summaryrefslogtreecommitdiffstats
path: root/arch
diff options
context:
space:
mode:
Diffstat (limited to 'arch')
-rw-r--r--arch/x86/kernel/apb_timer.c1068
1 files changed, 534 insertions, 534 deletions
diff --git a/arch/x86/kernel/apb_timer.c b/arch/x86/kernel/apb_timer.c
index 6f27f8b7579..2afa27d0129 100644
--- a/arch/x86/kernel/apb_timer.c
+++ b/arch/x86/kernel/apb_timer.c
@@ -43,11 +43,11 @@
#include <asm/fixmap.h>
#include <asm/apb_timer.h>
-#define APBT_MASK CLOCKSOURCE_MASK(32)
-#define APBT_SHIFT 22
-#define APBT_CLOCKEVENT_RATING 150
-#define APBT_CLOCKSOURCE_RATING 250
-#define APBT_MIN_DELTA_USEC 200
+#define APBT_MASK CLOCKSOURCE_MASK(32)
+#define APBT_SHIFT 22
+#define APBT_CLOCKEVENT_RATING 150
+#define APBT_CLOCKSOURCE_RATING 250
+#define APBT_MIN_DELTA_USEC 200
#define EVT_TO_APBT_DEV(evt) container_of(evt, struct apbt_dev, evt)
#define APBT_CLOCKEVENT0_NUM (0)
@@ -65,21 +65,21 @@ static int phy_cs_timer_id;
static uint64_t apbt_freq;
static void apbt_set_mode(enum clock_event_mode mode,
- struct clock_event_device *evt);
+ struct clock_event_device *evt);
static int apbt_next_event(unsigned long delta,
- struct clock_event_device *evt);
+ struct clock_event_device *evt);
static cycle_t apbt_read_clocksource(struct clocksource *cs);
static void apbt_restart_clocksource(void);
struct apbt_dev {
- struct clock_event_device evt;
- unsigned int num;
- int cpu;
- unsigned int irq;
- unsigned int tick;
- unsigned int count;
- unsigned int flags;
- char name[10];
+ struct clock_event_device evt;
+ unsigned int num;
+ int cpu;
+ unsigned int irq;
+ unsigned int tick;
+ unsigned int count;
+ unsigned int flags;
+ char name[10];
};
int disable_apbt_percpu __cpuinitdata;
@@ -91,77 +91,77 @@ static unsigned int apbt_num_timers_used;
static struct apbt_dev *apbt_devs;
#endif
-static inline unsigned long apbt_readl_reg(unsigned long a)
+static inline unsigned long apbt_readl_reg(unsigned long a)
{
- return readl(apbt_virt_address + a);
+ return readl(apbt_virt_address + a);
}
static inline void apbt_writel_reg(unsigned long d, unsigned long a)
{
- writel(d, apbt_virt_address + a);
+ writel(d, apbt_virt_address + a);
}
static inline unsigned long apbt_readl(int n, unsigned long a)
{
- return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
+ return readl(apbt_virt_address + a + n * APBTMRS_REG_SIZE);
}
static inline void apbt_writel(int n, unsigned long d, unsigned long a)
{
- writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
+ writel(d, apbt_virt_address + a + n * APBTMRS_REG_SIZE);
}
static inline void apbt_set_mapping(void)
{
- struct sfi_timer_table_entry *mtmr;
-
- if (apbt_virt_address) {
- pr_debug("APBT base already mapped\n");
- return;
- }
- mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
- if (mtmr == NULL) {
- printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
- APBT_CLOCKEVENT0_NUM);
- return;
- }
- apbt_address = (unsigned long)mtmr->phys_addr;
- if (!apbt_address) {
- printk(KERN_WARNING "No timer base from SFI, use default\n");
- apbt_address = APBT_DEFAULT_BASE;
- }
- apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
- if (apbt_virt_address) {
- pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
- (void *)apbt_address, (void *)apbt_virt_address);
- } else {
- pr_debug("Failed mapping APBT phy address at %p\n",\
- (void *)apbt_address);
- goto panic_noapbt;
- }
- apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
- sfi_free_mtmr(mtmr);
-
- /* Now figure out the physical timer id for clocksource device */
- mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
- if (mtmr == NULL)
- goto panic_noapbt;
-
- /* Now figure out the physical timer id */
- phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
- / APBTMRS_REG_SIZE;
- pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
- return;
+ struct sfi_timer_table_entry *mtmr;
+
+ if (apbt_virt_address) {
+ pr_debug("APBT base already mapped\n");
+ return;
+ }
+ mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
+ if (mtmr == NULL) {
+ printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
+ APBT_CLOCKEVENT0_NUM);
+ return;
+ }
+ apbt_address = (unsigned long)mtmr->phys_addr;
+ if (!apbt_address) {
+ printk(KERN_WARNING "No timer base from SFI, use default\n");
+ apbt_address = APBT_DEFAULT_BASE;
+ }
+ apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE);
+ if (apbt_virt_address) {
+ pr_debug("Mapped APBT physical addr %p at virtual addr %p\n",\
+ (void *)apbt_address, (void *)apbt_virt_address);
