summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/denali.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/denali.c')
-rw-r--r--drivers/mtd/nand/denali.c1240
1 files changed, 475 insertions, 765 deletions
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index 3dfda9cc677..618fb42b86b 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -21,6 +21,7 @@
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/mutex.h>
+#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>
@@ -29,15 +30,15 @@
MODULE_LICENSE("GPL");
-/* We define a module parameter that allows the user to override
+/* We define a module parameter that allows the user to override
* the hardware and decide what timing mode should be used.
*/
#define NAND_DEFAULT_TIMINGS -1
static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
-MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates"
- " use default timings");
+MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
+ " -1 indicates use default timings");
#define DENALI_NAND_NAME "denali-nand"
@@ -54,13 +55,13 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates
INTR_STATUS0__RST_COMP | \
INTR_STATUS0__ERASE_COMP)
-/* indicates whether or not the internal value for the flash bank is
+/* indicates whether or not the internal value for the flash bank is
valid or not */
-#define CHIP_SELECT_INVALID -1
+#define CHIP_SELECT_INVALID -1
#define SUPPORT_8BITECC 1
-/* This macro divides two integers and rounds fractional values up
+/* This macro divides two integers and rounds fractional values up
* to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
@@ -83,7 +84,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates
#define ADDR_CYCLE 1
#define STATUS_CYCLE 2
-/* this is a helper macro that allows us to
+/* this is a helper macro that allows us to
* format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)
@@ -95,59 +96,64 @@ static const struct pci_device_id denali_pci_ids[] = {
};
-/* these are static lookup tables that give us easy access to
- registers in the NAND controller.
+/* these are static lookup tables that give us easy access to
+ registers in the NAND controller.
*/
-static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
- INTR_STATUS1,
- INTR_STATUS2,
+static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
+ INTR_STATUS1,
+ INTR_STATUS2,
INTR_STATUS3};
static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
- DEVICE_RESET__BANK1,
- DEVICE_RESET__BANK2,
- DEVICE_RESET__BANK3};
+ DEVICE_RESET__BANK1,
+ DEVICE_RESET__BANK2,
+ DEVICE_RESET__BANK3};
static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
- INTR_STATUS1__TIME_OUT,
- INTR_STATUS2__TIME_OUT,
- INTR_STATUS3__TIME_OUT};
+ INTR_STATUS1__TIME_OUT,
+ INTR_STATUS2__TIME_OUT,
+ INTR_STATUS3__TIME_OUT};
static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
- INTR_STATUS1__RST_COMP,
- INTR_STATUS2__RST_COMP,
- INTR_STATUS3__RST_COMP};
+ INTR_STATUS1__RST_COMP,
+ INTR_STATUS2__RST_COMP,
+ INTR_STATUS3__RST_COMP};
/* specifies the debug level of the driver */
-static int nand_debug_level = 0;
+static int nand_debug_level;
/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
-static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask);
-static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask);
+static uint32_t wait_for_irq(struct denali_nand_info *denali,
+ uint32_t irq_mask);
+static void denali_irq_enable(struct denali_nand_info *denali,
+ uint32_t int_mask);
static uint32_t read_interrupt_status(struct denali_nand_info *denali);
#define DEBUG_DENALI 0
/* This is a wrapper for writing to the denali registers.
* this allows us to create debug information so we can
- * observe how the driver is programming the device.
+ * observe how the driver is programming the device.
* it uses standard linux convention for (val, addr) */
static void denali_write32(uint32_t value, void *addr)
{
- iowrite32(value, addr);
+ iowrite32(value, addr);
#if DEBUG_DENALI
- printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff));
+ printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value,
+ (uint32_t)((uint32_t)addr & 0x1fff));
#endif
-}
+}
-/* Certain operations for the denali NAND controller use an indexed mode to read/write
- data. The operation is performed by writing the address value of the command to
- the device memory followed by the data. This function abstracts this common
- operation.
+/* Certain operations for the denali NAND controller use
+ * an indexed mode to read/write data. The operation is
+ * performed by writing the address value of the command
+ * to the device memory followed by the data. This function
+ * abstracts this common operation.
*/
-static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data)
+static void index_addr(struct denali_nand_info *denali,
+ uint32_t address, uint32_t data)
{
denali_write32(address, denali->flash_mem);
denali_write32(data, denali->flash_mem + 0x10);
@@ -161,7 +167,7 @@ static void index_addr_read_data(struct denali_nand_info *denali,
*pdata = ioread32(denali->flash_mem + 0x10);
}
-/* We need to buffer some data for some of the NAND core routines.
