summaryrefslogtreecommitdiffstats
path: root/drivers/media/common/tuners/mxl5005s.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/media/common/tuners/mxl5005s.c')
-rw-r--r--drivers/media/common/tuners/mxl5005s.c2496
1 files changed, 1027 insertions, 1469 deletions
diff --git a/drivers/media/common/tuners/mxl5005s.c b/drivers/media/common/tuners/mxl5005s.c
index 45ac6a9e71a..21dca5bdca7 100644
--- a/drivers/media/common/tuners/mxl5005s.c
+++ b/drivers/media/common/tuners/mxl5005s.c
@@ -86,34 +86,30 @@ static int debug = 2;
#define MASTER_CONTROL_ADDR 9
/* Enumeration of Master Control Register State */
-typedef enum
-{
+enum master_control_state {
MC_LOAD_START = 1,
MC_POWER_DOWN,
MC_SYNTH_RESET,
MC_SEQ_OFF
-} Master_Control_State;
+};
/* Enumeration of MXL5005 Tuner Modulation Type */
-typedef enum
-{
+enum {
MXL_DEFAULT_MODULATION = 0,
MXL_DVBT,
MXL_ATSC,
MXL_QAM,
MXL_ANALOG_CABLE,
MXL_ANALOG_OTA
-} Tuner_Modu_Type;
+} tuner_modu_type;
/* MXL5005 Tuner Register Struct */
-typedef struct _TunerReg_struct
-{
+struct TunerReg {
u16 Reg_Num; /* Tuner Register Address */
- u16 Reg_Val; /* Current sofware programmed value waiting to be writen */
-} TunerReg_struct;
+ u16 Reg_Val; /* Current sw programmed value waiting to be writen */
+};
-typedef enum
-{
+enum {
/* Initialization Control Names */
DN_IQTN_AMP_CUT = 1, /* 1 */
BB_MODE, /* 2 */
@@ -219,16 +215,14 @@ typedef enum
#define MXL5005S_BB_DLPF_BANDSEL_LSB 3
/* Standard modes */
-enum
-{
+enum {
MXL5005S_STANDARD_DVBT,
MXL5005S_STANDARD_ATSC,
};
#define MXL5005S_STANDARD_MODE_NUM 2
/* Bandwidth modes */
-enum
-{
+enum {
MXL5005S_BANDWIDTH_6MHZ = 6000000,
MXL5005S_BANDWIDTH_7MHZ = 7000000,
MXL5005S_BANDWIDTH_8MHZ = 8000000,
@@ -236,17 +230,16 @@ enum
#define MXL5005S_BANDWIDTH_MODE_NUM 3
/* MXL5005 Tuner Control Struct */
-typedef struct _TunerControl_struct {
+struct TunerControl {
u16 Ctrl_Num; /* Control Number */
u16 size; /* Number of bits to represent Value */
- u16 addr[25]; /* Array of Tuner Register Address for each bit position */
- u16 bit[25]; /* Array of bit position in Register Address for each bit position */
+ u16 addr[25]; /* Array of Tuner Register Address for each bit pos */
+ u16 bit[25]; /* Array of bit pos in Reg Addr for each bit pos */
u16 val[25]; /* Binary representation of Value */
-} TunerControl_struct;
+};
/* MXL5005 Tuner Struct */
-struct mxl5005s_state
-{
+struct mxl5005s_state {
u8 Mode; /* 0: Analog Mode ; 1: Digital Mode */
u8 IF_Mode; /* for Analog Mode, 0: zero IF; 1: low IF */
u32 Chan_Bandwidth; /* filter channel bandwidth (6, 7, 8) */
@@ -256,14 +249,18 @@ struct mxl5005s_state
u32 Fxtal; /* XTAL Frequency */
u8 AGC_Mode; /* AGC Mode 0: Dual AGC; 1: Single AGC */
u16 TOP; /* Value: take over point */
- u8 CLOCK_OUT; /* 0: turn off clock out; 1: turn on clock out */
+ u8 CLOCK_OUT; /* 0: turn off clk out; 1: turn on clock out */
u8 DIV_OUT; /* 4MHz or 16MHz */
u8 CAPSELECT; /* 0: disable On-Chip pulling cap; 1: enable */
u8 EN_RSSI; /* 0: disable RSSI; 1: enable RSSI */
- u8 Mod_Type; /* Modulation Type; */
- /* 0 - Default; 1 - DVB-T; 2 - ATSC; 3 - QAM; 4 - Analog Cable */
- u8 TF_Type; /* Tracking Filter Type */
- /* 0 - Default; 1 - Off; 2 - Type C; 3 - Type C-H */
+
+ /* Modulation Type; */
+ /* 0 - Default; 1 - DVB-T; 2 - ATSC; 3 - QAM; 4 - Analog Cable */
+ u8 Mod_Type;
+
+ /* Tracking Filter Type */
+ /* 0 - Default; 1 - Off; 2 - Type C; 3 - Type C-H */
+ u8 TF_Type;
/* Calculated Settings */
u32 RF_LO; /* Synth RF LO Frequency */
@@ -271,22 +268,22 @@ struct mxl5005s_state
u32 TG_LO; /* Synth TG_LO Frequency */
/* Pointers to ControlName Arrays */
- u16 Init_Ctrl_Num; /* Number of INIT Control Names */
- TunerControl_struct
- Init_Ctrl[INITCTRL_NUM]; /* INIT Control Names Array Pointer */
+ u16 Init_Ctrl_Num; /* Number of INIT Control Names */
+ struct TunerControl
+ Init_Ctrl[INITCTRL_NUM]; /* INIT Control Names Array Pointer */
- u16 CH_Ctrl_Num; /* Number of CH Control Names */
- TunerControl_struct
- CH_Ctrl[CHCTRL_NUM]; /* CH Control Name Array Pointer */
+ u16 CH_Ctrl_Num; /* Number of CH Control Names */
+ struct TunerControl
+ CH_Ctrl[CHCTRL_NUM]; /* CH Control Name Array Pointer */
- u16 MXL_Ctrl_Num; /* Number of MXL Control Names */
- TunerControl_struct
- MXL_Ctrl[MXLCTRL_NUM]; /* MXL Control Name Array Pointer */
+ u16 MXL_Ctrl_Num; /* Number of MXL Control Names */
+ struct TunerControl
+ MXL_Ctrl[MXLCTRL_NUM]; /* MXL Control Name Array Pointer */
/* Pointer to Tuner Register Array */
- u16 TunerRegs_Num; /* Number of Tuner Registers */
- TunerReg_struct
- TunerRegs[TUNER_REGS_NUM]; /* Tuner Register Array Pointer */
+ u16 TunerRegs_Num; /* Number of Tuner Registers */
+ struct TunerReg
+ TunerRegs[TUNER_REGS_NUM]; /* Tuner Register Array Pointer */
/* Linux driver framework specific */
struct mxl5005s_config *config;
@@ -302,21 +299,27 @@ u16 MXL_ControlWrite(struct dvb_frontend *fe, u16 ControlNum, u32 value);
u16 MXL_ControlRead(struct dvb_frontend *fe, u16 controlNum, u32 *value);
u16 MXL_GetMasterControl(u8 *MasterReg, int state);
void MXL_RegWriteBit(struct dvb_frontend *fe, u8 address, u8 bit, u8 bitVal);
-u16 MXL_GetCHRegister(struct dvb_frontend *fe, u8 *RegNum, u8 *RegVal, int *count);
+u16 MXL_GetCHRegister(struct dvb_frontend *fe, u8 *RegNum,
+ u8 *RegVal, int *count);
u32 MXL_Ceiling(u32 value, u32 resolution);
u16 MXL_RegRead(struct dvb_frontend *fe, u8 RegNum, u8 *RegVal);
u16 MXL_RegWrite(struct dvb_frontend *fe, u8 RegNum, u8 RegVal);
-u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value, u16 controlGroup);
+u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum,
+ u32 value, u16 controlGroup);
u16 MXL_SetGPIO(struct dvb_frontend *fe, u8 GPIO_Num, u8 GPIO_Val);
-u16 MXL_GetInitRegister(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count);
+u16 MXL_GetInitRegister(struct dvb_frontend *fe, u8 *RegNum,
+ u8 *RegVal, int *count);
u32 MXL_GetXtalInt(u32 Xtal_Freq);
u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq);
void MXL_SynthIFLO_Calc(struct dvb_frontend *fe);
void MXL_SynthRFTGLO_Calc(struct dvb_frontend *fe);
-u16 MXL_GetCHRegister_ZeroIF(struct dvb_frontend *fe, u8 *RegNum, u8 *RegVal, int *count);
-int mxl5005s_writeregs(struct dvb_frontend *fe, u8 *addrtable, u8 *datatable, u8 len);
+u16 MXL_GetCHRegister_ZeroIF(struct dvb_frontend *fe, u8 *RegNum,
+ u8 *RegVal, int *count);
+int mxl5005s_writeregs(struct dvb_frontend *fe, u8 *addrtable,
+ u8 *datatable, u8 len);
u16 MXL_IFSynthInit(struct dvb_frontend *fe);
-int mxl5005s_AssignTunerMode(struct dvb_frontend *fe, u32 mod_type, u32 bandwidth);
+int mxl5005s_AssignTunerMode(struct dvb_frontend *fe, u32 mod_type,
+ u32 bandwidth);
int mxl5005s_reconfigure(struct dvb_frontend *fe, u32 mod_type, u32 bandwidth);
/* ----------------------------------------------------------------
@@ -343,16 +346,16 @@ int mxl5005s_SetRfFreqHz(struct dvb_frontend *fe, unsigned long RfFreqHz)
dprintk(1, "%s() freq=%ld\n", __func__, RfFreqHz);
- // Set MxL5005S tuner RF frequency according to MxL5005S tuner example code.
+ /* Set MxL5005S tuner RF frequency according to example code. */
- // Tuner RF frequency setting stage 0
- MXL_GetMasterControl(ByteTable, MC_SYNTH_RESET) ;
+ /* Tuner RF frequency setting stage 0 */
+ MXL_GetMasterControl(ByteTable, MC_SYNTH_RESET);
AddrTable[0] = MASTER_CONTROL_ADDR;
ByteTable[0] |= state->config->AgcMasterByte;
mxl5005s_writeregs(fe, AddrTable, ByteTable, 1);
- // Tuner RF frequency setting stage 1
+ /* Tuner RF frequency setting stage 1 */
MXL_TuneRF(fe, RfFreqHz);
MXL_ControlRead(fe, IF_DIVVAL, &IfDivval);
@@ -360,26 +363,28 @@ int mxl5005s_SetRfFreqHz(struct dvb_frontend *fe, unsigned long RfFreqHz)
MXL_ControlWrite(fe, SEQ_FSM_PULSE, 0);
MXL_ControlWrite(fe, SEQ_EXTPOWERUP, 1);
MXL_ControlWrite(fe, IF_DIVVAL, 8);
- MXL_GetCHRegister(fe, AddrTable, ByteTable, &TableLen) ;
+ MXL_GetCHRegister(fe, AddrTable, ByteTable, &TableLen);
- MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START) ;
+ MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START);
AddrTable[TableLen] = MASTER_CONTROL_ADDR ;
- ByteTable[TableLen] = MasterControlByte | state->config->AgcMasterByte;
+ ByteTable[TableLen] = MasterControlByte |
+ state->config->AgcMasterByte;
TableLen += 1;
mxl5005s_writeregs(fe, AddrTable, ByteTable, TableLen);
- // Wait 30 ms.