+ } else {
+ pr_debug("Failed mapping APBT phy address at %p\n",\
+ (void *)apbt_address);
+ goto panic_noapbt;
+ }
+ apbt_freq = mtmr->freq_hz / USEC_PER_SEC;
+ sfi_free_mtmr(mtmr);
+
+ /* Now figure out the physical timer id for clocksource device */
+ mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM);
+ if (mtmr == NULL)
+ goto panic_noapbt;
+
+ /* Now figure out the physical timer id */
+ phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff)
+ / APBTMRS_REG_SIZE;
+ pr_debug("Use timer %d for clocksource\n", phy_cs_timer_id);
+ return;
panic_noapbt:
- panic("Failed to setup APB system timer\n");
+ panic("Failed to setup APB system timer\n");
}
static inline void apbt_clear_mapping(void)
{
- iounmap(apbt_virt_address);
- apbt_virt_address = NULL;
+ iounmap(apbt_virt_address);
+ apbt_virt_address = NULL;
}
/*
@@ -169,28 +169,28 @@ static inline void apbt_clear_mapping(void)
*/
static inline int is_apbt_capable(void)
{
- return apbt_virt_address ? 1 : 0;
+ return apbt_virt_address ? 1 : 0;
}
static struct clocksource clocksource_apbt = {
- .name = "apbt",
- .rating = APBT_CLOCKSOURCE_RATING,
- .read = apbt_read_clocksource,
- .mask = APBT_MASK,
- .shift = APBT_SHIFT,
- .flags = CLOCK_SOURCE_IS_CONTINUOUS,
- .resume = apbt_restart_clocksource,
+ .name = "apbt",
+ .rating = APBT_CLOCKSOURCE_RATING,
+ .read = apbt_read_clocksource,
+ .mask = APBT_MASK,
+ .shift = APBT_SHIFT,
+ .flags = CLOCK_SOURCE_IS_CONTINUOUS,
+ .resume = apbt_restart_clocksource,
};
/* boot APB clock event device */
static struct clock_event_device apbt_clockevent = {
- .name = "apbt0",
- .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
- .set_mode = apbt_set_mode,
- .set_next_event = apbt_next_event,
- .shift = APBT_SHIFT,
- .irq = 0,
- .rating = APBT_CLOCKEVENT_RATING,
+ .name = "apbt0",
+ .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
+ .set_mode = apbt_set_mode,
+ .set_next_event = apbt_next_event,
+ .shift = APBT_SHIFT,
+ .irq = 0,
+ .rating = APBT_CLOCKEVENT_RATING,
};
/*
@@ -199,20 +199,20 @@ static struct clock_event_device apbt_clockevent = {
*/
static inline int __init setup_x86_mrst_timer(char *arg)
{
- if (!arg)
- return -EINVAL;
-
- if (strcmp("apbt_only", arg) == 0)
- disable_apbt_percpu = 0;
- else if (strcmp("lapic_and_apbt", arg) == 0)
- disable_apbt_percpu = 1;
- else {
- pr_warning("X86 MRST timer option %s not recognised"
- " use x86_mrst_timer=apbt_only or lapic_and_apbt\n",
- arg);
- return -EINVAL;
- }
- return 0;
+ if (!arg)
+ return -EINVAL;
+
+ if (strcmp("apbt_only", arg) == 0)
+ disable_apbt_percpu = 0;
+ else if (strcmp("lapic_and_apbt", arg) == 0)
+ disable_apbt_percpu = 1;
+ else {
+ pr_warning("X86 MRST timer option %s not recognised"
+ " use x86_mrst_timer=apbt_only or lapic_and_apbt\n",
+ arg);
+ return -EINVAL;
+ }
+ return 0;
}
__setup("x86_mrst_timer=", setup_x86_mrst_timer);
@@ -222,176 +222,176 @@ __setup("x86_mrst_timer=", setup_x86_mrst_timer);
*/
static void apbt_start_counter(int n)
{
- unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
-
- ctrl &= ~APBTMR_CONTROL_ENABLE;
- apbt_writel(n, ctrl, APBTMR_N_CONTROL);
- apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
- /* enable, mask interrupt */
- ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
- ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
- apbt_writel(n, ctrl, APBTMR_N_CONTROL);
- /* read it once to get cached counter value initialized */
- apbt_read_clocksource(&clocksource_apbt);
+ unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
+
+ ctrl &= ~APBTMR_CONTROL_ENABLE;
+ apbt_writel(n, ctrl, APBTMR_N_CONTROL);
+ apbt_writel(n, ~0, APBTMR_N_LOAD_COUNT);
+ /* enable, mask interrupt */
+ ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
+ ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
+ apbt_writel(n, ctrl, APBTMR_N_CONTROL);
+ /* read it once to get cached counter value initialized */
+ apbt_read_clocksource(&clocksource_apbt);
}
static irqreturn_t apbt_interrupt_handler(int irq, void *data)
{
- struct apbt_dev *dev = (struct apbt_dev *)data;
- struct clock_event_device *aevt = &dev->evt;
-
- if (!aevt->event_handler) {
- printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
- dev->num);
- return IRQ_NONE;
- }
- aevt->event_handler(aevt);
- return IRQ_HANDLED;
+ struct apbt_dev *dev = (struct apbt_dev *)data;
+ struct clock_event_device *aevt = &dev->evt;
+
+ if (!aevt->event_handler) {
+ printk(KERN_INFO "Spurious APBT timer interrupt on %d\n",
