diff options
Diffstat (limited to 'arch/x86/lguest/i386_head.S')
-rw-r--r-- | arch/x86/lguest/i386_head.S | 115 |
1 files changed, 115 insertions, 0 deletions
diff --git a/arch/x86/lguest/i386_head.S b/arch/x86/lguest/i386_head.S new file mode 100644 index 00000000000..ebc6ac73389 --- /dev/null +++ b/arch/x86/lguest/i386_head.S @@ -0,0 +1,115 @@ +#include <linux/linkage.h> +#include <linux/lguest.h> +#include <asm/lguest_hcall.h> +#include <asm/asm-offsets.h> +#include <asm/thread_info.h> +#include <asm/processor-flags.h> + +/*G:020 This is where we begin: head.S notes that the boot header's platform + * type field is "1" (lguest), so calls us here. The boot header is in %esi. + * + * WARNING: be very careful here! We're running at addresses equal to physical + * addesses (around 0), not above PAGE_OFFSET as most code expectes + * (eg. 0xC0000000). Jumps are relative, so they're OK, but we can't touch any + * data. + * + * The .section line puts this code in .init.text so it will be discarded after + * boot. */ +.section .init.text, "ax", @progbits +ENTRY(lguest_entry) + /* Make initial hypercall now, so we can set up the pagetables. */ + movl $LHCALL_LGUEST_INIT, %eax + movl $lguest_data - __PAGE_OFFSET, %edx + int $LGUEST_TRAP_ENTRY + + /* The Host put the toplevel pagetable in lguest_data.pgdir. The movsl + * instruction uses %esi implicitly. */ + movl lguest_data - __PAGE_OFFSET + LGUEST_DATA_pgdir, %esi + + /* Copy first 32 entries of page directory to __PAGE_OFFSET entries. + * This means the first 128M of kernel memory will be mapped at + * PAGE_OFFSET where the kernel expects to run. This will get it far + * enough through boot to switch to its own pagetables. */ + movl $32, %ecx + movl %esi, %edi + addl $((__PAGE_OFFSET >> 22) * 4), %edi + rep + movsl + + /* Set up the initial stack so we can run C code. */ + movl $(init_thread_union+THREAD_SIZE),%esp + + /* Jumps are relative, and we're running __PAGE_OFFSET too low at the + * moment. */ + jmp lguest_init+__PAGE_OFFSET + +/*G:055 We create a macro which puts the assembler code between lgstart_ and + * lgend_ markers. These templates are put in the .text section: they can't be + * discarded after boot as we may need to patch modules, too. */ +.text +#define LGUEST_PATCH(name, insns...) \ + lgstart_##name: insns; lgend_##name:; \ + .globl lgstart_##name; .globl lgend_##name + +LGUEST_PATCH(cli, movl $0, lguest_data+LGUEST_DATA_irq_enabled) +LGUEST_PATCH(sti, movl $X86_EFLAGS_IF, lguest_data+LGUEST_DATA_irq_enabled) +LGUEST_PATCH(popf, movl %eax, lguest_data+LGUEST_DATA_irq_enabled) +LGUEST_PATCH(pushf, movl lguest_data+LGUEST_DATA_irq_enabled, %eax) +/*:*/ + +/* These demark the EIP range where host should never deliver interrupts. */ +.global lguest_noirq_start +.global lguest_noirq_end + +/*M:004 When the Host reflects a trap or injects an interrupt into the Guest, + * it sets the eflags interrupt bit on the stack based on + * lguest_data.irq_enabled, so the Guest iret logic does the right thing when + * restoring it. However, when the Host sets the Guest up for direct traps, + * such as system calls, the processor is the one to push eflags onto the + * stack, and the interrupt bit will be 1 (in reality, interrupts are always + * enabled in the Guest). + * + * This turns out to be harmless: the only trap which should happen under Linux + * with interrupts disabled is Page Fault (due to our lazy mapping of vmalloc + * regions), which has to be reflected through the Host anyway. If another + * trap *does* go off when interrupts are disabled, the Guest will panic, and + * we'll never get to this iret! :*/ + +/*G:045 There is one final paravirt_op that the Guest implements, and glancing + * at it you can see why I left it to last. It's *cool*! It's in *assembler*! + * + * The "iret" instruction is used to return from an interrupt or trap. The + * stack looks like this: + * old address + * old code segment & privilege level + * old processor flags ("eflags") + * + * The "iret" instruction pops those values off the stack and restores them all + * at once. The only problem is that eflags includes the Interrupt Flag which + * the Guest can't change: the CPU will simply ignore it when we do an "iret". + * So we have to copy eflags from the stack to lguest_data.irq_enabled before + * we do the "iret". + * + * There are two problems with this: firstly, we need to use a register to do + * the copy and secondly, the whole thing needs to be atomic. The first + * problem is easy to solve: push %eax on the stack so we can use it, and then + * restore it at the end just before the real "iret". + * + * The second is harder: copying eflags to lguest_data.irq_enabled will turn + * interrupts on before we're finished, so we could be interrupted before we + * return to userspace or wherever. Our solution to this is to surround the + * code with lguest_noirq_start: and lguest_noirq_end: labels. We tell the + * Host that it is *never* to interrupt us there, even if interrupts seem to be + * enabled. */ +ENTRY(lguest_iret) + pushl %eax + movl 12(%esp), %eax +lguest_noirq_start: + /* Note the %ss: segment prefix here. Normal data accesses use the + * "ds" segment, but that will have already been restored for whatever + * we're returning to (such as userspace): we can't trust it. The %ss: + * prefix makes sure we use the stack segment, which is still valid. */ + movl %eax,%ss:lguest_data+LGUEST_DATA_irq_enabled + popl %eax + iret +lguest_noirq_end: |