summaryrefslogtreecommitdiffstats
path: root/drivers/edac
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/edac')
-rw-r--r--drivers/edac/amd64_edac.c280
1 files changed, 154 insertions, 126 deletions
diff --git a/drivers/edac/amd64_edac.c b/drivers/edac/amd64_edac.c
index 351334ead69..0969a404f84 100644
--- a/drivers/edac/amd64_edac.c
+++ b/drivers/edac/amd64_edac.c
@@ -792,7 +792,7 @@ static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
return csrow;
}
-static int get_channel_from_ecc_syndrome(unsigned short syndrome);
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
static void amd64_cpu_display_info(struct amd64_pvt *pvt)
{
@@ -1113,7 +1113,7 @@ static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
/* CHIPKILL enabled */
if (info->nbcfg & K8_NBCFG_CHIPKILL) {
- channel = get_channel_from_ecc_syndrome(syndrome);
+ channel = get_channel_from_ecc_syndrome(mci, syndrome);
if (channel < 0) {
/*
* Syndrome didn't map, so we don't know which of the
@@ -1672,7 +1672,7 @@ static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
* syndrome to isolate which channel the error was on.
*/
if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
- chan = get_channel_from_ecc_syndrome(syndrome);
+ chan = get_channel_from_ecc_syndrome(mci, syndrome);
if (chan >= 0) {
edac_mc_handle_ce(mci, page, offset, syndrome,
@@ -1808,142 +1808,170 @@ static struct pci_dev *pci_get_related_function(unsigned int vendor,
}
/*
- * syndrome mapping table for ECC ChipKill devices
+ * These are tables of eigenvectors (one per line) which can be used for the
+ * construction of the syndrome tables. The modified syndrome search algorithm
+ * uses those to find the symbol in error and thus the DIMM.
*
- * The comment in each row is the token (nibble) number that is in error.
- * The least significant nibble of the syndrome is the mask for the bits
- * that are in error (need to be toggled) for the particular nibble.
- *
- * Each row contains 16 entries.
- * The first entry (0th) is the channel number for that row of syndromes.
- * The remaining 15 entries are the syndromes for the respective Error
- * bit mask index.
- *
- * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
- * bit in error.
- * The 2nd index entry is 0x0010 that the second bit is damaged.
- * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
- * are damaged.
- * Thus so on until index 15, 0x1111, whose entry has the syndrome
- * indicating that all 4 bits are damaged.
- *
- * A search is performed on this table looking for a given syndrome.
- *
- * See the AMD documentation for ECC syndromes. This ECC table is valid
- * across all the versions of the AMD64 processors.
- *
- * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
- * COLUMN index, then search all ROWS of that column, looking for a match
- * with the input syndrome. The ROW value will be the token number.
- *
- * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
- * error.
+ * Algorithm courtesy of Ross LaFetra from AMD.
*/
-#define NUMBER_ECC_ROWS 36
-static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
- /* Channel 0 syndromes */
- {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
- 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
- {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
- 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
- {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
- 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
- {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
- 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
- {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
- 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
- {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
- 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
- {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
- 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
- {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
- 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
- {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
- 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
- {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
- 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
- {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
- 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
- {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
- 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
- {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
- 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
- {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
- 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
- {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
- 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
- {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
- 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
-
- /* Channel 1 syndromes */
- {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
- 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
- {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
- 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
- {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
- 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
- {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
- 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
- {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
- 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
- {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
- 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
- {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
- 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
- {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
- 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
- {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
- 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
- {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
- 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
- {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
- 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
- {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
- 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
- {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
- 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
- {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
- 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
- {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
- 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
- {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
- 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
-
- /* ECC bits are also in the set of tokens and they too can go bad
- * first 2 cover channel 0, while the second 2 cover channel 1
- */
- {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
- 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
- {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
- 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
- {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
- 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
- {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
- 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
+static u16 x4_vectors[] = {
+ 0x2f57, 0x1afe, 0x66cc, 0xdd88,
+ 0x11eb, 0x3396, 0x7f4c, 0xeac8,
+ 0x0001, 0x0002, 0x0004, 0x0008,
+ 0x1013, 0x3032, 0x4044, 0x8088,
+ 0x106b, 0x30d6, 0x70fc, 0xe0a8,
+ 0x4857, 0xc4fe, 0x13cc, 0x3288,
+ 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
+ 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
+ 0x15c1, 0x2a42, 0x89ac, 0x4758,
+ 0x2b03, 0x1602, 0x4f0c, 0xca08,
+ 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
+ 0x8ba7, 0x465e, 0x244c, 0x1cc8,
+ 0x2b87, 0x164e, 0x642c, 0xdc18,
+ 0x40b9, 0x80de, 0x1094, 0x20e8,
+ 0x27db, 0x1eb6, 0x9dac, 0x7b58,
+ 0x11c1, 0x2242, 0x84ac, 0x4c58,
+ 0x1be5, 0x2d7a, 0x5e34, 0xa718,
+ 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
+ 0x4c97, 0xc87e, 0x11fc, 0x33a8,
+ 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
+ 0x16b3, 0x3d62, 0x4f34, 0x8518,
+ 0x1e2f, 0x391a, 0x5cac, 0xf858,
+ 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
+ 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
+ 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
+ 0x4397, 0xc27e, 0x17fc, 0x3ea8,
+ 0x1617, 0x3d3e, 0x6464, 0xb8b8,
+ 0x23ff, 0x12aa, 0xab6c, 0x56d8,
+ 0x2dfb, 0x1ba6, 0x913c, 0x7328,
+ 0x185d, 0x2ca6, 0x7914, 0x9e28,
+ 0x171b, 0x3e36, 0x7d7c, 0xebe8,
+ 0x4199, 0x82ee, 0x19f4, 0x2e58,
+ 0x4807, 0xc40e, 0x130c, 0x3208,
+ 0x1905, 0x2e0a, 0x5804, 0xac08,
+ 0x213f, 0x132a, 0xadfc, 0x5ba8,
+ 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
};
-/*
- * Given the syndrome argument, scan each of the channel tables for a syndrome
- * match. Depending on which table it is found, return the channel number.