+/* We need to buffer some data for some of the NAND core routines.
* The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
@@ -183,7 +189,7 @@ static void read_status(struct denali_nand_info *denali)
reset_buf(denali);
/* initiate a device status read */
- cmd = MODE_11 | BANK(denali->flash_bank);
+ cmd = MODE_11 | BANK(denali->flash_bank);
index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
@@ -191,7 +197,8 @@ static void read_status(struct denali_nand_info *denali)
write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
#if DEBUG_DENALI
- printk("device reporting status value of 0x%2x\n", denali->buf.buf[0]);
+ printk(KERN_INFO "device reporting status value of 0x%2x\n",
+ denali->buf.buf[0]);
#endif
}
@@ -199,7 +206,7 @@ static void read_status(struct denali_nand_info *denali)
static void reset_bank(struct denali_nand_info *denali)
{
uint32_t irq_status = 0;
- uint32_t irq_mask = reset_complete[denali->flash_bank] |
+ uint32_t irq_mask = reset_complete[denali->flash_bank] |
operation_timeout[denali->flash_bank];
int bank = 0;
@@ -209,15 +216,13 @@ static void reset_bank(struct denali_nand_info *denali)
denali_write32(bank, denali->flash_reg + DEVICE_RESET);
irq_status = wait_for_irq(denali, irq_mask);
-
+
if (irq_status & operation_timeout[denali->flash_bank])
- {
printk(KERN_ERR "reset bank failed.\n");
- }
}
/* Reset the flash controller */
-static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
+static uint16_t denali_nand_reset(struct denali_nand_info *denali)
{
uint32_t i;
@@ -229,8 +234,10 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
denali->flash_reg + intr_status_addresses[i]);
for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
- denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET);
- while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) &
+ denali_write32(device_reset_banks[i],
+ denali->flash_reg + DEVICE_RESET);
+ while (!(ioread32(denali->flash_reg +
+ intr_status_addresses[i]) &
(reset_complete[i] | operation_timeout[i])))
;
if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
@@ -246,11 +253,12 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
return PASS;
}
-/* this routine calculates the ONFI timing values for a given mode and programs
- * the clocking register accordingly. The mode is determined by the get_onfi_nand_para
- routine.
+/* this routine calculates the ONFI timing values for a given mode and
+ * programs the clocking register accordingly. The mode is determined by
+ * the get_onfi_nand_para routine.
*/
-static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode)
+static void nand_onfi_timing_set(struct denali_nand_info *denali,
+ uint16_t mode)
{
uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
@@ -347,136 +355,24 @@ static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode
denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}
-/* configures the initial ECC settings for the controller */
-static void set_ecc_config(struct denali_nand_info *denali)
-{
-#if SUPPORT_8BITECC
- if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
- (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128))
- denali_write32(8, denali->flash_reg + ECC_CORRECTION);
-#endif
-
- if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE)
- == 1) {
- denali->dev_info.wECCBytesPerSector = 4;
- denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
- denali->dev_info.wNumPageSpareFlag =
- denali->dev_info.wPageSpareSize -
- denali->dev_info.wPageDataSize /
- (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
- denali->dev_info.wECCBytesPerSector
- - denali->dev_info.wSpareSkipBytes;
- } else {
- denali->dev_info.wECCBytesPerSector =
- (ioread32(denali->flash_reg + ECC_CORRECTION) &
- ECC_CORRECTION__VALUE) * 13 / 8;
- if ((denali->dev_info.wECCBytesPerSector) % 2 == 0)
- denali->dev_info.wECCBytesPerSector += 2;
- else
- denali->dev_info.wECCBytesPerSector += 1;
-
- denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
- denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize -
- denali->dev_info.wPageDataSize /
- (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
- denali->dev_info.wECCBytesPerSector
- - denali->dev_info.wSpareSkipBytes;
- }
-}
-
/* queries the NAND device to see what ONFI modes it supports. */
static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
{
int i;
- uint16_t blks_lun_l, blks_lun_h, n_of_luns;
- uint32_t blockperlun, id;
-
- denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);
-
- while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
- INTR_STATUS0__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS0) &
- INTR_STATUS0__TIME_OUT)))
- ;
-
- if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) {
- denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
- INTR_STATUS1__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS1) &
- INTR_STATUS1__TIME_OUT)))
- ;
-
- if (ioread32(denali->flash_reg + INTR_STATUS1) &
- INTR_STATUS1__RST_COMP) {
- denali_write32(DEVICE_RESET__BANK2,
- denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR_STATUS2) &
- INTR_STATUS2__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS2) &
- INTR_STATUS2__TIME_OUT)))
- ;
-
- if (ioread32(denali->flash_reg + INTR_STATUS2) &
- INTR_STATUS2__RST_COMP) {
- denali_write32(DEVICE_RESET__BANK3,
- denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR_STATUS3) &
- INTR_STATUS3__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS3) &
- INTR_STATUS3__TIME_OUT)))
- ;
- } else {
- printk(KERN_ERR "Getting a time out for bank 2!\n");
- }
- } else {
- printk(KERN_ERR "Getting a time out for bank 1!\n");
- }
- }
-
- denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0);
- denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1);
- denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2);
- denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3);
-
- denali->dev_info.wONFIDevFeatures =
- ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