+ dev->num);
+ return IRQ_NONE;
+ }
+ aevt->event_handler(aevt);
+ return IRQ_HANDLED;
}
static void apbt_restart_clocksource(void)
{
- apbt_start_counter(phy_cs_timer_id);
+ apbt_start_counter(phy_cs_timer_id);
}
/* Setup IRQ routing via IOAPIC */
#ifdef CONFIG_SMP
static void apbt_setup_irq(struct apbt_dev *adev)
{
- struct irq_chip *chip;
- struct irq_desc *desc;
-
- /* timer0 irq has been setup early */
- if (adev->irq == 0)
- return;
- desc = irq_to_desc(adev->irq);
- chip = get_irq_chip(adev->irq);
- disable_irq(adev->irq);
- desc->status |= IRQ_MOVE_PCNTXT;
- irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
- /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */
- set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge");
- enable_irq(adev->irq);
- if (system_state == SYSTEM_BOOTING)
- if (request_irq(adev->irq, apbt_interrupt_handler,
- IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
- adev->name, adev)) {
- printk(KERN_ERR "Failed request IRQ for APBT%d\n",
- adev->num);
- }
+ struct irq_chip *chip;
+ struct irq_desc *desc;
+
+ /* timer0 irq has been setup early */
+ if (adev->irq == 0)
+ return;
+ desc = irq_to_desc(adev->irq);
+ chip = get_irq_chip(adev->irq);
+ disable_irq(adev->irq);
+ desc->status |= IRQ_MOVE_PCNTXT;
+ irq_set_affinity(adev->irq, cpumask_of(adev->cpu));
+ /* APB timer irqs are set up as mp_irqs, timer is edge triggerred */
+ set_irq_chip_and_handler_name(adev->irq, chip, handle_edge_irq, "edge");
+ enable_irq(adev->irq);
+ if (system_state == SYSTEM_BOOTING)
+ if (request_irq(adev->irq, apbt_interrupt_handler,
+ IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
+ adev->name, adev)) {
+ printk(KERN_ERR "Failed request IRQ for APBT%d\n",
+ adev->num);
+ }
}
#endif
static void apbt_enable_int(int n)
{
- unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
- /* clear pending intr */
- apbt_readl(n, APBTMR_N_EOI);
- ctrl &= ~APBTMR_CONTROL_INT;
- apbt_writel(n, ctrl, APBTMR_N_CONTROL);
+ unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
+ /* clear pending intr */
+ apbt_readl(n, APBTMR_N_EOI);
+ ctrl &= ~APBTMR_CONTROL_INT;
+ apbt_writel(n, ctrl, APBTMR_N_CONTROL);
}
static void apbt_disable_int(int n)
{
- unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
+ unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
- ctrl |= APBTMR_CONTROL_INT;
- apbt_writel(n, ctrl, APBTMR_N_CONTROL);
+ ctrl |= APBTMR_CONTROL_INT;
+ apbt_writel(n, ctrl, APBTMR_N_CONTROL);
}
static int __init apbt_clockevent_register(void)
{
- struct sfi_timer_table_entry *mtmr;
- struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
-
- mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
- if (mtmr == NULL) {
- printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
- APBT_CLOCKEVENT0_NUM);
- return -ENODEV;
- }
-
- /*
- * We need to calculate the scaled math multiplication factor for
- * nanosecond to apbt tick conversion.
- * mult = (nsec/cycle)*2^APBT_SHIFT
- */
- apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
- , NSEC_PER_SEC, APBT_SHIFT);
-
- /* Calculate the min / max delta */
- apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
- &apbt_clockevent);
- apbt_clockevent.min_delta_ns = clockevent_delta2ns(
- APBT_MIN_DELTA_USEC*apbt_freq,
- &apbt_clockevent);
- /*
- * Start apbt with the boot cpu mask and make it
- * global if not used for per cpu timer.
- */
- apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
- adev->num = smp_processor_id();
- memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
-
- if (disable_apbt_percpu) {
- apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100;
+ struct sfi_timer_table_entry *mtmr;
+ struct apbt_dev *adev = &__get_cpu_var(cpu_apbt_dev);
+
+ mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM);
+ if (mtmr == NULL) {
+ printk(KERN_ERR "Failed to get MTMR %d from SFI\n",
+ APBT_CLOCKEVENT0_NUM);
+ return -ENODEV;
+ }
+
+ /*
+ * We need to calculate the scaled math multiplication factor for
+ * nanosecond to apbt tick conversion.
+ * mult = (nsec/cycle)*2^APBT_SHIFT
+ */
+ apbt_clockevent.mult = div_sc((unsigned long) mtmr->freq_hz
+ , NSEC_PER_SEC, APBT_SHIFT);
+
+ /* Calculate the min / max delta */
+ apbt_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
+ &apbt_clockevent);
+ apbt_clockevent.min_delta_ns = clockevent_delta2ns(
+ APBT_MIN_DELTA_USEC*apbt_freq,
+ &apbt_clockevent);
+ /*
+ * Start apbt with the boot cpu mask and make it
+ * global if not used for per cpu timer.