+ /* Wait 30 ms. */
msleep(150);
- // Tuner RF frequency setting stage 2
- MXL_ControlWrite(fe, SEQ_FSM_PULSE, 1) ;
- MXL_ControlWrite(fe, IF_DIVVAL, IfDivval) ;
- MXL_GetCHRegister_ZeroIF(fe, AddrTable, ByteTable, &TableLen) ;
+ /* Tuner RF frequency setting stage 2 */
+ MXL_ControlWrite(fe, SEQ_FSM_PULSE, 1);
+ MXL_ControlWrite(fe, IF_DIVVAL, IfDivval);
+ MXL_GetCHRegister_ZeroIF(fe, AddrTable, ByteTable, &TableLen);
- MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START) ;
+ MXL_GetMasterControl(&MasterControlByte, MC_LOAD_START);
AddrTable[TableLen] = MASTER_CONTROL_ADDR ;
- ByteTable[TableLen] = MasterControlByte | state->config->AgcMasterByte ;
+ ByteTable[TableLen] = MasterControlByte |
+ state->config->AgcMasterByte ;
TableLen += 1;
mxl5005s_writeregs(fe, AddrTable, ByteTable, TableLen);
@@ -398,7 +403,6 @@ u16 MXL5005_RegisterInit(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
state->TunerRegs_Num = TUNER_REGS_NUM ;
-// state->TunerRegs = (TunerReg_struct *) calloc( TUNER_REGS_NUM, sizeof(TunerReg_struct) ) ;
state->TunerRegs[0].Reg_Num = 9 ;
state->TunerRegs[0].Reg_Val = 0x40 ;
@@ -1655,9 +1659,6 @@ u16 MXL5005_ControlInit(struct dvb_frontend *fe)
return 0 ;
}
-// MaxLinear source code - MXL5005_c.cpp
-// MXL5005.cpp : Defines the initialization routines for the DLL.
-// 2.6.12
void InitTunerControls(struct dvb_frontend *fe)
{
MXL5005_RegisterInit(fe);
@@ -1667,57 +1668,28 @@ void InitTunerControls(struct dvb_frontend *fe)
#endif
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_ConfigTuner //
-// //
-// Description: Configure MXL5005Tuner structure for desired //
-// Channel Bandwidth/Channel Frequency //
-// //
-// //
-// Functions used: //
-// MXL_SynthIFLO_Calc //
-// //
-// Inputs: //
-// Tuner_struct: structure defined at higher level //
-// Mode: Tuner Mode (Analog/Digital) //
-// IF_Mode: IF Mode ( Zero/Low ) //
-// Bandwidth: Filter Channel Bandwidth (in Hz) //
-// IF_out: Desired IF out Frequency (in Hz) //
-// Fxtal: Crystal Frerquency (in Hz) //
-// TOP: 0: Dual AGC; Value: take over point //
-// IF_OUT_LOAD: IF out load resistor (200/300 Ohms) //
-// CLOCK_OUT: 0: Turn off clock out; 1: turn on clock out //
-// DIV_OUT: 0: Div-1; 1: Div-4 //
-// CAPSELECT: 0: Disable On-chip pulling cap; 1: Enable //
-// EN_RSSI: 0: Disable RSSI; 1: Enable RSSI //
-// //
-// Outputs: //
-// Tuner //
-// //
-// Return: //
-// 0 : Successful //
-// > 0 : Failed //
-// //
-///////////////////////////////////////////////////////////////////////////////
u16 MXL5005_TunerConfig(struct dvb_frontend *fe,
- u8 Mode, /* 0: Analog Mode ; 1: Digital Mode */
- u8 IF_mode, /* for Analog Mode, 0: zero IF; 1: low IF */
- u32 Bandwidth, /* filter channel bandwidth (6, 7, 8) */
- u32 IF_out, /* Desired IF Out Frequency */
- u32 Fxtal, /* XTAL Frequency */
- u8 AGC_Mode, /* AGC Mode - Dual AGC: 0, Single AGC: 1 */
- u16 TOP, /* 0: Dual AGC; Value: take over point */
- u16 IF_OUT_LOAD, /* IF Out Load Resistor (200 / 300 Ohms) */
- u8 CLOCK_OUT, /* 0: turn off clock out; 1: turn on clock out */
- u8 DIV_OUT, /* 0: Div-1; 1: Div-4 */
- u8 CAPSELECT, /* 0: disable On-Chip pulling cap; 1: enable */
- u8 EN_RSSI, /* 0: disable RSSI; 1: enable RSSI */
- u8 Mod_Type, /* Modulation Type; */
- /* 0 - Default; 1 - DVB-T; 2 - ATSC; 3 - QAM; 4 - Analog Cable */
- u8 TF_Type /* Tracking Filter */
- /* 0 - Default; 1 - Off; 2 - Type C; 3 - Type C-H */
- )
+ u8 Mode, /* 0: Analog Mode ; 1: Digital Mode */
+ u8 IF_mode, /* for Analog Mode, 0: zero IF; 1: low IF */
+ u32 Bandwidth, /* filter channel bandwidth (6, 7, 8) */
+ u32 IF_out, /* Desired IF Out Frequency */
+ u32 Fxtal, /* XTAL Frequency */
+ u8 AGC_Mode, /* AGC Mode - Dual AGC: 0, Single AGC: 1 */
+ u16 TOP, /* 0: Dual AGC; Value: take over point */
+ u16 IF_OUT_LOAD, /* IF Out Load Resistor (200 / 300 Ohms) */
+ u8 CLOCK_OUT, /* 0: turn off clk out; 1: turn on clock out */
+ u8 DIV_OUT, /* 0: Div-1; 1: Div-4 */
+ u8 CAPSELECT, /* 0: disable On-Chip pulling cap; 1: enable */
+ u8 EN_RSSI, /* 0: disable RSSI; 1: enable RSSI */
+
+ /* Modulation Type; */
+ /* 0 - Default; 1 - DVB-T; 2 - ATSC; 3 - QAM; 4 - Analog Cable */
+ u8 Mod_Type,
+
+ /* Tracking Filter */
+ /* 0 - Default; 1 - Off; 2 - Type C; 3 - Type C-H */
+ u8 TF_Type
+ )
{
struct mxl5005s_state *state = fe->tuner_priv;
u16 status = 0;
@@ -1746,105 +1718,40 @@ u16 MXL5005_TunerConfig(struct dvb_frontend *fe,
return status;
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_SynthIFLO_Calc //
-// //
-// Description: Calculate Internal IF-LO Frequency //
-// //
-// Globals: //
-// NONE //
-// //
-// Functions used: //
-// NONE //
-// //
-// Inputs: //
-// Tuner_struct: structure defined at higher level //
-// //
-// Outputs: //
-// Tuner //
-// //
-// Return: //
-// 0 : Successful //
-// > 0 : Failed //
-// //
-///////////////////////////////////////////////////////////////////////////////
void MXL_SynthIFLO_Calc(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
if (state->Mode == 1) /* Digital Mode */
state->IF_LO = state->IF_OUT;
- else /* Analog Mode */
- {
- if(state->IF_Mode == 0) /* Analog Zero IF mode */
+ else /* Analog Mode */ {
+ if (state->IF_Mode == 0) /* Analog Zero IF mode */
state->IF_LO = state->IF_OUT + 400000;
else /* Analog Low IF mode */
state->IF_LO = state->IF_OUT + state->Chan_Bandwidth/2;
}
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_SynthRFTGLO_Calc //
-// //
-// Description: Calculate Internal RF-LO frequency and //
-// internal Tone-Gen(TG)-LO frequency //
-// //
-// Globals: //
-// NONE //
-// //
-// Functions used: //
-// NONE //
-// //
-// Inputs: //
-// Tuner_struct: structure defined at higher level //
-// //
-// Outputs: //
-// Tuner //
-// //
-// Return: //
-// 0 : Successful //
-// > 0 : Failed //
-// //
-///////////////////////////////////////////////////////////////////////////////
void MXL_SynthRFTGLO_Calc(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
if (state->Mode == 1) /* Digital Mode */ {
- //remove 20.48MHz setting for 2.6.10
+ /* remove 20.48MHz setting for 2.6.10 */
state->RF_LO = state->RF_IN;
- state->TG_LO = state->RF_IN - 750000; //change for 2.6.6
+ /* change for 2.6.6 */
+ state->TG_LO = state->RF_IN - 750000;
} else /* Analog Mode */ {
- if(state->IF_Mode == 0) /* Analog Zero IF mode */ {
+ if (state->IF_Mode == 0) /* Analog Zero IF mode */ {
state->RF_LO = state->RF_IN - 400000;
state->TG_LO = state->RF_IN - 1750000;
} else /* Analog Low IF mode */ {
state->RF_LO = state->RF_IN - state->Chan_Bandwidth/2;
- state->TG_LO = state->RF_IN - state->Chan_Bandwidth + 500000;
+ state->TG_LO = state->RF_IN -
+ state->Chan_Bandwidth + 500000;
}
}
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_OverwriteICDefault //
-// //
-// Description: Overwrite the Default Register Setting //
-// //
-// //
-// Functions used: //
-// //
-// Inputs: //
-// Tuner_struct: structure defined at higher level //
-// Outputs: //
-// Tuner //
-// //
-// Return: //
-// 0 : Successful //
-// > 0 : Failed //
-// //
-///////////////////////////////////////////////////////////////////////////////
u16 MXL_OverwriteICDefault(struct dvb_frontend *fe)
{
u16 status = 0;
@@ -1857,31 +1764,6 @@ u16 MXL_OverwriteICDefault(struct dvb_frontend *fe)
return status;
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_BlockInit //
-// //
-// Description: Tuner Initialization as a function of 'User Settings' //
-// * User settings in Tuner strcuture must be assigned //
-// first //
-// //
-// Globals: //
-// NONE //
-// //
-// Functions used: //
-// Tuner_struct: structure defined at higher level //
-// //
-// Inputs: //
-// Tuner : Tuner structure defined at higher level //
-// //
-// Outputs: //
-// Tuner //
-// //
-// Return: //
-// 0 : Successful //
-// > 0 : Failed //
-// //
-///////////////////////////////////////////////////////////////////////////////
u16 MXL_BlockInit(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
@@ -1902,42 +1784,45 @@ u16 MXL_BlockInit(struct dvb_frontend *fe)
/* Initialize Low-Pass Filter */
if (state->Mode) { /* Digital Mode */
switch (state->Chan_Bandwidth) {
- case 8000000:
- status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 0);
- break;
- case 7000000:
- status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 2);
- break;
- case 6000000:
- printk("%s() doing 6MHz digital\n", __func__);
- status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 3);
- break;
+ case 8000000:
+ status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 0);
+ break;
+ case 7000000:
+ status += MXL_ControlWrite(fe, BB_DLPF_BANDSEL, 2);
+ break;
+ case 6000000:
+ status += MXL_ControlWrite(fe,
+ BB_DLPF_BANDSEL, 3);
+ break;
}
} else { /* Analog Mode */
switch (state->Chan_Bandwidth) {
- case 8000000: /* Low Zero */
- status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT, (state->IF_Mode ? 0 : 3));
- break;
- case 7000000:
- status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT, (state->IF_Mode ? 1 : 4));
- break;
- case 6000000:
- status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT, (state->IF_Mode ? 2 : 5));
- break;
+ case 8000000: /* Low Zero */
+ status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT,
+ (state->IF_Mode ? 0 : 3));
+ break;
+ case 7000000:
+ status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT,
+ (state->IF_Mode ? 1 : 4));
+ break;
+ case 6000000:
+ status += MXL_ControlWrite(fe, BB_ALPF_BANDSELECT,
+ (state->IF_Mode ? 2 : 5));
+ break;
}
}
/* Charge Pump Control Dig Ana */
- status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, state->Mode ? 5 : 8);
- status += MXL_ControlWrite(fe, RFSYN_EN_CHP_HIGAIN, state->Mode ? 1 : 1);
+ status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, state->Mode ? 5 : 8);
+ status += MXL_ControlWrite(fe,
+ RFSYN_EN_CHP_HIGAIN, state->Mode ? 1 : 1);
status += MXL_ControlWrite(fe, EN_CHP_LIN_B, state->Mode ? 0 : 0);
/* AGC TOP Control */
if (state->AGC_Mode == 0) /* Dual AGC */ {
status += MXL_ControlWrite(fe, AGC_IF, 15);
status += MXL_ControlWrite(fe, AGC_RF, 15);
- }
- else /* Single AGC Mode Dig Ana */
+ } else /* Single AGC Mode Dig Ana */
status += MXL_ControlWrite(fe, AGC_RF, state->Mode ? 15 : 12);
if (state->TOP == 55) /* TOP == 5.5 */
@@ -2008,7 +1893,8 @@ u16 MXL_BlockInit(struct dvb_frontend *fe)
status += MXL_ControlWrite(fe, EN_AUX_3P, 1);
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 0);
}
- if ((state->IF_OUT == 36125000UL) || (state->IF_OUT == 36150000UL)) {
+ if ((state->IF_OUT == 36125000UL) ||
+ (state->IF_OUT == 36150000UL)) {
status += MXL_ControlWrite(fe, EN_AAF, 1);
status += MXL_ControlWrite(fe, EN_3P, 1);
status += MXL_ControlWrite(fe, EN_AUX_3P, 1);
@@ -2021,15 +1907,13 @@ u16 MXL_BlockInit(struct dvb_frontend *fe)
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 1);
}
} else { /* Analog Mode */
- if (state->IF_OUT >= 4000000UL && state->IF_OUT <= 5000000UL)
- {
+ if (state->IF_OUT >= 4000000UL && state->IF_OUT <= 5000000UL) {
status += MXL_ControlWrite(fe, EN_AAF, 1);
status += MXL_ControlWrite(fe, EN_3P, 1);
status += MXL_ControlWrite(fe, EN_AUX_3P, 1);
status += MXL_ControlWrite(fe, SEL_AAF_BAND, 0);
}
- if (state->IF_OUT > 5000000UL)
- {
+ if (state->IF_OUT > 5000000UL) {
status += MXL_ControlWrite(fe, EN_AAF, 0);
status += MXL_ControlWrite(fe, EN_3P, 0);
status += MXL_ControlWrite(fe, EN_AUX_3P, 0);
@@ -2073,13 +1957,13 @@ u16 MXL_BlockInit(struct dvb_frontend *fe)
/* status += MXL_ControlRead(fe, IF_DIVVAL, &IF_DIVVAL_Val); */
/* Set TG_R_DIV */
- status += MXL_ControlWrite(fe, TG_R_DIV, MXL_Ceiling(state->Fxtal, 1000000));