- denali->dev_info.wONFIOptCommands =
- ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS);
- denali->dev_info.wONFITimingMode =
- ioread32(denali->flash_reg + ONFI_TIMING_MODE);
- denali->dev_info.wONFIPgmCacheTimingMode =
- ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE);
-
- n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
- ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
- blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
- blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
-
- blockperlun = (blks_lun_h << 16) | blks_lun_l;
-
- denali->dev_info.wTotalBlocks = n_of_luns * blockperlun;
-
+ /* we needn't to do a reset here because driver has already
+ * reset all the banks before
+ * */
if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
ONFI_TIMING_MODE__VALUE))
return FAIL;
for (i = 5; i > 0; i--) {
- if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i))
+ if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
+ (0x01 << i))
break;
}
- NAND_ONFi_Timing_Mode(denali, i);
-
- index_addr(denali, MODE_11 | 0, 0x90);
- index_addr(denali, MODE_11 | 1, 0);
-
- for (i = 0; i < 3; i++)
- index_addr_read_data(denali, MODE_11 | 2, &id);
-
- nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);
-
- denali->dev_info.MLCDevice = id & 0x0C;
+ nand_onfi_timing_set(denali, i);
/* By now, all the ONFI devices we know support the page cache */
/* rw feature. So here we enable the pipeline_rw_ahead feature */
@@ -486,25 +382,10 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
return PASS;
}
-static void get_samsung_nand_para(struct denali_nand_info *denali)
+static void get_samsung_nand_para(struct denali_nand_info *denali,
+ uint8_t device_id)
{
- uint8_t no_of_planes;
- uint32_t blk_size;
- uint64_t plane_size, capacity;
- uint32_t id_bytes[5];
- int i;
-
- index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
- index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
- for (i = 0; i < 5; i++)
- index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]);
-
- nand_dbg_print(NAND_DBG_DEBUG,
- "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
- id_bytes[0], id_bytes[1], id_bytes[2],
- id_bytes[3], id_bytes[4]);
-
- if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
+ if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
/* Set timing register values according to datasheet */
denali_write32(5, denali->flash_reg + ACC_CLKS);
denali_write32(20, denali->flash_reg + RE_2_WE);
@@ -514,19 +395,10 @@ static void get_samsung_nand_para(struct denali_nand_info *denali)
denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
}
-
- no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
- plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
- blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4);
- capacity = (uint64_t)128 * plane_size * no_of_planes;
-
- do_div(capacity, blk_size);
- denali->dev_info.wTotalBlocks = capacity;
}
static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
- void __iomem *scratch_reg;
uint32_t tmp;
/* Workaround to fix a controller bug which reports a wrong */
@@ -536,81 +408,52 @@ static void get_toshiba_nand_para(struct denali_nand_info *denali)
denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+ denali_write32(tmp,
+ denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
#if SUPPORT_15BITECC
denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
}
-
- /* As Toshiba NAND can not provide it's block number, */
- /* so here we need user to provide the correct block */
- /* number in a scratch register before the Linux NAND */
- /* driver is loaded. If no valid value found in the scratch */
- /* register, then we use default block number value */
- scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
- if (!scratch_reg) {
- printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
- __FILE__, __LINE__);
- denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
- } else {
- nand_dbg_print(NAND_DBG_WARN,
- "Spectra: ioremap reg address: 0x%p\n", scratch_reg);
- denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
- if (denali->dev_info.wTotalBlocks < 512)
- denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
- iounmap(scratch_reg);
- }
}
-static void get_hynix_nand_para(struct denali_nand_info *denali)
+static void get_hynix_nand_para(struct denali_nand_info *denali,
+ uint8_t device_id)
{
- void __iomem *scratch_reg;
uint32_t main_size, spare_size;
- switch (denali->dev_info.wDeviceID) {
+ switch (device_id) {
case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
- spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
- denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
- denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+ main_size = 4096 *
+ ioread32(denali->flash_reg + DEVICES_CONNECTED);
+ spare_size = 224 *
+ ioread32(denali->flash_reg + DEVICES_CONNECTED);
+ denali_write32(main_size,
+ denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+ denali_write32(spare_size,
+ denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
#if SUPPORT_15BITECC
denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
- denali->dev_info.MLCDevice = 1;
break;
default:
nand_dbg_print(NAND_DBG_WARN,
"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
- denali->dev_info.wDeviceID);
- }
-
- scratch_reg = ioremap_nocache(SCRATCH_REG_ADDR, SCRATCH_REG_SIZE);
- if (!scratch_reg) {
- printk(KERN_ERR "Spectra: ioremap failed in %s, Line %d",
- __FILE__, __LINE__);
- denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
- } else {
- nand_dbg_print(NAND_DBG_WARN,
- "Spectra: ioremap reg address: 0x%p\n", scratch_reg);
- denali->dev_info.wTotalBlocks = 1 << ioread8(scratch_reg);
- if (denali->dev_info.wTotalBlocks < 512)
- denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
- iounmap(scratch_reg);
+ device_id);
}
}
/* determines how many NAND chips are connected to the controller. Note for
- Intel CE4100 devices we don't support more than one device.