+ */
+ apbt_clockevent.cpumask = cpumask_of(smp_processor_id());
+ adev->num = smp_processor_id();
+ memcpy(&adev->evt, &apbt_clockevent, sizeof(struct clock_event_device));
+
+ if (disable_apbt_percpu) {
+ apbt_clockevent.rating = APBT_CLOCKEVENT_RATING - 100;
global_clock_event = &adev->evt;
- printk(KERN_DEBUG "%s clockevent registered as global\n",
- global_clock_event->name);
- }
-
- if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
- IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
- apbt_clockevent.name, adev)) {
- printk(KERN_ERR "Failed request IRQ for APBT%d\n",
- apbt_clockevent.irq);
- }
-
- clockevents_register_device(&adev->evt);
- /* Start APBT 0 interrupts */
- apbt_enable_int(APBT_CLOCKEVENT0_NUM);
-
- sfi_free_mtmr(mtmr);
- return 0;
+ printk(KERN_DEBUG "%s clockevent registered as global\n",
+ global_clock_event->name);
+ }
+
+ if (request_irq(apbt_clockevent.irq, apbt_interrupt_handler,
+ IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
+ apbt_clockevent.name, adev)) {
+ printk(KERN_ERR "Failed request IRQ for APBT%d\n",
+ apbt_clockevent.irq);
+ }
+
+ clockevents_register_device(&adev->evt);
+ /* Start APBT 0 interrupts */
+ apbt_enable_int(APBT_CLOCKEVENT0_NUM);
+
+ sfi_free_mtmr(mtmr);
+ return 0;
}
#ifdef CONFIG_SMP
/* Should be called with per cpu */
void apbt_setup_secondary_clock(void)
{
- struct apbt_dev *adev;
- struct clock_event_device *aevt;
- int cpu;
-
- /* Don't register boot CPU clockevent */
- cpu = smp_processor_id();
- if (cpu == boot_cpu_id)
- return;
- /*
- * We need to calculate the scaled math multiplication factor for
- * nanosecond to apbt tick conversion.
- * mult = (nsec/cycle)*2^APBT_SHIFT
- */
- printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
- adev = &per_cpu(cpu_apbt_dev, cpu);
- aevt = &adev->evt;
-
- memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
- aevt->cpumask = cpumask_of(cpu);
- aevt->name = adev->name;
- aevt->mode = CLOCK_EVT_MODE_UNUSED;
-
- printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
- cpu, aevt->name, *(u32 *)aevt->cpumask);
-
- apbt_setup_irq(adev);
-
- clockevents_register_device(aevt);
-
- apbt_enable_int(cpu);
-
- return;
+ struct apbt_dev *adev;
+ struct clock_event_device *aevt;
+ int cpu;
+
+ /* Don't register boot CPU clockevent */
+ cpu = smp_processor_id();
+ if (cpu == boot_cpu_id)
+ return;
+ /*
+ * We need to calculate the scaled math multiplication factor for
+ * nanosecond to apbt tick conversion.
+ * mult = (nsec/cycle)*2^APBT_SHIFT
+ */
+ printk(KERN_INFO "Init per CPU clockevent %d\n", cpu);
+ adev = &per_cpu(cpu_apbt_dev, cpu);
+ aevt = &adev->evt;
+
+ memcpy(aevt, &apbt_clockevent, sizeof(*aevt));
+ aevt->cpumask = cpumask_of(cpu);
+ aevt->name = adev->name;
+ aevt->mode = CLOCK_EVT_MODE_UNUSED;
+
+ printk(KERN_INFO "Registering CPU %d clockevent device %s, mask %08x\n",
+ cpu, aevt->name, *(u32 *)aevt->cpumask);
+
+ apbt_setup_irq(adev);
+
+ clockevents_register_device(aevt);
+
+ apbt_enable_int(cpu);
+
+ return;
}
/*
@@ -405,34 +405,34 @@ void apbt_setup_secondary_clock(void)
* the extra interrupt is harmless.
*/
static int apbt_cpuhp_notify(struct notifier_block *n,
- unsigned long action, void *hcpu)
+ unsigned long action, void *hcpu)
{
- unsigned long cpu = (unsigned long)hcpu;
- struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
-
- switch (action & 0xf) {
- case CPU_DEAD:
- apbt_disable_int(cpu);
- if (system_state == SYSTEM_RUNNING)
- pr_debug("skipping APBT CPU %lu offline\n", cpu);
- else if (adev) {
- pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
- free_irq(adev->irq, adev);
- }
- break;
- default:
- pr_debug(KERN_INFO "APBT notified %lu, no action\n", action);
- }
- return NOTIFY_OK;
+ unsigned long cpu = (unsigned long)hcpu;
+ struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu);
+
+ switch (action & 0xf) {
+ case CPU_DEAD:
+ apbt_disable_int(cpu);
+ if (system_state == SYSTEM_RUNNING)
+ pr_debug("skipping APBT CPU %lu offline\n", cpu);
+ else if (adev) {
+ pr_debug("APBT clockevent for cpu %lu offline\n", cpu);
+ free_irq(adev->irq, adev);
+ }
+ break;
+ default:
+ pr_debug(KERN_INFO "APBT notified %lu, no action\n", action);
+ }
+ return NOTIFY_OK;
}
static __init int apbt_late_init(void)
{
- if (disable_apbt_percpu)
- return 0;
- /* This notifier should be called after workqueue is ready */
- hotcpu_notifier(apbt_cpuhp_notify, -20);
- return 0;
+ if (disable_apbt_percpu)
+ return 0;
+ /* This notifier should be called after workqueue is ready */
+ hotcpu_notifier(apbt_cpuhp_notify, -20);
+ return 0;
}
fs_initcall(apbt_late_init);
#else
@@ -442,93 +442,93 @@ void apbt_setup_secondary_clock(void) {}
#endif /* CONFIG_SMP */
static void apbt_set_mode(enum clock_event_mode mode,
- struct clock_event_device *evt)
+ struct clock_event_device *evt)
{
- unsigned long ctrl;
- uint64_t delta;
- int timer_num;
- struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
-
- timer_num = adev->num;
- pr_debug("%s CPU %d timer %d mode=%d\n",
- __func__, first_cpu(*evt->cpumask), timer_num, mode);
-
- switch (mode) {
- case CLOCK_EVT_MODE_PERIODIC:
- delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
- delta >>= apbt_clockevent.shift;
- ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
- ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
- apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
- /*
- * DW APB p. 46, have to disable timer before load counter,
- * may cause sync problem.