+ status += MXL_ControlWrite(fe, TG_R_DIV,
+ MXL_Ceiling(state->Fxtal, 1000000));
/* Apply Default value to BB_INITSTATE_DLPF_TUNE */
/* RSSI Control */
- if (state->EN_RSSI)
- {
+ if (state->EN_RSSI) {
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1);
@@ -2098,8 +1982,7 @@ u16 MXL_BlockInit(struct dvb_frontend *fe)
/* Modulation type bit settings
* Override the control values preset
*/
- if (state->Mod_Type == MXL_DVBT) /* DVB-T Mode */
- {
+ if (state->Mod_Type == MXL_DVBT) /* DVB-T Mode */ {
state->AGC_Mode = 1; /* Single AGC Mode */
/* Enable RSSI */
@@ -2122,8 +2005,7 @@ u16 MXL_BlockInit(struct dvb_frontend *fe)
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
}
- if (state->Mod_Type == MXL_ATSC) /* ATSC Mode */
- {
+ if (state->Mod_Type == MXL_ATSC) /* ATSC Mode */ {
state->AGC_Mode = 1; /* Single AGC Mode */
/* Enable RSSI */
@@ -2141,14 +2023,15 @@ u16 MXL_BlockInit(struct dvb_frontend *fe)
status += MXL_ControlWrite(fe, RFA_FLR, 2);
status += MXL_ControlWrite(fe, RFA_CEIL, 13);
status += MXL_ControlWrite(fe, BB_INITSTATE_DLPF_TUNE, 1);
- status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 5); /* Low Zero */
+ /* Low Zero */
+ status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 5);
+
if (state->IF_OUT <= 6280000UL) /* Low IF */
status += MXL_ControlWrite(fe, BB_IQSWAP, 0);
else /* High IF */
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
}
- if (state->Mod_Type == MXL_QAM) /* QAM Mode */
- {
+ if (state->Mod_Type == MXL_QAM) /* QAM Mode */ {
state->Mode = MXL_DIGITAL_MODE;
/* state->AGC_Mode = 1; */ /* Single AGC Mode */
@@ -2163,7 +2046,8 @@ u16 MXL_BlockInit(struct dvb_frontend *fe)
status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5);
status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3);
status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2);
- status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3); /* change here for v2.6.5 */
+ /* change here for v2.6.5 */
+ status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3);
if (state->IF_OUT <= 6280000UL) /* Low IF */
status += MXL_ControlWrite(fe, BB_IQSWAP, 0);
@@ -2183,7 +2067,8 @@ u16 MXL_BlockInit(struct dvb_frontend *fe)
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0);
status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
- status += MXL_ControlWrite(fe, AGC_IF, 1); /* change for 2.6.3 */
+ /* change for 2.6.3 */
+ status += MXL_ControlWrite(fe, AGC_IF, 1);
status += MXL_ControlWrite(fe, AGC_RF, 15);
status += MXL_ControlWrite(fe, BB_IQSWAP, 1);
}
@@ -2207,7 +2092,7 @@ u16 MXL_BlockInit(struct dvb_frontend *fe)
}
/* RSSI disable */
- if(state->EN_RSSI == 0) {
+ if (state->EN_RSSI == 0) {
status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0);
@@ -2217,34 +2102,10 @@ u16 MXL_BlockInit(struct dvb_frontend *fe)
return status;
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_IFSynthInit //
-// //
-// Description: Tuner IF Synthesizer related register initialization //
-// //
-// Globals: //
-// NONE //
-// //
-// Functions used: //
-// Tuner_struct: structure defined at higher level //
-// //
-// Inputs: //
-// Tuner : Tuner structure defined at higher level //
-// //
-// Outputs: //
-// Tuner //
-// //
-// Return: //
-// 0 : Successful //
-// > 0 : Failed //
-// //
-///////////////////////////////////////////////////////////////////////////////
u16 MXL_IFSynthInit(struct dvb_frontend *fe)
{
struct mxl5005s_state *state = fe->tuner_priv;
u16 status = 0 ;
- // Declare Local Variables
u32 Fref = 0 ;
u32 Kdbl, intModVal ;
u32 fracModVal ;
@@ -2255,268 +2116,207 @@ u16 MXL_IFSynthInit(struct dvb_frontend *fe)
if (state->Fxtal > 16000000UL && state->Fxtal <= 32000000UL)
Kdbl = 1 ;
- //
- // IF Synthesizer Control
- //
- if (state->Mode == 0 && state->IF_Mode == 1) // Analog Low IF mode
- {
+ /* IF Synthesizer Control */
+ if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF mode */ {
if (state->IF_LO == 41000000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
Fref = 328000000UL ;
}
if (state->IF_LO == 47000000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 376000000UL ;
}
if (state->IF_LO == 54000000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
Fref = 324000000UL ;
}
if (state->IF_LO == 60000000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 360000000UL ;
}
if (state->IF_LO == 39250000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
Fref = 314000000UL ;
}
if (state->IF_LO == 39650000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
Fref = 317200000UL ;
}
if (state->IF_LO == 40150000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
Fref = 321200000UL ;
}
if (state->IF_LO == 40650000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
Fref = 325200000UL ;
}
}
- if (state->Mode || (state->Mode == 0 && state->IF_Mode == 0))
- {
+ if (state->Mode || (state->Mode == 0 && state->IF_Mode == 0)) {
if (state->IF_LO == 57000000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 342000000UL ;
}
if (state->IF_LO == 44000000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 352000000UL ;
}
if (state->IF_LO == 43750000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 350000000UL ;
}
if (state->IF_LO == 36650000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 366500000UL ;
}
if (state->IF_LO == 36150000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 361500000UL ;
}
if (state->IF_LO == 36000000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 360000000UL ;
}
if (state->IF_LO == 35250000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 352500000UL ;
}
if (state->IF_LO == 34750000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 347500000UL ;
}
if (state->IF_LO == 6280000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 376800000UL ;
}
if (state->IF_LO == 5000000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 360000000UL ;
}
if (state->IF_LO == 4500000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 360000000UL ;
}
if (state->IF_LO == 4570000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 365600000UL ;
}
if (state->IF_LO == 4000000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x05) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x05);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 360000000UL ;
}
- if (state->IF_LO == 57400000UL)
- {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ if (state->IF_LO == 57400000UL) {
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x10);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 344400000UL ;
}
- if (state->IF_LO == 44400000UL)
- {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ if (state->IF_LO == 44400000UL) {
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 355200000UL ;
}
- if (state->IF_LO == 44150000UL)
- {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ if (state->IF_LO == 44150000UL) {
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x08);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 353200000UL ;
}
- if (state->IF_LO == 37050000UL)
- {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ if (state->IF_LO == 37050000UL) {
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 370500000UL ;
}
- if (state->IF_LO == 36550000UL)
- {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ if (state->IF_LO == 36550000UL) {
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 365500000UL ;
}
if (state->IF_LO == 36125000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x04);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 361250000UL ;
}
if (state->IF_LO == 6000000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 360000000UL ;
}
- if (state->IF_LO == 5400000UL)
- {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
+ if (state->IF_LO == 5400000UL) {
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
Fref = 324000000UL ;
}
if (state->IF_LO == 5380000UL) {
- printk("%s() doing 5.38\n", __func__);
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x07);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x0C);
Fref = 322800000UL ;
}
if (state->IF_LO == 5200000UL) {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 374400000UL ;
}
- if (state->IF_LO == 4900000UL)
- {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ if (state->IF_LO == 4900000UL) {
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x09);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 352800000UL ;
}
- if (state->IF_LO == 4400000UL)
- {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ if (state->IF_LO == 4400000UL) {
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x06);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 352000000UL ;
}
- if (state->IF_LO == 4063000UL) //add for 2.6.8
- {
- status += MXL_ControlWrite(fe, IF_DIVVAL, 0x05) ;
- status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08) ;
+ if (state->IF_LO == 4063000UL) /* add for 2.6.8 */ {
+ status += MXL_ControlWrite(fe, IF_DIVVAL, 0x05);
+ status += MXL_ControlWrite(fe, IF_VCO_BIAS, 0x08);
Fref = 365670000UL ;
}
}
- // CHCAL_INT_MOD_IF
- // CHCAL_FRAC_MOD_IF
- intModVal = Fref / (state->Fxtal * Kdbl/2) ;
- status += MXL_ControlWrite(fe, CHCAL_INT_MOD_IF, intModVal ) ;
+ /* CHCAL_INT_MOD_IF */
+ /* CHCAL_FRAC_MOD_IF */
+ intModVal = Fref / (state->Fxtal * Kdbl/2);
+ status += MXL_ControlWrite(fe, CHCAL_INT_MOD_IF, intModVal);
+
+ fracModVal = (2<<15)*(Fref/1000 - (state->Fxtal/1000 * Kdbl/2) *
+ intModVal);
- fracModVal = (2<<15)*(Fref/1000 - (state->Fxtal/1000 * Kdbl/2) * intModVal);
- fracModVal = fracModVal / ((state->Fxtal * Kdbl/2)/1000) ;
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_IF, fracModVal) ;
+ fracModVal = fracModVal / ((state->Fxtal * Kdbl/2)/1000);
+ status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_IF, fracModVal);
return status ;
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_GetXtalInt //
-// //
-// Description: return the Crystal Integration Value for //
-// TG_VCO_BIAS calculation //
-// //
-// Globals: //
-// NONE //
-// //
-// Functions used: //
-// NONE //
-// //
-// Inputs: //
-// Crystal Frequency Value in Hz //
-// //
-// Outputs: //
-// Calculated Crystal Frequency Integration Value //
-// //
-// Return: //
-// 0 : Successful //
-// > 0 : Failed //
-// //
-///////////////////////////////////////////////////////////////////////////////
u32 MXL_GetXtalInt(u32 Xtal_Freq)
{
if ((Xtal_Freq % 1000000) == 0)
- return (Xtal_Freq / 10000) ;
+ return (Xtal_Freq / 10000);
else
- return (((Xtal_Freq / 1000000) + 1)*100) ;
+ return (((Xtal_Freq / 1000000) + 1)*100);
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL5005_TuneRF //
-// //
-// Description: Set control names to tune to requested RF_IN frequency //
-// //
-// Globals: //
-// None //
-// //
-// Functions used: //
-// MXL_SynthRFTGLO_Calc //
-// MXL5005_ControlWrite //
-// MXL_GetXtalInt //
-// //
-// Inputs: //
-// Tuner : Tuner structure defined at higher level //
-// //
-// Outputs: //
-// Tuner //
-// //
-// Return: //
-// 0 : Successful //
-// 1 : Unsuccessful //
-///////////////////////////////////////////////////////////////////////////////
u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
{
struct mxl5005s_state *state = fe->tuner_priv;
- // Declare Local Variables
u16 status = 0;
u32 divider_val, E3, E4, E5, E5A;
u32 Fmax, Fmin, FmaxBin, FminBin;
@@ -2527,8 +2327,6 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
u32 Fref_TG;
u32 Fvco;
-// u32 temp;
-
Xtal_Int = MXL_GetXtalInt(state->Fxtal);
@@ -2541,21 +2339,19 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
if (state->Fxtal > 22000000 && state->Fxtal <= 32000000)
Kdbl_RF = 1;