+ Intel CE4100 devices we don't support more than one device.
*/
static void find_valid_banks(struct denali_nand_info *denali)
{
@@ -621,7 +464,8 @@ static void find_valid_banks(struct denali_nand_info *denali)
for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
- index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
+ index_addr_read_data(denali,
+ (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
nand_dbg_print(NAND_DBG_DEBUG,
"Return 1st ID for bank[%d]: %x\n", i, id[i]);
@@ -637,14 +481,12 @@ static void find_valid_banks(struct denali_nand_info *denali)
}
}
- if (denali->platform == INTEL_CE4100)
- {
+ if (denali->platform == INTEL_CE4100) {
/* Platform limitations of the CE4100 device limit
* users to a single chip solution for NAND.
- * Multichip support is not enabled.
- */
- if (denali->total_used_banks != 1)
- {
+ * Multichip support is not enabled.
+ */
+ if (denali->total_used_banks != 1) {
printk(KERN_ERR "Sorry, Intel CE4100 only supports "
"a single NAND device.\n");
BUG();
@@ -656,150 +498,60 @@ static void find_valid_banks(struct denali_nand_info *denali)
static void detect_partition_feature(struct denali_nand_info *denali)
{
+ /* For MRST platform, denali->fwblks represent the
+ * number of blocks firmware is taken,
+ * FW is in protect partition and MTD driver has no
+ * permission to access it. So let driver know how many
+ * blocks it can't touch.
+ * */
if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
- denali->dev_info.wSpectraStartBlock =
+ denali->fwblks =
((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
MIN_MAX_BANK_1__MIN_VALUE) *
- denali->dev_info.wTotalBlocks)
+ denali->blksperchip)
+
(ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
MIN_BLK_ADDR_1__VALUE);
-
- denali->dev_info.wSpectraEndBlock =
- (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
- MIN_MAX_BANK_1__MAX_VALUE) >> 2) *
- denali->dev_info.wTotalBlocks)
- +
- (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
- MAX_BLK_ADDR_1__VALUE);
-
- denali->dev_info.wTotalBlocks *= denali->total_used_banks;
-
- if (denali->dev_info.wSpectraEndBlock >=
- denali->dev_info.wTotalBlocks) {
- denali->dev_info.wSpectraEndBlock =
- denali->dev_info.wTotalBlocks - 1;
- }
-
- denali->dev_info.wDataBlockNum =
- denali->dev_info.wSpectraEndBlock -
- denali->dev_info.wSpectraStartBlock + 1;
- } else {
- denali->dev_info.wTotalBlocks *= denali->total_used_banks;
- denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
- denali->dev_info.wSpectraEndBlock =
- denali->dev_info.wTotalBlocks - 1;
- denali->dev_info.wDataBlockNum =
- denali->dev_info.wSpectraEndBlock -
- denali->dev_info.wSpectraStartBlock + 1;
- }
- } else {
- denali->dev_info.wTotalBlocks *= denali->total_used_banks;
- denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
- denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1;
- denali->dev_info.wDataBlockNum =
- denali->dev_info.wSpectraEndBlock -
- denali->dev_info.wSpectraStartBlock + 1;
- }
+ } else
+ denali->fwblks = SPECTRA_START_BLOCK;
+ } else
+ denali->fwblks = SPECTRA_START_BLOCK;
}
-static void dump_device_info(struct denali_nand_info *denali)
-{
- nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n");
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n",
- denali->dev_info.wDeviceMaker);
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n",
- denali->dev_info.wDeviceID);
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n",
- denali->dev_info.wDeviceType);
- nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n",
- denali->dev_info.wSpectraStartBlock);
- nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n",
- denali->dev_info.wSpectraEndBlock);
- nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n",
- denali->dev_info.wTotalBlocks);
- nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n",
- denali->dev_info.wPagesPerBlock);
- nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n",
- denali->dev_info.wPageSize);
- nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n",
- denali->dev_info.wPageDataSize);
- nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n",
- denali->dev_info.wPageSpareSize);
- nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n",
- denali->dev_info.wNumPageSpareFlag);
- nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n",
- denali->dev_info.wECCBytesPerSector);
- nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n",