- */
- ctrl &= ~APBTMR_CONTROL_ENABLE;
- apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
- udelay(1);
- pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
- apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
- ctrl |= APBTMR_CONTROL_ENABLE;
- apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
- break;
- /* APB timer does not have one-shot mode, use free running mode */
- case CLOCK_EVT_MODE_ONESHOT:
- ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
- /*
- * set free running mode, this mode will let timer reload max
- * timeout which will give time (3min on 25MHz clock) to rearm
- * the next event, therefore emulate the one-shot mode.
- */
- ctrl &= ~APBTMR_CONTROL_ENABLE;
- ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
-
- apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
- /* write again to set free running mode */
- apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
-
- /*
- * DW APB p. 46, load counter with all 1s before starting free
- * running mode.
- */
- apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
- ctrl &= ~APBTMR_CONTROL_INT;
- ctrl |= APBTMR_CONTROL_ENABLE;
- apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
- break;
-
- case CLOCK_EVT_MODE_UNUSED:
- case CLOCK_EVT_MODE_SHUTDOWN:
- apbt_disable_int(timer_num);
- ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
- ctrl &= ~APBTMR_CONTROL_ENABLE;
- apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
- break;
-
- case CLOCK_EVT_MODE_RESUME:
- apbt_enable_int(timer_num);
- break;
- }
+ unsigned long ctrl;
+ uint64_t delta;
+ int timer_num;
+ struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
+
+ timer_num = adev->num;
+ pr_debug("%s CPU %d timer %d mode=%d\n",
+ __func__, first_cpu(*evt->cpumask), timer_num, mode);
+
+ switch (mode) {
+ case CLOCK_EVT_MODE_PERIODIC:
+ delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * apbt_clockevent.mult;
+ delta >>= apbt_clockevent.shift;
+ ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
+ ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
+ apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+ /*
+ * DW APB p. 46, have to disable timer before load counter,
+ * may cause sync problem.
+ */
+ ctrl &= ~APBTMR_CONTROL_ENABLE;
+ apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+ udelay(1);
+ pr_debug("Setting clock period %d for HZ %d\n", (int)delta, HZ);
+ apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
+ ctrl |= APBTMR_CONTROL_ENABLE;
+ apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+ break;
+ /* APB timer does not have one-shot mode, use free running mode */
+ case CLOCK_EVT_MODE_ONESHOT:
+ ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
+ /*
+ * set free running mode, this mode will let timer reload max
+ * timeout which will give time (3min on 25MHz clock) to rearm
+ * the next event, therefore emulate the one-shot mode.
+ */
+ ctrl &= ~APBTMR_CONTROL_ENABLE;
+ ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
+
+ apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+ /* write again to set free running mode */
+ apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+
+ /*
+ * DW APB p. 46, load counter with all 1s before starting free
+ * running mode.