- //
- // Downconverter Controls
- //
- // Look-Up Table Implementation for:
- // DN_POLY
- // DN_RFGAIN
- // DN_CAP_RFLPF
- // DN_EN_VHFUHFBAR
- // DN_GAIN_ADJUST
- // Change the boundary reference from RF_IN to RF_LO
- if (state->RF_LO < 40000000UL) {
+ /* Downconverter Controls
+ * Look-Up Table Implementation for:
+ * DN_POLY
+ * DN_RFGAIN
+ * DN_CAP_RFLPF
+ * DN_EN_VHFUHFBAR
+ * DN_GAIN_ADJUST
+ * Change the boundary reference from RF_IN to RF_LO
+ */
+ if (state->RF_LO < 40000000UL)
return -1;
- }
+
if (state->RF_LO >= 40000000UL && state->RF_LO <= 75000000UL) {
- // Look-Up Table implementation
status += MXL_ControlWrite(fe, DN_POLY, 2);
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 423);
@@ -2563,7 +2359,6 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 1);
}
if (state->RF_LO > 75000000UL && state->RF_LO <= 100000000UL) {
- // Look-Up Table implementation
status += MXL_ControlWrite(fe, DN_POLY, 3);
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 222);
@@ -2571,7 +2366,6 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 1);
}
if (state->RF_LO > 100000000UL && state->RF_LO <= 150000000UL) {
- // Look-Up Table implementation
status += MXL_ControlWrite(fe, DN_POLY, 3);
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 147);
@@ -2579,7 +2373,6 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 2);
}
if (state->RF_LO > 150000000UL && state->RF_LO <= 200000000UL) {
- // Look-Up Table implementation
status += MXL_ControlWrite(fe, DN_POLY, 3);
status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 9);
@@ -2587,34 +2380,31 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 2);
}
if (state->RF_LO > 200000000UL && state->RF_LO <= 300000000UL) {
- // Look-Up Table implementation
- status += MXL_ControlWrite(fe, DN_POLY, 3) ;
- status += MXL_ControlWrite(fe, DN_RFGAIN, 3) ;
- status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0) ;
- status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1) ;
- status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3) ;
+ status += MXL_ControlWrite(fe, DN_POLY, 3);
+ status += MXL_ControlWrite(fe, DN_RFGAIN, 3);
+ status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0);
+ status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 1);
+ status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3);
}
if (state->RF_LO > 300000000UL && state->RF_LO <= 650000000UL) {
- // Look-Up Table implementation
- status += MXL_ControlWrite(fe, DN_POLY, 3) ;
- status += MXL_ControlWrite(fe, DN_RFGAIN, 1) ;
- status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0) ;
- status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 0) ;
- status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3) ;
+ status += MXL_ControlWrite(fe, DN_POLY, 3);
+ status += MXL_ControlWrite(fe, DN_RFGAIN, 1);
+ status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0);
+ status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 0);
+ status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3);
}
if (state->RF_LO > 650000000UL && state->RF_LO <= 900000000UL) {
- // Look-Up Table implementation
- status += MXL_ControlWrite(fe, DN_POLY, 3) ;
- status += MXL_ControlWrite(fe, DN_RFGAIN, 2) ;
- status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0) ;
- status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 0) ;
- status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3) ;
+ status += MXL_ControlWrite(fe, DN_POLY, 3);
+ status += MXL_ControlWrite(fe, DN_RFGAIN, 2);
+ status += MXL_ControlWrite(fe, DN_CAP_RFLPF, 0);
+ status += MXL_ControlWrite(fe, DN_EN_VHFUHFBAR, 0);
+ status += MXL_ControlWrite(fe, DN_GAIN_ADJUST, 3);
}
- if (state->RF_LO > 900000000UL) {
+ if (state->RF_LO > 900000000UL)
return -1;
- }
- // DN_IQTNBUF_AMP
- // DN_IQTNGNBFBIAS_BST
+
+ /* DN_IQTNBUF_AMP */
+ /* DN_IQTNGNBFBIAS_BST */
if (state->RF_LO >= 40000000UL && state->RF_LO <= 75000000UL) {
status += MXL_ControlWrite(fe, DN_IQTNBUF_AMP, 1);
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 0);
@@ -2680,18 +2470,19 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
status += MXL_ControlWrite(fe, DN_IQTNGNBFBIAS_BST, 1);
}
- //
- // Set RF Synth and LO Path Control
- //
- // Look-Up table implementation for:
- // RFSYN_EN_OUTMUX
- // RFSYN_SEL_VCO_OUT
- // RFSYN_SEL_VCO_HI
- // RFSYN_SEL_DIVM
- // RFSYN_RF_DIV_BIAS
- // DN_SEL_FREQ
- //
- // Set divider_val, Fmax, Fmix to use in Equations
+ /*
+ * Set RF Synth and LO Path Control
+ *
+ * Look-Up table implementation for:
+ * RFSYN_EN_OUTMUX
+ * RFSYN_SEL_VCO_OUT
+ * RFSYN_SEL_VCO_HI
+ * RFSYN_SEL_DIVM
+ * RFSYN_RF_DIV_BIAS
+ * DN_SEL_FREQ
+ *
+ * Set divider_val, Fmax, Fmix to use in Equations
+ */
FminBin = 28000000UL ;
FmaxBin = 42500000UL ;
if (state->RF_LO >= 40000000UL && state->RF_LO <= FmaxBin) {
@@ -2721,12 +2512,12 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 56000000UL ;
FmaxBin = 85000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
- status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1) ;
+ status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
+ status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
+ status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1);
divider_val = 32 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2734,12 +2525,12 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 85000000UL ;
FmaxBin = 112000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
- status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1) ;
+ status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
+ status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
+ status += MXL_ControlWrite(fe, DN_SEL_FREQ, 1);
divider_val = 32 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2747,12 +2538,12 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 112000000UL ;
FmaxBin = 170000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
- status += MXL_ControlWrite(fe, DN_SEL_FREQ, 2) ;
+ status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
+ status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
+ status += MXL_ControlWrite(fe, DN_SEL_FREQ, 2);
divider_val = 16 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2760,12 +2551,12 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 170000000UL ;
FmaxBin = 225000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
- status += MXL_ControlWrite(fe, DN_SEL_FREQ, 2) ;
+ status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
+ status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
+ status += MXL_ControlWrite(fe, DN_SEL_FREQ, 2);
divider_val = 16 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2773,12 +2564,12 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 225000000UL ;
FmaxBin = 300000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
- status += MXL_ControlWrite(fe, DN_SEL_FREQ, 4) ;
+ status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
+ status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
+ status += MXL_ControlWrite(fe, DN_SEL_FREQ, 4);
divider_val = 8 ;
Fmax = 340000000UL ;
Fmin = FminBin ;
@@ -2786,12 +2577,12 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 300000000UL ;
FmaxBin = 340000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
- status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ;
+ status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
+ status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
+ status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
divider_val = 8 ;
Fmax = FmaxBin ;
Fmin = 225000000UL ;
@@ -2799,12 +2590,12 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 340000000UL ;
FmaxBin = 450000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 2) ;
- status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ;
+ status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 0);
+ status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 2);
+ status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
divider_val = 8 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2812,12 +2603,12 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 450000000UL ;
FmaxBin = 680000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
- status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ;
+ status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 1);
+ status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
+ status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
divider_val = 4 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2825,67 +2616,66 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 680000000UL ;
FmaxBin = 900000000UL ;
if (state->RF_LO > FminBin && state->RF_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 1) ;
- status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1) ;
- status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0) ;
+ status += MXL_ControlWrite(fe, RFSYN_EN_OUTMUX, 0);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
+ status += MXL_ControlWrite(fe, RFSYN_SEL_DIVM, 1);
+ status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
+ status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
divider_val = 4 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
- // CHCAL_INT_MOD_RF
- // CHCAL_FRAC_MOD_RF
- // RFSYN_LPF_R
- // CHCAL_EN_INT_RF
-
- // Equation E3
- // RFSYN_VCO_BIAS
+ /* CHCAL_INT_MOD_RF
+ * CHCAL_FRAC_MOD_RF
+ * RFSYN_LPF_R
+ * CHCAL_EN_INT_RF
+ */
+ /* Equation E3 RFSYN_VCO_BIAS */
E3 = (((Fmax-state->RF_LO)/1000)*32)/((Fmax-Fmin)/1000) + 8 ;
- status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, E3) ;
+ status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, E3);
- // Equation E4
- // CHCAL_INT_MOD_RF
- E4 = (state->RF_LO*divider_val/1000)/(2*state->Fxtal*Kdbl_RF/1000) ;
- MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, E4) ;
+ /* Equation E4 CHCAL_INT_MOD_RF */
+ E4 = (state->RF_LO*divider_val/1000)/(2*state->Fxtal*Kdbl_RF/1000);
+ MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, E4);
- // Equation E5
- // CHCAL_FRAC_MOD_RF
- // CHCAL_EN_INT_RF
- E5 = ((2<<17)*(state->RF_LO/10000*divider_val - (E4*(2*state->Fxtal*Kdbl_RF)/10000)))/(2*state->Fxtal*Kdbl_RF/10000) ;
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, E5) ;
+ /* Equation E5 CHCAL_FRAC_MOD_RF CHCAL_EN_INT_RF */
+ E5 = ((2<<17)*(state->RF_LO/10000*divider_val -
+ (E4*(2*state->Fxtal*Kdbl_RF)/10000))) /
+ (2*state->Fxtal*Kdbl_RF/10000);
- // Equation E5A
- // RFSYN_LPF_R
+ status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, E5);
+
+ /* Equation E5A RFSYN_LPF_R */
E5A = (((Fmax - state->RF_LO)/1000)*4/((Fmax-Fmin)/1000)) + 1 ;
- status += MXL_ControlWrite(fe, RFSYN_LPF_R, E5A) ;
+ status += MXL_ControlWrite(fe, RFSYN_LPF_R, E5A);
- // Euqation E5B
- // CHCAL_EN_INIT_RF
+ /* Euqation E5B CHCAL_EN_INIT_RF */
status += MXL_ControlWrite(fe, CHCAL_EN_INT_RF, ((E5 == 0) ? 1 : 0));
- //if (E5 == 0)
- // status += MXL_ControlWrite(fe, CHCAL_EN_INT_RF, 1);
- //else
- // status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, E5) ;
-
- //
- // Set TG Synth
- //
- // Look-Up table implementation for:
- // TG_LO_DIVVAL
- // TG_LO_SELVAL
- //
- // Set divider_val, Fmax, Fmix to use in Equations
- if (state->TG_LO < 33000000UL) {
+ /*if (E5 == 0)
+ * status += MXL_ControlWrite(fe, CHCAL_EN_INT_RF, 1);
+ *else
+ * status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, E5);
+ */
+
+ /*
+ * Set TG Synth
+ *
+ * Look-Up table implementation for:
+ * TG_LO_DIVVAL
+ * TG_LO_SELVAL
+ *
+ * Set divider_val, Fmax, Fmix to use in Equations
+ */
+ if (state->TG_LO < 33000000UL)