- */
-static int get_channel_from_ecc_syndrome(unsigned short syndrome)
+static u16 x8_vectors[] = {
+ 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
+ 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
+ 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
+ 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
+ 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
+ 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
+ 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
+ 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
+ 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
+ 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
+ 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
+ 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
+ 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
+ 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
+ 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
+ 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
+ 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
+ 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+ 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
+};
+
+static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
+ int v_dim)
{
- int row;
- int column;
+ unsigned int i, err_sym;
+
+ for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
+ u16 s = syndrome;
+ int v_idx = err_sym * v_dim;
+ int v_end = (err_sym + 1) * v_dim;
+
+ /* walk over all 16 bits of the syndrome */
+ for (i = 1; i < (1U << 16); i <<= 1) {
+
+ /* if bit is set in that eigenvector... */
+ if (v_idx < v_end && vectors[v_idx] & i) {
+ u16 ev_comp = vectors[v_idx++];
+
+ /* ... and bit set in the modified syndrome, */
+ if (s & i) {
+ /* remove it. */
+ s ^= ev_comp;
- /* Determine column to scan */
- column = syndrome & 0xF;
+ if (!s)
+ return err_sym;
+ }
- /* Scan all rows, looking for syndrome, or end of table */
- for (row = 0; row < NUMBER_ECC_ROWS; row++) {
- if (ecc_chipkill_syndromes[row][column] == syndrome)
- return ecc_chipkill_syndromes[row][0];
+ } else if (s & i)
+ /* can't get to zero, move to next symbol */
+ break;
+ }
}
debugf0("syndrome(%x) not found\n", syndrome);
return -1;
}
+static int map_err_sym_to_channel(int err_sym, int sym_size)
+{
+ if (sym_size == 4)
+ switch (err_sym) {
+ case 0x20:
+ case 0x21:
+ return 0;
+ break;
+ case 0x22:
+ case 0x23:
+ return 1;
+ break;
+ default:
+ return err_sym >> 4;
+ break;
+ }
+ /* x8 symbols */
+ else
+ switch (err_sym) {
+ /* imaginary bits not in a DIMM */
+ case 0x10:
+ WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
+ err_sym);
+ return -1;
+ break;
+
+ case 0x11:
+ return 0;
+ break;
+ case 0x12:
+ return 1;
+ break;
+ default:
+ return err_sym >> 3;
+ break;
+ }
+ return -1;
+}
+
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
+{
+ struct amd64_pvt *pvt = mci->pvt_info;
+ u32 value = 0;
+ int err_sym = 0;
+
+ amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
+
+ /* F3x180[EccSymbolSize]=1, x8 symbols */
+ if (boot_cpu_data.x86 == 0x10 &&
+ boot_cpu_data.x86_model > 7 &&
+ value & BIT(25)) {
+ err_sym = decode_syndrome(syndrome, x8_vectors,
+ ARRAY_SIZE(x8_vectors), 8);
+ return map_err_sym_to_channel(err_sym, 8);
+ } else {
+ err_sym = decode_syndrome(syndrome, x4_vectors,
+ ARRAY_SIZE(x4_vectors), 4);
+ return map_err_sym_to_channel(err_sym, 4);
+ }
+}
+
/*
* Check for valid error in the NB Status High register. If so, proceed to read
* NB Status Low, NB Address Low and NB Address High registers and store data