+ */
+ apbt_writel(timer_num, ~0, APBTMR_N_LOAD_COUNT);
+ ctrl &= ~APBTMR_CONTROL_INT;
+ ctrl |= APBTMR_CONTROL_ENABLE;
+ apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+ break;
+
+ case CLOCK_EVT_MODE_UNUSED:
+ case CLOCK_EVT_MODE_SHUTDOWN:
+ apbt_disable_int(timer_num);
+ ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
+ ctrl &= ~APBTMR_CONTROL_ENABLE;
+ apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+ break;
+
+ case CLOCK_EVT_MODE_RESUME:
+ apbt_enable_int(timer_num);
+ break;
+ }
}
static int apbt_next_event(unsigned long delta,
- struct clock_event_device *evt)
+ struct clock_event_device *evt)
{
- unsigned long ctrl;
- int timer_num;
-
- struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
-
- timer_num = adev->num;
- /* Disable timer */
- ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
- ctrl &= ~APBTMR_CONTROL_ENABLE;
- apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
- /* write new count */
- apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
- ctrl |= APBTMR_CONTROL_ENABLE;
- apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
- return 0;
+ unsigned long ctrl;
+ int timer_num;
+
+ struct apbt_dev *adev = EVT_TO_APBT_DEV(evt);
+
+ timer_num = adev->num;
+ /* Disable timer */
+ ctrl = apbt_readl(timer_num, APBTMR_N_CONTROL);
+ ctrl &= ~APBTMR_CONTROL_ENABLE;
+ apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+ /* write new count */
+ apbt_writel(timer_num, delta, APBTMR_N_LOAD_COUNT);
+ ctrl |= APBTMR_CONTROL_ENABLE;
+ apbt_writel(timer_num, ctrl, APBTMR_N_CONTROL);
+ return 0;
}
/*
@@ -540,94 +540,94 @@ static int apbt_next_event(unsigned long delta,
*/
static cycle_t apbt_read_clocksource(struct clocksource *cs)
{
- unsigned long t0, t1, t2;
- static unsigned long last_read;
+ unsigned long t0, t1, t2;
+ static unsigned long last_read;
bad_count:
- t1 = apbt_readl(phy_cs_timer_id,
- APBTMR_N_CURRENT_VALUE);
- t2 = apbt_readl(phy_cs_timer_id,
- APBTMR_N_CURRENT_VALUE);
- if (unlikely(t1 < t2)) {
- pr_debug("APBT: read current count error %lx:%lx:%lx\n",
- t1, t2, t2 - t1);
- goto bad_count;
- }
- /*
- * check against cached last read, makes sure time does not go back.
- * it could be a normal rollover but we will do tripple check anyway
- */
- if (unlikely(t2 > last_read)) {
- /* check if we have a normal rollover */
- unsigned long raw_intr_status =
- apbt_readl_reg(APBTMRS_RAW_INT_STATUS);
- /*
- * cs timer interrupt is masked but raw intr bit is set if
- * rollover occurs. then we read EOI reg to clear it.
- */
- if (raw_intr_status & (1 << phy_cs_timer_id)) {
- apbt_readl(phy_cs_timer_id, APBTMR_N_EOI);
- goto out;
- }
- pr_debug("APB CS going back %lx:%lx:%lx ",
- t2, last_read, t2 - last_read);
+ t1 = apbt_readl(phy_cs_timer_id,
+ APBTMR_N_CURRENT_VALUE);
+ t2 = apbt_readl(phy_cs_timer_id,
+ APBTMR_N_CURRENT_VALUE);
+ if (unlikely(t1 < t2)) {
+ pr_debug("APBT: read current count error %lx:%lx:%lx\n",
+ t1, t2, t2 - t1);
+ goto bad_count;
+ }
+ /*
+ * check against cached last read, makes sure time does not go back.
+ * it could be a normal rollover but we will do tripple check anyway
+ */
+ if (unlikely(t2 > last_read)) {
+ /* check if we have a normal rollover */
+ unsigned long raw_intr_status =
+ apbt_readl_reg(APBTMRS_RAW_INT_STATUS);
+ /*
+ * cs timer interrupt is masked but raw intr bit is set if
+ * rollover occurs. then we read EOI reg to clear it.
+ */
+ if (raw_intr_status & (1 << phy_cs_timer_id)) {
+ apbt_readl(phy_cs_timer_id, APBTMR_N_EOI);
+ goto out;
+ }
+ pr_debug("APB CS going back %lx:%lx:%lx ",
+ t2, last_read, t2 - last_read);
bad_count_x3:
- pr_debug(KERN_INFO "tripple check enforced\n");
- t0 = apbt_readl(phy_cs_timer_id,
- APBTMR_N_CURRENT_VALUE);
- udelay(1);
- t1 = apbt_readl(phy_cs_timer_id,
- APBTMR_N_CURRENT_VALUE);
- udelay(1);
- t2 = apbt_readl(phy_cs_timer_id,
- APBTMR_N_CURRENT_VALUE);
- if ((t2 > t1) || (t1 > t0)) {
- printk(KERN_ERR "Error: APB CS tripple check failed\n");
- goto bad_count_x3;
- }
- }
+ pr_debug(KERN_INFO "tripple check enforced\n");
+ t0 = apbt_readl(phy_cs_timer_id,
+ APBTMR_N_CURRENT_VALUE);
+ udelay(1);
+ t1 = apbt_readl(phy_cs_timer_id,
+ APBTMR_N_CURRENT_VALUE);
+ udelay(1);
+ t2 = apbt_readl(phy_cs_timer_id,
+ APBTMR_N_CURRENT_VALUE);
+ if ((t2 > t1) || (t1 > t0)) {
+ printk(KERN_ERR "Error: APB CS tripple check failed\n");
+ goto bad_count_x3;
+ }
+ }
out:
- last_read = t2;
- return (cycle_t)~t2;
+ last_read = t2;