return -1;
- }
+
FminBin = 33000000UL ;
FmaxBin = 50000000UL ;
if (state->TG_LO >= FminBin && state->TG_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x6) ;
- status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x0) ;
+ status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x6);
+ status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x0);
divider_val = 36 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2893,8 +2683,8 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 50000000UL ;
FmaxBin = 67000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x1) ;
- status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x0) ;
+ status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x1);
+ status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x0);
divider_val = 24 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2902,8 +2692,8 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 67000000UL ;
FmaxBin = 100000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0xC) ;
- status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2) ;
+ status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0xC);
+ status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2);
divider_val = 18 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2911,8 +2701,8 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 100000000UL ;
FmaxBin = 150000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8) ;
- status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2) ;
+ status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8);
+ status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2);
divider_val = 12 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2920,8 +2710,8 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 150000000UL ;
FmaxBin = 200000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0) ;
- status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2) ;
+ status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0);
+ status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x2);
divider_val = 8 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2929,8 +2719,8 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 200000000UL ;
FmaxBin = 300000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8) ;
- status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x3) ;
+ status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8);
+ status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x3);
divider_val = 6 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2938,8 +2728,8 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 300000000UL ;
FmaxBin = 400000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0) ;
- status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x3) ;
+ status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0);
+ status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x3);
divider_val = 4 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2947,8 +2737,8 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 400000000UL ;
FmaxBin = 600000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8) ;
- status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x7) ;
+ status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x8);
+ status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x7);
divider_val = 3 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
@@ -2956,682 +2746,608 @@ u16 MXL_TuneRF(struct dvb_frontend *fe, u32 RF_Freq)
FminBin = 600000000UL ;
FmaxBin = 900000000UL ;
if (state->TG_LO > FminBin && state->TG_LO <= FmaxBin) {
- status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0) ;
- status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x7) ;
+ status += MXL_ControlWrite(fe, TG_LO_DIVVAL, 0x0);
+ status += MXL_ControlWrite(fe, TG_LO_SELVAL, 0x7);
divider_val = 2 ;
Fmax = FmaxBin ;
Fmin = FminBin ;
}
- // TG_DIV_VAL
- tg_divval = (state->TG_LO*divider_val/100000)
- *(MXL_Ceiling(state->Fxtal,1000000) * 100) / (state->Fxtal/1000) ;
- status += MXL_ControlWrite(fe, TG_DIV_VAL, tg_divval) ;
+ /* TG_DIV_VAL */
+ tg_divval = (state->TG_LO*divider_val/100000) *
+ (MXL_Ceiling(state->Fxtal, 1000000) * 100) /
+ (state->Fxtal/1000);
+
+ status += MXL_ControlWrite(fe, TG_DIV_VAL, tg_divval);
if (state->TG_LO > 600000000UL)
- status += MXL_ControlWrite(fe, TG_DIV_VAL, tg_divval + 1 ) ;
+ status += MXL_ControlWrite(fe, TG_DIV_VAL, tg_divval + 1);
Fmax = 1800000000UL ;
Fmin = 1200000000UL ;
+ /* prevent overflow of 32 bit unsigned integer, use
+ * following equation. Edit for v2.6.4
+ */
+ /* Fref_TF = Fref_TG * 1000 */
+ Fref_TG = (state->Fxtal/1000) / MXL_Ceiling(state->Fxtal, 1000000);
-
- // to prevent overflow of 32 bit unsigned integer, use following equation. Edit for v2.6.4
- Fref_TG = (state->Fxtal/1000)/ MXL_Ceiling(state->Fxtal, 1000000) ; // Fref_TF = Fref_TG*1000
-
- Fvco = (state->TG_LO/10000) * divider_val * Fref_TG; //Fvco = Fvco/10
+ /* Fvco = Fvco/10 */
+ Fvco = (state->TG_LO/10000) * divider_val * Fref_TG;
tg_lo = (((Fmax/10 - Fvco)/100)*32) / ((Fmax-Fmin)/1000)+8;
- //below equation is same as above but much harder to debug.
- //tg_lo = ( ((Fmax/10000 * Xtal_Int)/100) - ((state->TG_LO/10000)*divider_val*(state->Fxtal/10000)/100) )*32/((Fmax-Fmin)/10000 * Xtal_Int/100) + 8 ;
-
-
- status += MXL_ControlWrite(fe, TG_VCO_BIAS , tg_lo) ;
-
+ /* below equation is same as above but much harder to debug.
+ * tg_lo = ( ((Fmax/10000 * Xtal_Int)/100) -
+ * ((state->TG_LO/10000)*divider_val *
+ * (state->Fxtal/10000)/100) )*32/((Fmax-Fmin)/10000 *
+ * Xtal_Int/100) + 8;
+ */
+ status += MXL_ControlWrite(fe, TG_VCO_BIAS , tg_lo);
- //add for 2.6.5
- //Special setting for QAM
- if(state->Mod_Type == MXL_QAM)
- {
- if(state->RF_IN < 680000000)
- status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3) ;
- else
- status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 2) ;
+ /* add for 2.6.5 Special setting for QAM */
+ if (state->Mod_Type == MXL_QAM) {
+ if (state->RF_IN < 680000000)
+ status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3);
+ else
+ status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 2);
}
-
- //remove 20.48MHz setting for 2.6.10
-
- //
- // Off Chip Tracking Filter Control
- //
- if (state->TF_Type == MXL_TF_OFF) // Tracking Filter Off State; turn off all the banks
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ;
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ;
-
- status += MXL_SetGPIO(fe, 3, 1) ; // turn off Bank 1
- status += MXL_SetGPIO(fe, 1, 1) ; // turn off Bank 2
- status += MXL_SetGPIO(fe, 4, 1) ; // turn off Bank 3
+ /* Off Chip Tracking Filter Control */
+ if (state->TF_Type == MXL_TF_OFF) {
+ /* Tracking Filter Off State; turn off all the banks */
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 3, 1); /* Bank1 Off */
+ status += MXL_SetGPIO(fe, 1, 1); /* Bank2 Off */
+ status += MXL_SetGPIO(fe, 4, 1); /* Bank3 Off */
}
- if (state->TF_Type == MXL_TF_C) // Tracking Filter type C
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ;
- status += MXL_ControlWrite(fe, DAC_DIN_A, 0) ;
-
- if (state->RF_IN >= 43000000 && state->RF_IN < 150000000)
- {
-
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 150000000 && state->RF_IN < 280000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 280000000 && state->RF_IN < 360000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 360000000 && state->RF_IN < 560000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 560000000 && state->RF_IN < 580000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_ControlWrite(fe, DAC_DIN_B, 29) ;
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 580000000 && state->RF_IN < 630000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 630000000 && state->RF_IN < 700000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_ControlWrite(fe, DAC_DIN_B, 16) ;
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 700000000 && state->RF_IN < 760000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_ControlWrite(fe, DAC_DIN_B, 7) ;
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank3 Off
+ if (state->TF_Type == MXL_TF_C) /* Tracking Filter type C */ {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_ControlWrite(fe, DAC_DIN_A, 0);
+
+ if (state->RF_IN >= 43000000 && state->RF_IN < 150000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+ status += MXL_SetGPIO(fe, 3, 0);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ }
+ if (state->RF_IN >= 150000000 && state->RF_IN < 280000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ }
+ if (state->RF_IN >= 280000000 && state->RF_IN < 360000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ }
+ if (state->RF_IN >= 360000000 && state->RF_IN < 560000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 4, 0);
+ }
+ if (state->RF_IN >= 560000000 && state->RF_IN < 580000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 29);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 4, 0);
+ }
+ if (state->RF_IN >= 580000000 && state->RF_IN < 630000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 4, 0);
+ }
+ if (state->RF_IN >= 630000000 && state->RF_IN < 700000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 16);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ }
+ if (state->RF_IN >= 700000000 && state->RF_IN < 760000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 7);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ }
+ if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
}
}
- if (state->TF_Type == MXL_TF_C_H) // Tracking Filter type C-H for Hauppauge only
- {
- printk("%s() CH filter\n", __func__);
- status += MXL_ControlWrite(fe, DAC_DIN_A, 0) ;
-
- if (state->RF_IN >= 43000000 && state->RF_IN < 150000000)
- {
-
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 150000000 && state->RF_IN < 280000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 280000000 && state->RF_IN < 360000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 360000000 && state->RF_IN < 560000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 560000000 && state->RF_IN < 580000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 580000000 && state->RF_IN < 630000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 630000000 && state->RF_IN < 700000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 700000000 && state->RF_IN < 760000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank3 Off
+ if (state->TF_Type == MXL_TF_C_H) {
+
+ /* Tracking Filter type C-H for Hauppauge only */
+ status += MXL_ControlWrite(fe, DAC_DIN_A, 0);
+
+ if (state->RF_IN >= 43000000 && state->RF_IN < 150000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ }
+ if (state->RF_IN >= 150000000 && state->RF_IN < 280000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ status += MXL_SetGPIO(fe, 1, 1);
+ }
+ if (state->RF_IN >= 280000000 && state->RF_IN < 360000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ status += MXL_SetGPIO(fe, 1, 0);
+ }
+ if (state->RF_IN >= 360000000 && state->RF_IN < 560000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ }
+ if (state->RF_IN >= 560000000 && state->RF_IN < 580000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ }
+ if (state->RF_IN >= 580000000 && state->RF_IN < 630000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ }
+ if (state->RF_IN >= 630000000 && state->RF_IN < 700000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ }
+ if (state->RF_IN >= 700000000 && state->RF_IN < 760000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ }
+ if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