- denali->dev_info.wBlockSize);
- nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n",
- denali->dev_info.wBlockDataSize);
- nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n",
- denali->dev_info.wDataBlockNum);
- nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n",
- denali->dev_info.bPlaneNum);
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n",
- denali->dev_info.wDeviceMainAreaSize);
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n",
- denali->dev_info.wDeviceSpareAreaSize);
- nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n",
- denali->dev_info.wDevicesConnected);
- nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n",
- denali->dev_info.wDeviceWidth);
- nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n",
- denali->dev_info.wHWRevision);
- nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n",
- denali->dev_info.wHWFeatures);
- nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n",
- denali->dev_info.wONFIDevFeatures);
- nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n",
- denali->dev_info.wONFIOptCommands);
- nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n",
- denali->dev_info.wONFITimingMode);
- nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n",
- denali->dev_info.wONFIPgmCacheTimingMode);
- nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n",
- denali->dev_info.MLCDevice ? "Yes" : "No");
- nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n",
- denali->dev_info.wSpareSkipBytes);
- nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n",
- denali->dev_info.nBitsInPageNumber);
- nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n",
- denali->dev_info.nBitsInPageDataSize);
- nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n",
- denali->dev_info.nBitsInBlockDataSize);
-}
-
-static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
+static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
{
uint16_t status = PASS;
- uint8_t no_of_planes;
+ uint32_t id_bytes[5], addr;
+ uint8_t i, maf_id, device_id;
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
- denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID);
- denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID);
- denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0);
- denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1);
- denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2);
-
- denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c;
+ /* Use read id method to get device ID and other
+ * params. For some NAND chips, controller can't
+ * report the correct device ID by reading from
+ * DEVICE_ID register
+ * */
+ addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
+ index_addr(denali, (uint32_t)addr | 0, 0x90);
+ index_addr(denali, (uint32_t)addr | 1, 0);
+ for (i = 0; i < 5; i++)
+ index_addr_read_data(denali, addr | 2, &id_bytes[i]);
+ maf_id = id_bytes[0];
+ device_id = id_bytes[1];
if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
if (FAIL == get_onfi_nand_para(denali))
return FAIL;
- } else if (denali->dev_info.wDeviceMaker == 0xEC) { /* Samsung NAND */
- get_samsung_nand_para(denali);
- } else if (denali->dev_info.wDeviceMaker == 0x98) { /* Toshiba NAND */
+ } else if (maf_id == 0xEC) { /* Samsung NAND */
+ get_samsung_nand_para(denali, device_id);
+ } else if (maf_id == 0x98) { /* Toshiba NAND */
get_toshiba_nand_para(denali);
- } else if (denali->dev_info.wDeviceMaker == 0xAD) { /* Hynix NAND */
- get_hynix_nand_para(denali);
- } else {
- denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
+ } else if (maf_id == 0xAD) { /* Hynix NAND */
+ get_hynix_nand_para(denali, device_id);
}
nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
@@ -814,88 +566,20 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
ioread32(denali->flash_reg + CS_SETUP_CNT));
- denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION);
- denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES);
-
- denali->dev_info.wDeviceMainAreaSize =
- ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
- denali->dev_info.wDeviceSpareAreaSize =
- ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
-
- denali->dev_info.wPageDataSize =
- ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
-
- /* Note: When using the Micon 4K NAND device, the controller will report
- * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes.