+ return (cycle_t)~t2;
}
static int apbt_clocksource_register(void)
{
- u64 start, now;
- cycle_t t1;
-
- /* Start the counter, use timer 2 as source, timer 0/1 for event */
- apbt_start_counter(phy_cs_timer_id);
-
- /* Verify whether apbt counter works */
- t1 = apbt_read_clocksource(&clocksource_apbt);
- rdtscll(start);
-
- /*
- * We don't know the TSC frequency yet, but waiting for
- * 200000 TSC cycles is safe:
- * 4 GHz == 50us
- * 1 GHz == 200us
- */
- do {
- rep_nop();
- rdtscll(now);
- } while ((now - start) < 200000UL);
-
- /* APBT is the only always on clocksource, it has to work! */
- if (t1 == apbt_read_clocksource(&clocksource_apbt))
- panic("APBT counter not counting. APBT disabled\n");
-
- /*
- * initialize and register APBT clocksource
- * convert that to ns/clock cycle
- * mult = (ns/c) * 2^APBT_SHIFT
- */
- clocksource_apbt.mult = div_sc(MSEC_PER_SEC,
- (unsigned long) apbt_freq, APBT_SHIFT);
- clocksource_register(&clocksource_apbt);
-
- return 0;
+ u64 start, now;
+ cycle_t t1;
+
+ /* Start the counter, use timer 2 as source, timer 0/1 for event */
+ apbt_start_counter(phy_cs_timer_id);
+
+ /* Verify whether apbt counter works */
+ t1 = apbt_read_clocksource(&clocksource_apbt);
+ rdtscll(start);
+
+ /*
+ * We don't know the TSC frequency yet, but waiting for
+ * 200000 TSC cycles is safe:
+ * 4 GHz == 50us
+ * 1 GHz == 200us
+ */
+ do {
+ rep_nop();
+ rdtscll(now);
+ } while ((now - start) < 200000UL);
+
+ /* APBT is the only always on clocksource, it has to work! */
+ if (t1 == apbt_read_clocksource(&clocksource_apbt))
+ panic("APBT counter not counting. APBT disabled\n");
+
+ /*
+ * initialize and register APBT clocksource
+ * convert that to ns/clock cycle
+ * mult = (ns/c) * 2^APBT_SHIFT
+ */
+ clocksource_apbt.mult = div_sc(MSEC_PER_SEC,
+ (unsigned long) apbt_freq, APBT_SHIFT);
+ clocksource_register(&clocksource_apbt);
+
+ return 0;
}
/*
@@ -640,145 +640,145 @@ static int apbt_clocksource_register(void)
void __init apbt_time_init(void)
{
#ifdef CONFIG_SMP
- int i;
- struct sfi_timer_table_entry *p_mtmr;
- unsigned int percpu_timer;
- struct apbt_dev *adev;
+ int i;
+ struct sfi_timer_table_entry *p_mtmr;
+ unsigned int percpu_timer;
+ struct apbt_dev *adev;
#endif
- if (apb_timer_block_enabled)
- return;
- apbt_set_mapping();
- if (apbt_virt_address) {
- pr_debug("Found APBT version 0x%lx\n",\
- apbt_readl_reg(APBTMRS_COMP_VERSION));
- } else
- goto out_noapbt;
- /*
- * Read the frequency and check for a sane value, for ESL model
- * we extend the possible clock range to allow time scaling.
- */
-
- if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
- pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
- goto out_noapbt;
- }
- if (apbt_clocksource_register()) {
- pr_debug("APBT has failed to register clocksource\n");
- goto out_noapbt;
- }
- if (!apbt_clockevent_register())
- apb_timer_block_enabled = 1;
- else {
- pr_debug("APBT has failed to register clockevent\n");
- goto out_noapbt;
- }
+ if (apb_timer_block_enabled)
+ return;
+ apbt_set_mapping();
+ if (apbt_virt_address) {
+ pr_debug("Found APBT version 0x%lx\n",\
+ apbt_readl_reg(APBTMRS_COMP_VERSION));
+ } else
+ goto out_noapbt;
+ /*
+ * Read the frequency and check for a sane value, for ESL model
+ * we extend the possible clock range to allow time scaling.
+ */
+
+ if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) {
+ pr_debug("APBT has invalid freq 0x%llx\n", apbt_freq);
+ goto out_noapbt;
+ }
+ if (apbt_clocksource_register()) {
+ pr_debug("APBT has failed to register clocksource\n");
+ goto out_noapbt;
+ }
+ if (!apbt_clockevent_register())
+ apb_timer_block_enabled = 1;
+ else {
+ pr_debug("APBT has failed to register clockevent\n");
+ goto out_noapbt;
+ }
#ifdef CONFIG_SMP
- /* kernel cmdline disable apb timer, so we will use lapic timers */
- if (disable_apbt_percpu) {
- printk(KERN_INFO "apbt: disabled per cpu timer\n");
- return;
- }
- pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
- if (num_possible_cpus() <= sfi_mtimer_num) {
- percpu_timer = 1;
- apbt_num_timers_used = num_possible_cpus();
- } else {
- percpu_timer = 0;
- apbt_num_timers_used = 1;
- adev = &per_cpu(cpu_apbt_dev, 0);
- adev->flags &= ~APBT_DEV_USED;
- }
- pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
-
- /* here we set up per CPU timer data structure */
- apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
- GFP_KERNEL);
- if (!apbt_devs) {