}
}
- if (state->TF_Type == MXL_TF_D) // Tracking Filter type D
- {
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
-
- if (state->RF_IN >= 43000000 && state->RF_IN < 174000000)
- {
-
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 174000000 && state->RF_IN < 250000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 250000000 && state->RF_IN < 310000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 310000000 && state->RF_IN < 360000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 360000000 && state->RF_IN < 470000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 470000000 && state->RF_IN < 640000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 640000000 && state->RF_IN <= 900000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
+ if (state->TF_Type == MXL_TF_D) { /* Tracking Filter type D */
+
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+
+ if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 250000000 && state->RF_IN < 310000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 310000000 && state->RF_IN < 360000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 360000000 && state->RF_IN < 470000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 470000000 && state->RF_IN < 640000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 640000000 && state->RF_IN <= 900000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
}
}
-
- if (state->TF_Type == MXL_TF_D_L) // Tracking Filter type D-L for Lumanate ONLY change for 2.6.3
- {
- status += MXL_ControlWrite(fe, DAC_DIN_A, 0) ;
-
- // if UHF and terrestrial => Turn off Tracking Filter
- if (state->RF_IN >= 471000000 && (state->RF_IN - 471000000)%6000000 != 0)
- {
- // Turn off all the banks
- status += MXL_SetGPIO(fe, 3, 1) ;
- status += MXL_SetGPIO(fe, 1, 1) ;
- status += MXL_SetGPIO(fe, 4, 1) ;
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ;
-
- status += MXL_ControlWrite(fe, AGC_IF, 10) ;
- }
-
- else // if VHF or cable => Turn on Tracking Filter
- {
- if (state->RF_IN >= 43000000 && state->RF_IN < 140000000)
- {
-
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 Off
+ if (state->TF_Type == MXL_TF_D_L) {
+
+ /* Tracking Filter type D-L for Lumanate ONLY change 2.6.3 */
+ status += MXL_ControlWrite(fe, DAC_DIN_A, 0);
+
+ /* if UHF and terrestrial => Turn off Tracking Filter */
+ if (state->RF_IN >= 471000000 &&
+ (state->RF_IN - 471000000)%6000000 != 0) {
+ /* Turn off all the banks */
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_ControlWrite(fe, AGC_IF, 10);
+ } else {
+ /* if VHF or cable => Turn on Tracking Filter */
+ if (state->RF_IN >= 43000000 &&
+ state->RF_IN < 140000000) {
+
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
}
- if (state->RF_IN >= 140000000 && state->RF_IN < 240000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 Off
+ if (state->RF_IN >= 140000000 &&
+ state->RF_IN < 240000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 0);
}
- if (state->RF_IN >= 240000000 && state->RF_IN < 340000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 Off
+ if (state->RF_IN >= 240000000 &&
+ state->RF_IN < 340000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
}
- if (state->RF_IN >= 340000000 && state->RF_IN < 430000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 On
+ if (state->RF_IN >= 340000000 &&
+ state->RF_IN < 430000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
}
- if (state->RF_IN >= 430000000 && state->RF_IN < 470000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 On
+ if (state->RF_IN >= 430000000 &&
+ state->RF_IN < 470000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
}
- if (state->RF_IN >= 470000000 && state->RF_IN < 570000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 On
+ if (state->RF_IN >= 470000000 &&
+ state->RF_IN < 570000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
}
- if (state->RF_IN >= 570000000 && state->RF_IN < 620000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Offq
+ if (state->RF_IN >= 570000000 &&
+ state->RF_IN < 620000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
}
- if (state->RF_IN >= 620000000 && state->RF_IN < 760000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
+ if (state->RF_IN >= 620000000 &&
+ state->RF_IN < 760000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
}
- if (state->RF_IN >= 760000000 && state->RF_IN <= 900000000)
- {
- status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
+ if (state->RF_IN >= 760000000 &&
+ state->RF_IN <= 900000000) {
+ status += MXL_ControlWrite(fe, DAC_A_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
}
}
}
- if (state->TF_Type == MXL_TF_E) // Tracking Filter type E
- {
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
-
- if (state->RF_IN >= 43000000 && state->RF_IN < 174000000)
- {
-
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 174000000 && state->RF_IN < 250000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 250000000 && state->RF_IN < 310000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 310000000 && state->RF_IN < 360000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 360000000 && state->RF_IN < 470000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 470000000 && state->RF_IN < 640000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 640000000 && state->RF_IN <= 900000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
+ if (state->TF_Type == MXL_TF_E) /* Tracking Filter type E */ {
+
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+
+ if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 250000000 && state->RF_IN < 310000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 310000000 && state->RF_IN < 360000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 360000000 && state->RF_IN < 470000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 470000000 && state->RF_IN < 640000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 640000000 && state->RF_IN <= 900000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
}
}
- if (state->TF_Type == MXL_TF_F) // Tracking Filter type F
- {
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
-
- if (state->RF_IN >= 43000000 && state->RF_IN < 160000000)
- {
-
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 160000000 && state->RF_IN < 210000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 210000000 && state->RF_IN < 300000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 300000000 && state->RF_IN < 390000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 390000000 && state->RF_IN < 515000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 515000000 && state->RF_IN < 650000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 650000000 && state->RF_IN <= 900000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
+ if (state->TF_Type == MXL_TF_F) {
+
+ /* Tracking Filter type F */
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+
+ if (state->RF_IN >= 43000000 && state->RF_IN < 160000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 160000000 && state->RF_IN < 210000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 210000000 && state->RF_IN < 300000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 300000000 && state->RF_IN < 390000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 390000000 && state->RF_IN < 515000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 515000000 && state->RF_IN < 650000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 650000000 && state->RF_IN <= 900000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
}
}
- if (state->TF_Type == MXL_TF_E_2) // Tracking Filter type E_2
- {
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
-
- if (state->RF_IN >= 43000000 && state->RF_IN < 174000000)
- {
-
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 174000000 && state->RF_IN < 250000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 250000000 && state->RF_IN < 350000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 350000000 && state->RF_IN < 400000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 400000000 && state->RF_IN < 570000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 570000000 && state->RF_IN < 770000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 770000000 && state->RF_IN <= 900000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
+ if (state->TF_Type == MXL_TF_E_2) {
+
+ /* Tracking Filter type E_2 */
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+
+ if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 250000000 && state->RF_IN < 350000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 350000000 && state->RF_IN < 400000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 400000000 && state->RF_IN < 570000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 570000000 && state->RF_IN < 770000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 770000000 && state->RF_IN <= 900000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
}
}
- if (state->TF_Type == MXL_TF_G) // Tracking Filter type G add for v2.6.8
- {
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
-
- if (state->RF_IN >= 50000000 && state->RF_IN < 190000000)
- {
-
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 190000000 && state->RF_IN < 280000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 280000000 && state->RF_IN < 350000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 350000000 && state->RF_IN < 400000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 400000000 && state->RF_IN < 470000000) //modified for 2.6.11
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 470000000 && state->RF_IN < 640000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 640000000 && state->RF_IN < 820000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 820000000 && state->RF_IN <= 900000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
+ if (state->TF_Type == MXL_TF_G) {
+
+ /* Tracking Filter type G add for v2.6.8 */
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+
+ if (state->RF_IN >= 50000000 && state->RF_IN < 190000000) {
+
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 190000000 && state->RF_IN < 280000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 280000000 && state->RF_IN < 350000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 350000000 && state->RF_IN < 400000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 400000000 && state->RF_IN < 470000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 470000000 && state->RF_IN < 640000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 640000000 && state->RF_IN < 820000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 820000000 && state->RF_IN <= 900000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
}
}
- if (state->TF_Type == MXL_TF_E_NA) // Tracking Filter type E-NA for Empia ONLY change for 2.6.8
- {
- status += MXL_ControlWrite(fe, DAC_DIN_B, 0) ;
-
- // if UHF and terrestrial=> Turn off Tracking Filter
- if (state->RF_IN >= 471000000 && (state->RF_IN - 471000000)%6000000 != 0)
- {
- // Turn off all the banks
- status += MXL_SetGPIO(fe, 3, 1) ;
- status += MXL_SetGPIO(fe, 1, 1) ;
- status += MXL_SetGPIO(fe, 4, 1) ;
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ;
-
- //2.6.12
- //Turn on RSSI
- status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1) ;
- status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1) ;
- status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1) ;
- status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1) ;
-
- // RSSI reference point
- status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5) ;