- * And if force set it to 218 bytes, the controller can not work
- * correctly. So just let it be. But keep in mind that this bug may
- * cause
- * other problems in future. - Yunpeng 2008-10-10
- */
- denali->dev_info.wPageSpareSize =
- ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
-
- denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK);
-
- denali->dev_info.wPageSize =
- denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize;
- denali->dev_info.wBlockSize =
- denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock;
- denali->dev_info.wBlockDataSize =
- denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize;
-
- denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH);
- denali->dev_info.wDeviceType =
- ((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8);
-
- denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED);
-
- denali->dev_info.wSpareSkipBytes =
- ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
- denali->dev_info.wDevicesConnected;
-
- denali->dev_info.nBitsInPageNumber =
- ilog2(denali->dev_info.wPagesPerBlock);
- denali->dev_info.nBitsInPageDataSize =
- ilog2(denali->dev_info.wPageDataSize);
- denali->dev_info.nBitsInBlockDataSize =
- ilog2(denali->dev_info.wBlockDataSize);
-
- set_ecc_config(denali);
-
- no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) &
- NUMBER_OF_PLANES__VALUE;
-
- switch (no_of_planes) {
- case 0:
- case 1:
- case 3:
- case 7:
- denali->dev_info.bPlaneNum = no_of_planes + 1;
- break;
- default:
- status = FAIL;
- break;
- }
-
find_valid_banks(denali);
detect_partition_feature(denali);
- dump_device_info(denali);
-
/* If the user specified to override the default timings
- * with a specific ONFI mode, we apply those changes here.
+ * with a specific ONFI mode, we apply those changes here.
*/
if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
- {
- NAND_ONFi_Timing_Mode(denali, onfi_timing_mode);
- }
+ nand_onfi_timing_set(denali, onfi_timing_mode);
return status;
}
-static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali,
+static void denali_set_intr_modes(struct denali_nand_info *denali,
uint16_t INT_ENABLE)
{
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
@@ -912,7 +596,7 @@ static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali,
*/
static inline bool is_flash_bank_valid(int flash_bank)
{
- return (flash_bank >= 0 && flash_bank < 4);
+ return (flash_bank >= 0 && flash_bank < 4);
}
static void denali_irq_init(struct denali_nand_info *denali)
@@ -920,7 +604,7 @@ static void denali_irq_init(struct denali_nand_info *denali)
uint32_t int_mask = 0;
/* Disable global interrupts */
- NAND_LLD_Enable_Disable_Interrupts(denali, false);
+ denali_set_intr_modes(denali, false);
int_mask = DENALI_IRQ_ALL;
@@ -935,11 +619,12 @@ static void denali_irq_init(struct denali_nand_info *denali)
static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
- NAND_LLD_Enable_Disable_Interrupts(denali, false);
+ denali_set_intr_modes(denali, false);
free_irq(irqnum, denali);
}
-static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask)
+static void denali_irq_enable(struct denali_nand_info *denali,
+ uint32_t int_mask)
{
denali_write32(int_mask, denali->flash_reg + INTR_EN0);
denali_write32(int_mask, denali->flash_reg + INTR_EN1);
@@ -948,15 +633,16 @@ static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask
}
/* This function only returns when an interrupt that this driver cares about
- * occurs. This is to reduce the overhead of servicing interrupts
+ * occurs. This is to reduce the overhead of servicing interrupts
*/
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
- return (read_interrupt_status(denali) & DENALI_IRQ_ALL);
+ return read_interrupt_status(denali) & DENALI_IRQ_ALL;
}
/* Interrupts are cleared by writing a 1 to the appropriate status bit */
-static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask)
+static inline void clear_interrupt(struct denali_nand_info *denali,
+ uint32_t irq_mask)
{
uint32_t intr_status_reg = 0;
@@ -995,17 +681,15 @@ static void print_irq_log(struct denali_nand_info *denali)
{
int i = 0;
- printk("ISR debug log index = %X\n", denali->idx);
+ printk(KERN_INFO "ISR debug log index = %X\n", denali->idx);
for (i = 0; i < 32; i++)
- {
- printk("%08X: %08X\n", i, denali->irq_debug_array[i]);
- }
+ printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]);
}
#endif
-/* This is the interrupt service routine. It handles all interrupts
- * sent to this device. Note that on CE4100, this is a shared
- * interrupt.
+/* This is the interrupt service routine. It handles all interrupts
+ * sent to this device. Note that on CE4100, this is a shared
+ * interrupt.
*/
static irqreturn_t denali_isr(int irq, void *dev_id)
{
@@ -1015,20 +699,20 @@ static irqreturn_t denali_isr(int irq, void *dev_id)
spin_lock(&denali->irq_lock);
- /* check to see if a valid NAND chip has
- * been selected.
+ /* check to see if a valid NAND chip has
+ * been selected.