- printk(KERN_ERR "Failed to allocate APB timer devices\n");
- return;
- }
- for (i = 0; i < apbt_num_timers_used; i++) {
- adev = &per_cpu(cpu_apbt_dev, i);
- adev->num = i;
- adev->cpu = i;
- p_mtmr = sfi_get_mtmr(i);
- if (p_mtmr) {
- adev->tick = p_mtmr->freq_hz;
- adev->irq = p_mtmr->irq;
- } else
- printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
- adev->count = 0;
- sprintf(adev->name, "apbt%d", i);
- }
+ /* kernel cmdline disable apb timer, so we will use lapic timers */
+ if (disable_apbt_percpu) {
+ printk(KERN_INFO "apbt: disabled per cpu timer\n");
+ return;
+ }
+ pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus());
+ if (num_possible_cpus() <= sfi_mtimer_num) {
+ percpu_timer = 1;
+ apbt_num_timers_used = num_possible_cpus();
+ } else {
+ percpu_timer = 0;
+ apbt_num_timers_used = 1;
+ adev = &per_cpu(cpu_apbt_dev, 0);
+ adev->flags &= ~APBT_DEV_USED;
+ }
+ pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used);
+
+ /* here we set up per CPU timer data structure */
+ apbt_devs = kzalloc(sizeof(struct apbt_dev) * apbt_num_timers_used,
+ GFP_KERNEL);
+ if (!apbt_devs) {
+ printk(KERN_ERR "Failed to allocate APB timer devices\n");
+ return;
+ }
+ for (i = 0; i < apbt_num_timers_used; i++) {
+ adev = &per_cpu(cpu_apbt_dev, i);
+ adev->num = i;
+ adev->cpu = i;
+ p_mtmr = sfi_get_mtmr(i);
+ if (p_mtmr) {
+ adev->tick = p_mtmr->freq_hz;
+ adev->irq = p_mtmr->irq;
+ } else
+ printk(KERN_ERR "Failed to get timer for cpu %d\n", i);
+ adev->count = 0;
+ sprintf(adev->name, "apbt%d", i);
+ }
#endif
- return;
+ return;
out_noapbt:
- apbt_clear_mapping();
- apb_timer_block_enabled = 0;
- panic("failed to enable APB timer\n");
+ apbt_clear_mapping();
+ apb_timer_block_enabled = 0;
+ panic("failed to enable APB timer\n");
}
static inline void apbt_disable(int n)
{
- if (is_apbt_capable()) {
- unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
- ctrl &= ~APBTMR_CONTROL_ENABLE;
- apbt_writel(n, ctrl, APBTMR_N_CONTROL);
- }
+ if (is_apbt_capable()) {
+ unsigned long ctrl = apbt_readl(n, APBTMR_N_CONTROL);
+ ctrl &= ~APBTMR_CONTROL_ENABLE;
+ apbt_writel(n, ctrl, APBTMR_N_CONTROL);
+ }
}
/* called before apb_timer_enable, use early map */
unsigned long apbt_quick_calibrate()
{
- int i, scale;
- u64 old, new;
- cycle_t t1, t2;
- unsigned long khz = 0;
- u32 loop, shift;
-
- apbt_set_mapping();
- apbt_start_counter(phy_cs_timer_id);
-
- /* check if the timer can count down, otherwise return */
- old = apbt_read_clocksource(&clocksource_apbt);
- i = 10000;
- while (--i) {
- if (old != apbt_read_clocksource(&clocksource_apbt))
- break;
- }
- if (!i)
- goto failed;
-
- /* count 16 ms */
- loop = (apbt_freq * 1000) << 4;
-
- /* restart the timer to ensure it won't get to 0 in the calibration */
- apbt_start_counter(phy_cs_timer_id);
-
- old = apbt_read_clocksource(&clocksource_apbt);
- old += loop;
-
- t1 = __native_read_tsc();
-
- do {
- new = apbt_read_clocksource(&clocksource_apbt);
- } while (new < old);
-
- t2 = __native_read_tsc();
-
- shift = 5;
- if (unlikely(loop >> shift == 0)) {
- printk(KERN_INFO
- "APBT TSC calibration failed, not enough resolution\n");
- return 0;
- }
- scale = (int)div_u64((t2 - t1), loop >> shift);
- khz = (scale * apbt_freq * 1000) >> shift;
- printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
- return khz;
+ int i, scale;
+ u64 old, new;
+ cycle_t t1, t2;
+ unsigned long khz = 0;
+ u32 loop, shift;
+
+ apbt_set_mapping();
+ apbt_start_counter(phy_cs_timer_id);
+
+ /* check if the timer can count down, otherwise return */
+ old = apbt_read_clocksource(&clocksource_apbt);
+ i = 10000;
+ while (--i) {
+ if (old != apbt_read_clocksource(&clocksource_apbt))
+ break;
+ }
+ if (!i)
+ goto failed;
+
+ /* count 16 ms */
+ loop = (apbt_freq * 1000) << 4;
+
+ /* restart the timer to ensure it won't get to 0 in the calibration */
+ apbt_start_counter(phy_cs_timer_id);
+
+ old = apbt_read_clocksource(&clocksource_apbt);
+ old += loop;
+
+ t1 = __native_read_tsc();
+
+ do {
+ new = apbt_read_clocksource(&clocksource_apbt);
+ } while (new < old);
+
+ t2 = __native_read_tsc();
+
+ shift = 5;
+ if (unlikely(loop >> shift == 0)) {
+ printk(KERN_INFO
+ "APBT TSC calibration failed, not enough resolution\n");
+ return 0;
+ }
+ scale = (int)div_u64((t2 - t1), loop >> shift);
+ khz = (scale * apbt_freq * 1000) >> shift;
+ printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz);
+ return khz;
failed:
- return 0;
+ return 0;
}