- status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3) ;
- status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2) ;
-
-
- //status += MXL_ControlWrite(fe, AGC_IF, 10) ; //doesn't matter since RSSI is turn on
-
- //following parameter is from analog OTA mode, can be change to seek better performance
- status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3) ;
- }
-
- else //if VHF or Cable => Turn on Tracking Filter
- {
- //2.6.12
- //Turn off RSSI
- status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0) ;
-
- //change back from above condition
- status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 5) ;
-
-
- if (state->RF_IN >= 43000000 && state->RF_IN < 174000000)
- {
-
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 174000000 && state->RF_IN < 250000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 0) ; // Bank1 On
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 250000000 && state->RF_IN < 350000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
- }
- if (state->RF_IN >= 350000000 && state->RF_IN < 400000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 0) ; // Bank2 On
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 400000000 && state->RF_IN < 570000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0) ; // Bank4 Off
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 570000000 && state->RF_IN < 770000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 0) ; // Bank3 On
- }
- if (state->RF_IN >= 770000000 && state->RF_IN <= 900000000)
- {
- status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1) ; // Bank4 On
- status += MXL_SetGPIO(fe, 4, 1) ; // Bank1 Off
- status += MXL_SetGPIO(fe, 1, 1) ; // Bank2 Off
- status += MXL_SetGPIO(fe, 3, 1) ; // Bank3 Off
+ if (state->TF_Type == MXL_TF_E_NA) {
+
+ /* Tracking Filter type E-NA for Empia ONLY change for 2.6.8 */
+ status += MXL_ControlWrite(fe, DAC_DIN_B, 0);
+
+ /* if UHF and terrestrial=> Turn off Tracking Filter */
+ if (state->RF_IN >= 471000000 &&
+ (state->RF_IN - 471000000)%6000000 != 0) {
+
+ /* Turn off all the banks */
+ status += MXL_SetGPIO(fe, 3, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+
+ /* 2.6.12 Turn on RSSI */
+ status += MXL_ControlWrite(fe, SEQ_EXTSYNTHCALIF, 1);
+ status += MXL_ControlWrite(fe, SEQ_EXTDCCAL, 1);
+ status += MXL_ControlWrite(fe, AGC_EN_RSSI, 1);
+ status += MXL_ControlWrite(fe, RFA_ENCLKRFAGC, 1);
+
+ /* RSSI reference point */
+ status += MXL_ControlWrite(fe, RFA_RSSI_REFH, 5);
+ status += MXL_ControlWrite(fe, RFA_RSSI_REF, 3);
+ status += MXL_ControlWrite(fe, RFA_RSSI_REFL, 2);
+
+ /* following parameter is from analog OTA mode,
+ * can be change to seek better performance */
+ status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 3);
+ } else {
+ /* if VHF or Cable => Turn on Tracking Filter */
+
+ /* 2.6.12 Turn off RSSI */
+ status += MXL_ControlWrite(fe, AGC_EN_RSSI, 0);
+
+ /* change back from above condition */
+ status += MXL_ControlWrite(fe, RFSYN_CHP_GAIN, 5);
+
+
+ if (state->RF_IN >= 43000000 && state->RF_IN < 174000000) {
+
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 174000000 && state->RF_IN < 250000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 0);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 250000000 && state->RF_IN < 350000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 1);
+ }
+ if (state->RF_IN >= 350000000 && state->RF_IN < 400000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 0);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 400000000 && state->RF_IN < 570000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 0);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 570000000 && state->RF_IN < 770000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 0);
+ }
+ if (state->RF_IN >= 770000000 && state->RF_IN <= 900000000) {
+ status += MXL_ControlWrite(fe, DAC_B_ENABLE, 1);
+ status += MXL_SetGPIO(fe, 4, 1);
+ status += MXL_SetGPIO(fe, 1, 1);
+ status += MXL_SetGPIO(fe, 3, 1);
}
}
}
@@ -3679,72 +3395,24 @@ u16 MXL_SetGPIO(struct dvb_frontend *fe, u8 GPIO_Num, u8 GPIO_Val)
return status;
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_ControlWrite //
-// //
-// Description: Update control name value //
-// //
-// Globals: //
-// NONE //
-// //
-// Functions used: //
-// MXL_ControlWrite( Tuner, controlName, value, Group ) //
-// //
-// Inputs: //
-// Tuner : Tuner structure //
-// ControlName : Control name to be updated //
-// value : Value to be written //
-// //
-// Outputs: //
-// Tuner : Tuner structure defined at higher level //
-// //
-// Return: //
-// 0 : Successful write //
-// >0 : Value exceed maximum allowed for control number //
-// //
-///////////////////////////////////////////////////////////////////////////////
u16 MXL_ControlWrite(struct dvb_frontend *fe, u16 ControlNum, u32 value)
{
u16 status = 0;
/* Will write ALL Matching Control Name */
- status += MXL_ControlWrite_Group(fe, ControlNum, value, 1); /* Write Matching INIT Control */
- status += MXL_ControlWrite_Group(fe, ControlNum, value, 2); /* Write Matching CH Control */
+ /* Write Matching INIT Control */
+ status += MXL_ControlWrite_Group(fe, ControlNum, value, 1);
+ /* Write Matching CH Control */
+ status += MXL_ControlWrite_Group(fe, ControlNum, value, 2);
#ifdef _MXL_INTERNAL
- status += MXL_ControlWrite_Group(fe, ControlNum, value, 3); /* Write Matching MXL Control */
+ /* Write Matching MXL Control */
+ status += MXL_ControlWrite_Group(fe, ControlNum, value, 3);
#endif
return status;
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_ControlWrite //
-// //
-// Description: Update control name value //
-// //
-// Globals: //
-// NONE //
-// //
-// Functions used: //
-// strcmp //
-// //
-// Inputs: //
-// Tuner_struct: structure defined at higher level //
-// ControlName : Control Name //
-// value : Value Assigned to Control Name //
-// controlGroup : Control Register Group //
-// //
-// Outputs: //
-// NONE //
-// //
-// Return: //
-// 0 : Successful write //
-// 1 : Value exceed maximum allowed for control name //
-// 2 : Control name not found //
-// //
-///////////////////////////////////////////////////////////////////////////////
-u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value, u16 controlGroup)
+u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value,
+ u16 controlGroup)
{
struct mxl5005s_state *state = fe->tuner_priv;
u16 i, j, k;
@@ -3763,13 +3431,12 @@ u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value, u
state->Init_Ctrl[i].val[j] = (u8)((value >> j) & 0x01);
MXL_RegWriteBit(fe, (u8)(state->Init_Ctrl[i].addr[j]),
(u8)(state->Init_Ctrl[i].bit[j]),
- (u8)((value>>j) & 0x01) );
+ (u8)((value>>j) & 0x01));
}
ctrlVal = 0;
for (k = 0; k < state->Init_Ctrl[i].size; k++)
ctrlVal += state->Init_Ctrl[i].val[k] * (1 << k);
- }
- else
+ } else
return -1;
}
}
@@ -3778,7 +3445,7 @@ u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value, u
for (i = 0; i < state->CH_Ctrl_Num; i++) {
- if (controlNum == state->CH_Ctrl[i].Ctrl_Num ) {
+ if (controlNum == state->CH_Ctrl[i].Ctrl_Num) {
highLimit = 1 << state->CH_Ctrl[i].size;
if (value < highLimit) {
@@ -3786,13 +3453,12 @@ u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value, u
state->CH_Ctrl[i].val[j] = (u8)((value >> j) & 0x01);
MXL_RegWriteBit(fe, (u8)(state->CH_Ctrl[i].addr[j]),
(u8)(state->CH_Ctrl[i].bit[j]),
- (u8)((value>>j) & 0x01) );
+ (u8)((value>>j) & 0x01));
}
ctrlVal = 0;
for (k = 0; k < state->CH_Ctrl[i].size; k++)
ctrlVal += state->CH_Ctrl[i].val[k] * (1 << k);
- }
- else
+ } else
return -1;
}
}
@@ -3802,21 +3468,20 @@ u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value, u
for (i = 0; i < state->MXL_Ctrl_Num; i++) {
- if (controlNum == state->MXL_Ctrl[i].Ctrl_Num ) {
+ if (controlNum == state->MXL_Ctrl[i].Ctrl_Num) {
- highLimit = (1 << state->MXL_Ctrl[i].size) ;
+ highLimit = (1 << state->MXL_Ctrl[i].size);
if (value < highLimit) {
for (j = 0; j < state->MXL_Ctrl[i].size; j++) {
state->MXL_Ctrl[i].val[j] = (u8)((value >> j) & 0x01);
MXL_RegWriteBit(fe, (u8)(state->MXL_Ctrl[i].addr[j]),
(u8)(state->MXL_Ctrl[i].bit[j]),
- (u8)((value>>j) & 0x01) );
+ (u8)((value>>j) & 0x01));
}
ctrlVal = 0;
- for(k = 0; k < state->MXL_Ctrl[i].size; k++)
+ for (k = 0; k < state->MXL_Ctrl[i].size; k++)
ctrlVal += state->MXL_Ctrl[i].val[k] * (1 << k);
- }
- else
+ } else
return -1;
}
}
@@ -3825,31 +3490,6 @@ u16 MXL_ControlWrite_Group(struct dvb_frontend *fe, u16 controlNum, u32 value, u
return 0 ; /* successful return */
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_RegWrite //
-// //
-// Description: Update tuner register value //
-// //
-// Globals: //
-// NONE //
-// //
-// Functions used: //
-// NONE //
-// //
-// Inputs: //
-// Tuner_struct: structure defined at higher level //
-// RegNum : Register address to be assigned a value //
-// RegVal : Register value to write //
-// //
-// Outputs: //
-// NONE //
-// //
-// Return: //
-// 0 : Successful write //
-// -1 : Invalid Register Address //
-// //
-///////////////////////////////////////////////////////////////////////////////
u16 MXL_RegWrite(struct dvb_frontend *fe, u8 RegNum, u8 RegVal)
{
struct mxl5005s_state *state = fe->tuner_priv;
@@ -3865,37 +3505,13 @@ u16 MXL_RegWrite(struct dvb_frontend *fe, u8 RegNum, u8 RegVal)
return 1;
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_RegRead //
-// //
-// Description: Retrieve tuner register value //
-// //
-// Globals: //
-// NONE //
-// //
-// Functions used: //
-// NONE //
-// //
-// Inputs: //
-// Tuner_struct: structure defined at higher level //
-// RegNum : Register address to be assigned a value //
-// //
-// Outputs: //
-// RegVal : Retrieved register value //
-// //
-// Return: //
-// 0 : Successful read //
-// -1 : Invalid Register Address //
-// //
-///////////////////////////////////////////////////////////////////////////////
u16 MXL_RegRead(struct dvb_frontend *fe, u8 RegNum, u8 *RegVal)
{
struct mxl5005s_state *state = fe->tuner_priv;
int i ;
for (i = 0; i < 104; i++) {
- if (RegNum == state->TunerRegs[i].Reg_Num ) {
+ if (RegNum == state->TunerRegs[i].Reg_Num) {
*RegVal = (u8)(state->TunerRegs[i].Reg_Val);
return 0;
}
@@ -3904,27 +3520,6 @@ u16 MXL_RegRead(struct dvb_frontend *fe, u8 RegNum, u8 *RegVal)
return 1;
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_ControlRead //
-// //
-// Description: Retrieve the control value based on the control name //
-// //
-// Globals: //
-// NONE //
-// //
-// Inputs: //
-// Tuner_struct : structure defined at higher level //
-// ControlName : Control Name //
-// //
-// Outputs: //
-// value : returned control value //
-// //
-// Return: //
-// 0 : Successful read //
-// -1 : Invalid control name //
-// //
-///////////////////////////////////////////////////////////////////////////////
u16 MXL_ControlRead(struct dvb_frontend *fe, u16 controlNum, u32 *value)
{
struct mxl5005s_state *state = fe->tuner_priv;
@@ -3937,7 +3532,7 @@ u16 MXL_ControlRead(struct dvb_frontend *fe, u16 controlNum, u32 *value)
ctrlVal = 0;
for (k = 0; k < state->Init_Ctrl[i].size; k++)
- ctrlVal += state->Init_Ctrl[i].val[k] * (1 << k);
+ ctrlVal += state->Init_Ctrl[i].val[k] * (1<<k);
*value = ctrlVal;
return 0;
}
@@ -3973,30 +3568,8 @@ u16 MXL_ControlRead(struct dvb_frontend *fe, u16 controlNum, u32 *value)
return 1;
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_ControlRegRead //
-// //
-// Description: Retrieve the register addresses and count related to a //
-// a specific control name //
-// //
-// Globals: //
-// NONE //
-// //