*/
- if (is_flash_bank_valid(denali->flash_bank))
- {
- /* check to see if controller generated
+ if (is_flash_bank_valid(denali->flash_bank)) {
+ /* check to see if controller generated
* the interrupt, since this is a shared interrupt */
- if ((irq_status = denali_irq_detected(denali)) != 0)
- {
+ irq_status = denali_irq_detected(denali);
+ if (irq_status != 0) {
#if DEBUG_DENALI
- denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status;
+ denali->irq_debug_array[denali->idx++] =
+ 0x10000000 | irq_status;
denali->idx %= 32;
- printk("IRQ status = 0x%04x\n", irq_status);
+ printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
#endif
/* handle interrupt */
/* first acknowledge it */
@@ -1054,61 +738,62 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
bool retry = false;
unsigned long timeout = msecs_to_jiffies(1000);
- do
- {
+ do {
#if DEBUG_DENALI
- printk("waiting for 0x%x\n", irq_mask);
+ printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
#endif
- comp_res = wait_for_completion_timeout(&denali->complete, timeout);
+ comp_res =
+ wait_for_completion_timeout(&denali->complete, timeout);
spin_lock_irq(&denali->irq_lock);
intr_status = denali->irq_status;
#if DEBUG_DENALI
- denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status;
+ denali->irq_debug_array[denali->idx++] =
+ 0x20000000 | (irq_mask << 16) | intr_status;
denali->idx %= 32;
#endif
- if (intr_status & irq_mask)
- {
+ if (intr_status & irq_mask) {
denali->irq_status &= ~irq_mask;
spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
- if (retry) printk("status on retry = 0x%x\n", intr_status);
+ if (retry)
+ printk(KERN_INFO "status on retry = 0x%x\n",
+ intr_status);
#endif
/* our interrupt was detected */
break;
- }
- else
- {
- /* these are not the interrupts you are looking for -
- need to wait again */
+ } else {
+ /* these are not the interrupts you are looking for -
+ * need to wait again */
spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
print_irq_log(denali);
- printk("received irq nobody cared: irq_status = 0x%x,"
- " irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res);
+ printk(KERN_INFO "received irq nobody cared:"
+ " irq_status = 0x%x, irq_mask = 0x%x,"
+ " timeout = %ld\n", intr_status,
+ irq_mask, comp_res);
#endif
retry = true;
}
} while (comp_res != 0);
- if (comp_res == 0)
- {
+ if (comp_res == 0) {
/* timeout */
- printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
- intr_status, irq_mask);
+ printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
+ intr_status, irq_mask);
intr_status = 0;
}
return intr_status;
}
-/* This helper function setups the registers for ECC and whether or not
+/* This helper function setups the registers for ECC and whether or not
the spare area will be transfered. */
-static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
bool transfer_spare)
{
- int ecc_en_flag = 0, transfer_spare_flag = 0;
+ int ecc_en_flag = 0, transfer_spare_flag = 0;
/* set ECC, transfer spare bits if needed */
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
@@ -1116,85 +801,85 @@ static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
/* Enable spare area/ECC per user's request. */
denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
- denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
+ denali_write32(transfer_spare_flag,
+ denali->flash_reg + TRANSFER_SPARE_REG);
}
-/* sends a pipeline command operation to the controller. See the Denali NAND
- controller's user guide for more information (section 4.2.3.6).
+/* sends a pipeline command operation to the controller. See the Denali NAND
+ controller's user guide for more information (section 4.2.3.6).
*/
-static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en,
- bool transfer_spare, int access_type,
- int op)
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
+ bool ecc_en,
+ bool transfer_spare,
+ int access_type,
+ int op)
{
int status = PASS;
- uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
+ uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
irq_mask = 0;
- if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP;
- else if (op == DENALI_WRITE) irq_mask = 0;
- else BUG();
+ if (op == DENALI_READ)
+ irq_mask = INTR_STATUS0__LOAD_COMP;
+ else if (op == DENALI_WRITE)
+ irq_mask = 0;
+ else
+ BUG();
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4);
+ denali->irq_debug_array[denali->idx++] =
+ 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
+ (access_type << 4);
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
/* clear interrupts */
- clear_interrupts(denali);
+ clear_interrupts(denali);
addr = BANK(denali->flash_bank) | denali->page;
- if (op == DENALI_WRITE && access_type != SPARE_ACCESS)
- {
- cmd = MODE_01 | addr;
+ if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
+ cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
- }
- else if (op == DENALI_WRITE && access_type == SPARE_ACCESS)
- {
+ } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
/* read spare area */
- cmd = MODE_10 | addr;
+ cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
- cmd = MODE_01 | addr;
+ cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
- }
- else if (op == DENALI_READ)
- {
+ } else if (op == DENALI_READ) {
/* setup page read request for access type */
- cmd = MODE_10 | addr;
+ cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
/* page 33 of the NAND controller spec indicates we should not
- use the pipeline commands in Spare area only mode. So we
+ use the pipeline commands in Spare area only mode. So we
don't.
*/
- if (access_type == SPARE_ACCESS)
- {
+ if (access_type == SPARE_ACCESS) {
cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
- }
- else
- {
- index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count);
-
- /* wait for command to be accepted
- * can always use status0 bit as the mask is identical for each
+ } else {
+ index_addr(denali, (uint32_t)cmd,
+ 0x2000 | op | page_count);
+
+ /* wait for command to be accepted
+ * can always use status0 bit as the
+ * mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status == 0)
- {
+ if (irq_status == 0) {
printk(KERN_ERR "cmd, page, addr on timeout "
- "(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr);
+ "(0x%x, 0x%x, 0x%x)\n", cmd,
+ denali->page, addr);
status = FAIL;
- }
- else
- {
+ } else {
cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
}
@@ -1204,36 +889,35 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en
}
/* helper function that simply writes a buffer to the flash */
-static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf,
- int len)
+static int write_data_to_flash_mem(struct denali_nand_info *denali,
+ const uint8_t *buf,
+ int len)
{
uint32_t i = 0, *buf32;
- /* verify that the len is a multiple of 4. see comment in
- * read_data_from_flash_mem() */
+ /* verify that the len is a multiple of 4. see comment in
+ * read_data_from_flash_mem() */
BUG_ON((len % 4) != 0);
/* write the data to the flash memory */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
- {
denali_write32(*buf32++, denali->flash_mem + 0x10);
- }
- return i*4; /* intent is to return the number of bytes read */
+ return i*4; /* intent is to return the number of bytes read */
}
/* helper function that simply reads a buffer from the flash */
-static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf,
- int len)
+static int read_data_from_flash_mem(struct denali_nand_info *denali,
+ uint8_t *buf,
+ int len)
{
uint32_t i = 0, *buf32;
/* we assume that len will be a multiple of 4, if not
* it would be nice to know about it ASAP rather than
- * have random failures...
- *
- * This assumption is based on the fact that this
- * function is designed to be used to read flash pages,
+ * have random failures...
+ * This assumption is based on the fact that this
+ * function is designed to be used to read flash pages,
* which are typically multiples of 4...
*/
@@ -1242,10 +926,8 @@ static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *bu
/* transfer the data from the flash */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
- {
*buf32++ = ioread32(denali->flash_mem + 0x10);
- }
- return i*4; /* intent is to return the number of bytes read */
+ return i*4; /* intent is to return the number of bytes read */
}
/* writes OOB data to the device */
@@ -1253,38 +935,35 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
+ uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
INTR_STATUS0__PROGRAM_FAIL;
int status = 0;
denali->page = page;
- if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
- DENALI_WRITE) == PASS)
- {
+ if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
+ DENALI_WRITE) == PASS) {
write_data_to_flash_mem(denali, buf, mtd->oobsize);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize;
+ denali->irq_debug_array[denali->idx++] =
+ 0x80000000 | mtd->oobsize;
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
-
+
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status == 0)
- {
+ if (irq_status == 0) {
printk(KERN_ERR "OOB write failed\n");
status = -EIO;
}
- }
- else
- {
+ } else {
printk(KERN_ERR "unable to send pipeline command\n");
- status = -EIO;
+ status = -EIO;
}
return status;
}
@@ -1293,60 +972,56 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0;
+ uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
+ irq_status = 0, addr = 0x0, cmd = 0x0;
denali->page = page;
#if DEBUG_DENALI
- printk("read_oob %d\n", page);
+ printk(KERN_INFO "read_oob %d\n", page);
#endif
- if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
- DENALI_READ) == PASS)
- {
- read_data_from_flash_mem(denali, buf, mtd->oobsize);
+ if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
+ DENALI_READ) == PASS) {
+ read_data_from_flash_mem(denali, buf, mtd->oobsize);
- /* wait for command to be accepted
+ /* wait for command to be accepted
* can always use status0 bit as the mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0)
- {
- printk(KERN_ERR "page on OOB timeout %d\n", denali->page);
- }
+ printk(KERN_ERR "page on OOB timeout %d\n",
+ denali->page);
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
* and the last transaction was a SPARE_ACCESS. