQCHIP_PIC_SLAVE: - raw_spin_lock(&pic_irqchip(kvm)->lock); + spin_lock(&pic_irqchip(kvm)->lock); memcpy(&pic_irqchip(kvm)->pics[1], &chip->chip.pic, sizeof(struct kvm_pic_state)); - raw_spin_unlock(&pic_irqchip(kvm)->lock); + spin_unlock(&pic_irqchip(kvm)->lock); break; case KVM_IRQCHIP_IOAPIC: r = kvm_set_ioapic(kvm, &chip->chip.ioapic); @@ -3200,7 +3457,6 @@ long kvm_arch_vm_ioctl(struct file *filp, break; } case KVM_SET_CLOCK: { - struct timespec now; struct kvm_clock_data user_ns; u64 now_ns; s64 delta; @@ -3214,20 +3470,21 @@ long kvm_arch_vm_ioctl(struct file *filp, goto out; r = 0; - ktime_get_ts(&now); - now_ns = timespec_to_ns(&now); + local_irq_disable(); + now_ns = get_kernel_ns(); delta = user_ns.clock - now_ns; + local_irq_enable(); kvm->arch.kvmclock_offset = delta; break; } case KVM_GET_CLOCK: { - struct timespec now; struct kvm_clock_data user_ns; u64 now_ns; - ktime_get_ts(&now); - now_ns = timespec_to_ns(&now); + local_irq_disable(); + now_ns = get_kernel_ns(); user_ns.clock = kvm->arch.kvmclock_offset + now_ns; + local_irq_enable(); user_ns.flags = 0; r = -EFAULT; @@ -3291,30 +3548,51 @@ void kvm_get_segment(struct kvm_vcpu *vcpu, kvm_x86_ops->get_segment(vcpu, var, seg); } +static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) +{ + return gpa; +} + +static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) +{ + gpa_t t_gpa; + u32 error; + + BUG_ON(!mmu_is_nested(vcpu)); + + /* NPT walks are always user-walks */ + access |= PFERR_USER_MASK; + t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error); + if (t_gpa == UNMAPPED_GVA) + vcpu->arch.fault.nested = true; + + return t_gpa; +} + gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; - return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error); + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error); } gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; access |= PFERR_FETCH_MASK; - return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error); + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error); } gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) { u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; access |= PFERR_WRITE_MASK; - return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error); + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error); } /* uses this to access any guest's mapped memory without checking CPL */ gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error) { - return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error); + return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error); } static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, @@ -3325,7 +3603,8 @@ static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, int r = X86EMUL_CONTINUE; while (bytes) { - gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error); + gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, + error); unsigned offset = addr & (PAGE_SIZE-1); unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); int ret; @@ -3380,8 +3659,9 @@ static int kvm_write_guest_virt_system(gva_t addr, void *val, int r = X86EMUL_CONTINUE; while (bytes) { - gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, - PFERR_WRITE_MASK, error); + gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, + PFERR_WRITE_MASK, + error); unsigned offset = addr & (PAGE_SIZE-1); unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); int ret; @@ -3623,7 +3903,7 @@ static int emulator_pio_in_emulated(int size, unsigned short port, void *val, if (vcpu->arch.pio.count) goto data_avail; - trace_kvm_pio(1, port, size, 1); + trace_kvm_pio(0, port, size, 1); vcpu->arch.pio.port = port; vcpu->arch.pio.in = 1; @@ -3651,7 +3931,7 @@ static int emulator_pio_out_emulated(int size, unsigned short port, const void *val, unsigned int count, struct kvm_vcpu *vcpu) { - trace_kvm_pio(0, port, size, 1); + trace_kvm_pio(1, port, size, 1); vcpu->arch.pio.port = port; vcpu->arch.pio.in = 0; @@ -3790,6 +4070,11 @@ static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu) kvm_x86_ops->get_gdt(vcpu, dt); } +static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu) +{ + kvm_x86_ops->get_idt(vcpu, dt); +} + static unsigned long emulator_get_cached_segment_base(int seg, struct kvm_vcpu *vcpu) { @@ -3883,6 +4168,7 @@ static struct x86_emulate_ops emulate_ops = { .set_segment_selector = emulator_set_segment_selector, .get_cached_segment_base = emulator_get_cached_segment_base, .get_gdt = emulator_get_gdt, + .get_idt = emulator_get_idt, .get_cr = emulator_get_cr, .set_cr = emulator_set_cr, .cpl = emulator_get_cpl, @@ -3918,13 +4204,64 @@ static void inject_emulated_exception(struct kvm_vcpu *vcpu) { struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; if (ctxt->exception == PF_VECTOR) - kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code); + kvm_propagate_fault(vcpu); else if (ctxt->error_code_valid) kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code); else kvm_queue_exception(vcpu, ctxt->exception); } +static void init_emulate_ctxt(struct kvm_vcpu *vcpu) +{ + struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; + int cs_db, cs_l; + + cache_all_regs(vcpu); + + kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); + + vcpu->arch.emulate_ctxt.vcpu = vcpu; + vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); + vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu); + vcpu->arch.emulate_ctxt.mode = + (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : + (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) + ? X86EMUL_MODE_VM86 : cs_l + ? X86EMUL_MODE_PROT64 : cs_db + ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; + memset(c, 0, sizeof(struct decode_cache)); + memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); +} + +int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq) +{ + struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; + int ret; + + init_emulate_ctxt(vcpu); + + vcpu->arch.emulate_ctxt.decode.op_bytes = 2; + vcpu->arch.emulate_ctxt.decode.ad_bytes = 2; + vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip; + ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq); + + if (ret != X86EMUL_CONTINUE) + return EMULATE_FAIL; + + vcpu->arch.emulate_ctxt.eip = c->eip; + memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); + kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); + kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); + + if (irq == NMI_VECTOR) + vcpu->arch.nmi_pending = false; + else + vcpu->arch.interrupt.pending = false; + + return EMULATE_DONE; +} +EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); + static int handle_emulation_failure(struct kvm_vcpu *vcpu) { ++vcpu->stat.insn_emulation_fail; @@ -3981,24 +4318,15 @@ int emulate_instruction(struct kvm_vcpu *vcpu, cache_all_regs(vcpu); if (!(emulation_type & EMULTYPE_NO_DECODE)) { - int cs_db, cs_l; - kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); - - vcpu->arch.emulate_ctxt.vcpu = vcpu; - vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); - vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu); - vcpu->arch.emulate_ctxt.mode = - (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : - (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) - ? X86EMUL_MODE_VM86 : cs_l - ? X86EMUL_MODE_PROT64 : cs_db - ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; - memset(c, 0, sizeof(struct decode_cache)); - memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); + init_emulate_ctxt(vcpu); vcpu->arch.emulate_ctxt.interruptibility = 0; vcpu->arch.emulate_ctxt.exception = -1; + vcpu->arch.emulate_ctxt.perm_ok = false; + + r = x86_decode_insn(&vcpu->arch.emulate_ctxt); + if (r == X86EMUL_PROPAGATE_FAULT) + goto done; - r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); trace_kvm_emulate_insn_start(vcpu); /* Only allow emulation of specific instructions on #UD @@ -4048,41 +4376,39 @@ int emulate_instruction(struct kvm_vcpu *vcpu, memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); restart: - r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); + r = x86_emulate_insn(&vcpu->arch.emulate_ctxt); - if (r) { /* emulation failed */ + if (r == EMULATION_FAILED) { if (reexecute_instruction(vcpu, cr2)) return EMULATE_DONE; return handle_emulation_failure(vcpu); } - toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility); - kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); - memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); - kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); - +done: if (vcpu->arch.emulate_ctxt.exception >= 0) { inject_emulated_exception(vcpu); - return EMULATE_DONE; - } - - if (vcpu->arch.pio.count) { + r = EMULATE_DONE; + } else if (vcpu->arch.pio.count) { if (!vcpu->arch.pio.in) vcpu->arch.pio.count = 0; - return EMULATE_DO_MMIO; - } - - if (vcpu->mmio_needed) { + r = EMULATE_DO_MMIO; + } else if (vcpu->mmio_needed) { if (vcpu->mmio_is_write) vcpu->mmio_needed = 0; - return EMULATE_DO_MMIO; - } - - if (vcpu->arch.emulate_ctxt.restart) + r = EMULATE_DO_MMIO; + } else if (r == EMULATION_RESTART) goto restart; + else + r = EMULATE_DONE; - return EMULATE_DONE; + toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility); + kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); + kvm_make_request(KVM_REQ_EVENT, vcpu); + memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); + kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); + + return r; } EXPORT_SYMBOL_GPL(emulate_instruction); @@ -4096,9 +4422,23 @@ int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) } EXPORT_SYMBOL_GPL(kvm_fast_pio_out); -static void bounce_off(void *info) +static void tsc_bad(void *info) +{ + __get_cpu_var(cpu_tsc_khz) = 0; +} + +static void tsc_khz_changed(void *data) { - /* nothing */ + struct cpufreq_freqs *freq = data; + unsigned long khz = 0; + + if (data) + khz = freq->new; + else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) + khz = cpufreq_quick_get(raw_smp_processor_id()); + if (!khz) + khz = tsc_khz; + __get_cpu_var(cpu_tsc_khz) = khz; } static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, @@ -4109,21 +4449,60 @@ static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long va struct kvm_vcpu *vcpu; int i, send_ipi = 0; + /* + * We allow guests to temporarily run on slowing clocks, + * provided we notify them after, or to run on accelerating + * clocks, provided we notify them before. Thus time never + * goes backwards. + * + * However, we have a problem. We can't atomically update + * the frequency of a given CPU from this function; it is + * merely a notifier, which can be called from any CPU. + * Changing the TSC frequency at arbitrary points in time + * requires a recomputation of local variables related to + * the TSC for each VCPU. We must flag these local variables + * to be updated and be sure the update takes place with the + * new frequency before any guests proceed. + * + * Unfortunately, the combination of hotplug CPU and frequency + * change creates an intractable locking scenario; the order + * of when these callouts happen is undefined with respect to + * CPU hotplug, and they can race with each other. As such, + * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is + * undefined; you can actually have a CPU frequency change take + * place in between the computation of X and the setting of the + * variable. To protect against this problem, all updates of + * the per_cpu tsc_khz variable are done in an interrupt + * protected IPI, and all callers wishing to update the value + * must wait for a synchronous IPI to complete (which is trivial + * if the caller is on the CPU already). This establishes the + * necessary total order on variable updates. + * + * Note that because a guest time update may take place + * anytime after the setting of the VCPU's request bit, the + * correct TSC value must be set before the request. However, + * to ensure the update actually makes it to any guest which + * starts running in hardware virtualization between the set + * and the acquisition of the spinlock, we must also ping the + * CPU after setting the request bit. + * + */ + if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) return 0; if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) return 0; - per_cpu(cpu_tsc_khz, freq->cpu) = freq->new; + + smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); spin_lock(&kvm_lock); list_for_each_entry(kvm, &vm_list, vm_list) { kvm_for_each_vcpu(i, vcpu, kvm) { if (vcpu->cpu != freq->cpu) continue; - if (!kvm_request_guest_time_update(vcpu)) - continue; + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); if (vcpu->cpu != smp_processor_id()) - send_ipi++; + send_ipi = 1; } } spin_unlock(&kvm_lock); @@ -4141,32 +4520,57 @@ static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long va * guest context is entered kvmclock will be updated, * so the guest will not see stale values. */ - smp_call_function_single(freq->cpu, bounce_off, NULL, 1); + smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); } return 0; } static struct notifier_block kvmclock_cpufreq_notifier_block = { - .notifier_call = kvmclock_cpufreq_notifier + .notifier_call = kvmclock_cpufreq_notifier +}; + +static int kvmclock_cpu_notifier(struct notifier_block *nfb, + unsigned long action, void *hcpu) +{ + unsigned int cpu = (unsigned long)hcpu; + + switch (action) { + case CPU_ONLINE: + case CPU_DOWN_FAILED: + smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); + break; + case CPU_DOWN_PREPARE: + smp_call_function_single(cpu, tsc_bad, NULL, 1); + break; + } + return NOTIFY_OK; +} + +static struct notifier_block kvmclock_cpu_notifier_block = { + .notifier_call = kvmclock_cpu_notifier, + .priority = -INT_MAX }; static void kvm_timer_init(void) { int cpu; + max_tsc_khz = tsc_khz; + register_hotcpu_notifier(&kvmclock_cpu_notifier_block); if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { +#ifdef CONFIG_CPU_FREQ + struct cpufreq_policy policy; + memset(&policy, 0, sizeof(policy)); + cpufreq_get_policy(&policy, get_cpu()); + if (policy.cpuinfo.max_freq) + max_tsc_khz = policy.cpuinfo.max_freq; +#endif cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); - for_each_online_cpu(cpu) { - unsigned long khz = cpufreq_get(cpu); - if (!khz) - khz = tsc_khz; - per_cpu(cpu_tsc_khz, cpu) = khz; - } - } else { - for_each_possible_cpu(cpu) - per_cpu(cpu_tsc_khz, cpu) = tsc_khz; } + pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); + for_each_online_cpu(cpu) + smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); } static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); @@ -4268,6 +4672,7 @@ void kvm_arch_exit(void) if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); + unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); kvm_x86_ops = NULL; kvm_mmu_module_exit(); } @@ -4683,8 +5088,11 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) kvm_mmu_unload(vcpu); if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) __kvm_migrate_timers(vcpu); - if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) - kvm_write_guest_time(vcpu); + if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { + r = kvm_guest_time_update(vcpu); + if (unlikely(r)) + goto out; + } if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) kvm_mmu_sync_roots(vcpu); if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) @@ -4709,6 +5117,21 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) if (unlikely(r)) goto out; + if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { + inject_pending_event(vcpu); + + /* enable NMI/IRQ window open exits if needed */ + if (vcpu->arch.nmi_pending) + kvm_x86_ops->enable_nmi_window(vcpu); + else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) + kvm_x86_ops->enable_irq_window(vcpu); + + if (kvm_lapic_enabled(vcpu)) { + update_cr8_intercept(vcpu); + kvm_lapic_sync_to_vapic(vcpu); + } + } + preempt_disable(); kvm_x86_ops->prepare_guest_switch(vcpu); @@ -4727,23 +5150,11 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) smp_wmb(); local_irq_enable(); preempt_enable(); + kvm_x86_ops->cancel_injection(vcpu); r = 1; goto out; } - inject_pending_event(vcpu); - - /* enable NMI/IRQ window open exits if needed */ - if (vcpu->arch.nmi_pending) - kvm_x86_ops->enable_nmi_window(vcpu); - else if (kvm_cpu_has_interrupt(vcpu) || req_int_win) - kvm_x86_ops->enable_irq_window(vcpu); - - if (kvm_lapic_enabled(vcpu)) { - update_cr8_intercept(vcpu); - kvm_lapic_sync_to_vapic(vcpu); - } - srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); kvm_guest_enter(); @@ -4769,6 +5180,8 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) if (hw_breakpoint_active()) hw_breakpoint_restore(); + kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc); + atomic_set(&vcpu->guest_mode, 0); smp_wmb(); local_irq_enable(); @@ -4898,8 +5311,7 @@ int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) if (!irqchip_in_kernel(vcpu->kvm)) kvm_set_cr8(vcpu, kvm_run->cr8); - if (vcpu->arch.pio.count || vcpu->mmio_needed || - vcpu->arch.emulate_ctxt.restart) { + if (vcpu->arch.pio.count || vcpu->mmio_needed) { if (vcpu->mmio_needed) { memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); vcpu->mmio_read_completed = 1; @@ -4980,6 +5392,8 @@ int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) vcpu->arch.exception.pending = false; + kvm_make_request(KVM_REQ_EVENT, vcpu); + return 0; } @@ -5043,6 +5457,7 @@ int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { vcpu->arch.mp_state = mp_state->mp_state; + kvm_make_request(KVM_REQ_EVENT, vcpu); return 0; } @@ -5050,24 +5465,11 @@ int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason, bool has_error_code, u32 error_code) { struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode; - int cs_db, cs_l, ret; - cache_all_regs(vcpu); - - kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); + int ret; - vcpu->arch.emulate_ctxt.vcpu = vcpu; - vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); - vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu); - vcpu->arch.emulate_ctxt.mode = - (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : - (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) - ? X86EMUL_MODE_VM86 : cs_l - ? X86EMUL_MODE_PROT64 : cs_db - ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; - memset(c, 0, sizeof(struct decode_cache)); - memcpy(c->regs, vcpu->arch.regs, sizeof c->regs); + init_emulate_ctxt(vcpu); - ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, &emulate_ops, + ret = emulator_task_switch(&vcpu->arch.emulate_ctxt, tss_selector, reason, has_error_code, error_code); @@ -5077,6 +5479,7 @@ int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason, memcpy(vcpu->arch.regs, c->regs, sizeof c->regs); kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip); kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); + kvm_make_request(KVM_REQ_EVENT, vcpu); return EMULATE_DONE; } EXPORT_SYMBOL_GPL(kvm_task_switch); @@ -5112,7 +5515,7 @@ int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; kvm_x86_ops->set_cr4(vcpu, sregs->cr4); if (!is_long_mode(vcpu) && is_pae(vcpu)) { - load_pdptrs(vcpu, vcpu->arch.cr3); + load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3); mmu_reset_needed = 1; } @@ -5147,6 +5550,8 @@ int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, !is_protmode(vcpu)) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; + kvm_make_request(KVM_REQ_EVENT, vcpu); + return 0; } @@ -5333,6 +5738,10 @@ void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { + if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) + printk_once(KERN_WARNING + "kvm: SMP vm created on host with unstable TSC; " + "guest TSC will not be reliable\n"); return kvm_x86_ops->vcpu_create(kvm, id); } @@ -5375,22 +5784,22 @@ int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) vcpu->arch.dr6 = DR6_FIXED_1; vcpu->arch.dr7 = DR7_FIXED_1; + kvm_make_request(KVM_REQ_EVENT, vcpu); + return kvm_x86_ops->vcpu_reset(vcpu); } int kvm_arch_hardware_enable(void *garbage) { - /* - * Since this may be called from a hotplug notifcation, - * we can't get the CPU frequency directly. - */ - if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { - int cpu = raw_smp_processor_id(); - per_cpu(cpu_tsc_khz, cpu) = 0; - } + struct kvm *kvm; + struct kvm_vcpu *vcpu; + int i; kvm_shared_msr_cpu_online(); - + list_for_each_entry(kvm, &vm_list, vm_list) + kvm_for_each_vcpu(i, vcpu, kvm) + if (vcpu->cpu == smp_processor_id()) + kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); return kvm_x86_ops->hardware_enable(garbage); } @@ -5424,7 +5833,11 @@ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) BUG_ON(vcpu->kvm == NULL); kvm = vcpu->kvm; + vcpu->arch.emulate_ctxt.ops = &emulate_ops; + vcpu->arch.walk_mmu = &vcpu->arch.mmu; vcpu->arch.mmu.root_hpa = INVALID_PAGE; + vcpu->arch.mmu.translate_gpa = translate_gpa; + vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; else @@ -5437,6 +5850,9 @@ int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) } vcpu->arch.pio_data = page_address(page); + if (!kvm->arch.virtual_tsc_khz) + kvm_arch_set_tsc_khz(kvm, max_tsc_khz); + r = kvm_mmu_create(vcpu); if (r < 0) goto fail_free_pio_data; @@ -5496,7 +5912,7 @@ struct kvm *kvm_arch_create_vm(void) /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); - rdtscll(kvm->arch.vm_init_tsc); + spin_lock_init(&kvm->arch.tsc_write_lock); return kvm; } @@ -5683,6 +6099,7 @@ void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) rflags |= X86_EFLAGS_TF; kvm_x86_ops->set_rflags(vcpu, rflags); + kvm_make_request(KVM_REQ_EVENT, vcpu); } EXPORT_SYMBOL_GPL(kvm_set_rflags); |