-// Inputs: //
-// Tuner_struct : structure defined at higher level //
-// ControlName : Control Name //
-// //
-// Outputs: //
-// RegNum : returned register address array //
-// count : returned register count related to a control //
-// //
-// Return: //
-// 0 : Successful read //
-// -1 : Invalid control name //
-// //
-///////////////////////////////////////////////////////////////////////////////
-u16 MXL_ControlRegRead(struct dvb_frontend *fe, u16 controlNum, u8 *RegNum, int * count)
+u16 MXL_ControlRegRead(struct dvb_frontend *fe, u16 controlNum, u8 *RegNum,
+ int *count)
{
struct mxl5005s_state *state = fe->tuner_priv;
u16 i, j, k ;
@@ -4004,7 +3577,7 @@ u16 MXL_ControlRegRead(struct dvb_frontend *fe, u16 controlNum, u8 *RegNum, int
for (i = 0; i < state->Init_Ctrl_Num ; i++) {
- if ( controlNum == state->Init_Ctrl[i].Ctrl_Num ) {
+ if (controlNum == state->Init_Ctrl[i].Ctrl_Num) {
Count = 1;
RegNum[0] = (u8)(state->Init_Ctrl[i].addr[0]);
@@ -4013,9 +3586,10 @@ u16 MXL_ControlRegRead(struct dvb_frontend *fe, u16 controlNum, u8 *RegNum, int
for (j = 0; j < Count; j++) {
- if (state->Init_Ctrl[i].addr[k] != RegNum[j]) {
+ if (state->Init_Ctrl[i].addr[k] !=
+ RegNum[j]) {
- Count ++;
+ Count++;
RegNum[Count-1] = (u8)(state->Init_Ctrl[i].addr[k]);
}
@@ -4028,18 +3602,19 @@ u16 MXL_ControlRegRead(struct dvb_frontend *fe, u16 controlNum, u8 *RegNum, int
}
for (i = 0; i < state->CH_Ctrl_Num ; i++) {
- if ( controlNum == state->CH_Ctrl[i].Ctrl_Num ) {
+ if (controlNum == state->CH_Ctrl[i].Ctrl_Num) {
Count = 1;
RegNum[0] = (u8)(state->CH_Ctrl[i].addr[0]);
for (k = 1; k < state->CH_Ctrl[i].size; k++) {
- for (j= 0; j<Count; j++) {
+ for (j = 0; j < Count; j++) {
- if (state->CH_Ctrl[i].addr[k] != RegNum[j]) {
+ if (state->CH_Ctrl[i].addr[k] !=
+ RegNum[j]) {
- Count ++;
+ Count++;
RegNum[Count-1] = (u8)(state->CH_Ctrl[i].addr[k]);
}
@@ -4052,18 +3627,19 @@ u16 MXL_ControlRegRead(struct dvb_frontend *fe, u16 controlNum, u8 *RegNum, int
#ifdef _MXL_INTERNAL
for (i = 0; i < state->MXL_Ctrl_Num ; i++) {
- if ( controlNum == state->MXL_Ctrl[i].Ctrl_Num ) {
+ if (controlNum == state->MXL_Ctrl[i].Ctrl_Num) {
Count = 1;
RegNum[0] = (u8)(state->MXL_Ctrl[i].addr[0]);
for (k = 1; k < state->MXL_Ctrl[i].size; k++) {
- for (j = 0; j<Count; j++) {
+ for (j = 0; j < Count; j++) {
- if (state->MXL_Ctrl[i].addr[k] != RegNum[j]) {
+ if (state->MXL_Ctrl[i].addr[k] !=
+ RegNum[j]) {
- Count ++;
+ Count++;
RegNum[Count-1] = (u8)state->MXL_Ctrl[i].addr[k];
}
@@ -4078,29 +3654,6 @@ u16 MXL_ControlRegRead(struct dvb_frontend *fe, u16 controlNum, u8 *RegNum, int
return 1;
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_RegWriteBit //
-// //
-// Description: Write a register for specified register address, //
-// register bit and register bit value //
-// //
-// Globals: //
-// NONE //
-// //
-// Inputs: //
-// Tuner_struct : structure defined at higher level //
-// address : register address //
-// bit : register bit number //
-// bitVal : register bit value //
-// //
-// Outputs: //
-// NONE //
-// //
-// Return: //
-// NONE //
-// //
-///////////////////////////////////////////////////////////////////////////////
void MXL_RegWriteBit(struct dvb_frontend *fe, u8 address, u8 bit, u8 bitVal)
{
struct mxl5005s_state *state = fe->tuner_priv;
@@ -4125,38 +3678,14 @@ void MXL_RegWriteBit(struct dvb_frontend *fe, u8 address, u8 bit, u8 bitVal)
}
}
-///////////////////////////////////////////////////////////////////////////////
-// //
-// Function: MXL_Ceiling //
-// //
-// Description: Complete to closest increment of resolution //
-// //
-// Globals: //
-// NONE //
-// //
-// Functions used: //
-// NONE //
-// //
-// Inputs: //
-// value : Input number to compute //
-// resolution : Increment step //
-// //
-// Outputs: //
-// NONE //
-// //
-// Return: //
-// Computed value //
-// //
-///////////////////////////////////////////////////////////////////////////////
u32 MXL_Ceiling(u32 value, u32 resolution)
{
return (value/resolution + (value % resolution > 0 ? 1 : 0));
}
-//
-// Retrieve the Initialzation Registers
-//
-u16 MXL_GetInitRegister(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count)
+/* Retrieve the Initialzation Registers */
+u16 MXL_GetInitRegister(struct dvb_frontend *fe, u8 *RegNum,
+ u8 *RegVal, int *count)
{
u16 status = 0;
int i ;
@@ -4178,21 +3707,24 @@ u16 MXL_GetInitRegister(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *c
return status;
}
-u16 MXL_GetCHRegister(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count)
+u16 MXL_GetCHRegister(struct dvb_frontend *fe, u8 *RegNum, u8 *RegVal,
+ int *count)
{
u16 status = 0;
int i ;
-//add 77, 166, 167, 168 register for 2.6.12
+/* add 77, 166, 167, 168 register for 2.6.12 */
#ifdef _MXL_PRODUCTION
u8 RegAddr[] = {14, 15, 16, 17, 22, 43, 65, 68, 69, 70, 73, 92, 93, 106,
107, 108, 109, 110, 111, 112, 136, 138, 149, 77, 166, 167, 168 } ;
#else
u8 RegAddr[] = {14, 15, 16, 17, 22, 43, 68, 69, 70, 73, 92, 93, 106,
107, 108, 109, 110, 111, 112, 136, 138, 149, 77, 166, 167, 168 } ;
- //u8 RegAddr[171];
- //for (i=0; i<=170; i++)
- // RegAddr[i] = i;
+ /*
+ u8 RegAddr[171];
+ for (i = 0; i <= 170; i++)
+ RegAddr[i] = i;
+ */
#endif
*count = sizeof(RegAddr) / sizeof(u8);
@@ -4205,7 +3737,8 @@ u16 MXL_GetCHRegister(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *cou
return status;
}
-u16 MXL_GetCHRegister_ZeroIF(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count)
+u16 MXL_GetCHRegister_ZeroIF(struct dvb_frontend *fe, u8 *RegNum, u8 *RegVal,
+ int *count)
{
u16 status = 0;
int i;
@@ -4222,7 +3755,8 @@ u16 MXL_GetCHRegister_ZeroIF(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, i
return status;
}
-u16 MXL_GetCHRegister_LowIF(struct dvb_frontend *fe, u8 * RegNum, u8 *RegVal, int *count)
+u16 MXL_GetCHRegister_LowIF(struct dvb_frontend *fe, u8 *RegNum, u8 *RegVal,
+ int *count)
{
u16 status = 0;
int i;
@@ -4267,23 +3801,28 @@ u16 MXL_VCORange_Test(struct dvb_frontend *fe, int VCO_Range)
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_OUT, 1);
status += MXL_ControlWrite(fe, RFSYN_RF_DIV_BIAS, 1);
status += MXL_ControlWrite(fe, DN_SEL_FREQ, 0);
- if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ {
+ if (state->Mode == 0 && state->IF_Mode == 1) {
+ /* Analog Low IF Mode */
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 180224);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 180224);
}
- if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ {
+ if (state->Mode == 0 && state->IF_Mode == 0) {
+ /* Analog Zero IF Mode */
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 222822);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 222822);
}
if (state->Mode == 1) /* Digital Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 56);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 229376);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 229376);
}
}
@@ -4298,23 +3837,28 @@ u16 MXL_VCORange_Test(struct dvb_frontend *fe, int VCO_Range)
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 41);
- if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ {
+ if (state->Mode == 0 && state->IF_Mode == 1) {
+ /* Analog Low IF Mode */
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 206438);
}
- if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ {
+ if (state->Mode == 0 && state->IF_Mode == 0) {
+ /* Analog Zero IF Mode */
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 206438);
}
if (state->Mode == 1) /* Digital Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 1);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 41);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 16384);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 16384);
}
}
@@ -4329,23 +3873,28 @@ u16 MXL_VCORange_Test(struct dvb_frontend *fe, int VCO_Range)
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
- if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ {
+ if (state->Mode == 0 && state->IF_Mode == 1) {
+ /* Analog Low IF Mode */
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 44);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 173670);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 173670);
}
- if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ {
+ if (state->Mode == 0 && state->IF_Mode == 0) {
+ /* Analog Zero IF Mode */
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 44);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 173670);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 173670);
}
if (state->Mode == 1) /* Digital Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 8);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 42);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 245760);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 245760);
}
}
@@ -4360,23 +3909,28 @@ u16 MXL_VCORange_Test(struct dvb_frontend *fe, int VCO_Range)
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
- if (state->Mode == 0 && state->IF_Mode == 1) /* Analog Low IF Mode */ {
+ if (state->Mode == 0 && state->IF_Mode == 1) {
+ /* Analog Low IF Mode */
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 206438);
}
- if (state->Mode == 0 && state->IF_Mode == 0) /* Analog Zero IF Mode */ {
+ if (state->Mode == 0 && state->IF_Mode == 0) {
+ /* Analog Zero IF Mode */
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 206438);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 206438);
}
if (state->Mode == 1) /* Digital Mode */ {
status += MXL_ControlWrite(fe, RFSYN_SEL_VCO_HI, 0);
status += MXL_ControlWrite(fe, RFSYN_VCO_BIAS, 40);
status += MXL_ControlWrite(fe, CHCAL_INT_MOD_RF, 27);
- status += MXL_ControlWrite(fe, CHCAL_FRAC_MOD_RF, 212992);
+ status += MXL_ControlWrite(fe,
+ CHCAL_FRAC_MOD_RF, 212992);
}
}
@@ -4440,7 +3994,7 @@ static int mxl5005s_writereg(struct dvb_frontend *fe, u8 reg, u8 val, int latch)
if (latch == 0)
msg.len = 2;
- dprintk(2, "%s(reg = 0x%x val = 0x%x addr = 0x%x)\n", __func__, reg, val, msg.addr);
+ dprintk(2, "%s(0x%x, 0x%x, 0x%x)\n", __func__, reg, val, msg.addr);
if (i2c_transfer(state->i2c, &msg, 1) != 1) {
printk(KERN_WARNING "mxl5005s I2C write failed\n");
@@ -4449,7 +4003,8 @@ static int mxl5005s_writereg(struct dvb_frontend *fe, u8 reg, u8 val, int latch)
return 0;
}
-int mxl5005s_writeregs(struct dvb_frontend *fe, u8 *addrtable, u8 *datatable, u8 len)
+int mxl5005s_writeregs(struct dvb_frontend *fe, u8 *addrtable, u8 *datatable,
+ u8 len)
{
int ret = 0, i;
@@ -4506,7 +4061,8 @@ int mxl5005s_reconfigure(struct dvb_frontend *fe, u32 mod_type, u32 bandwidth)
return 0;
}
-int mxl5005s_AssignTunerMode(struct dvb_frontend *fe, u32 mod_type, u32 bandwidth)
+int mxl5005s_AssignTunerMode(struct dvb_frontend *fe, u32 mod_type,
+ u32 bandwidth)
{
struct mxl5005s_state *state = fe->tuner_priv;
struct mxl5005s_config *c = state->config;
@@ -4553,8 +4109,8 @@ static int mxl5005s_set_params(struct dvb_frontend *fe,
case QAM_AUTO:
req_mode = MXL_QAM; break;
}
- }
- else req_mode = MXL_DVBT;
+ } else
+ req_mode = MXL_DVBT;
/* Change tuner for new modulation type if reqd */
if (req_mode != state->current_mode) {
@@ -4655,9 +4211,11 @@ struct dvb_frontend *mxl5005s_attach(struct dvb_frontend *fe,
state->i2c = i2c;
state->current_mode = MXL_QAM;
- printk(KERN_INFO "MXL5005S: Attached at address 0x%02x\n", config->i2c_address);
+ printk(KERN_INFO "MXL5005S: Attached at address 0x%02x\n",
+ config->i2c_address);
- memcpy(&fe->ops.tuner_ops, &mxl5005s_tuner_ops, sizeof(struct dvb_tuner_ops));
+ memcpy(&fe->ops.tuner_ops, &mxl5005s_tuner_ops,
+ sizeof(struct dvb_tuner_ops));
fe->tuner_priv = state;
return fe;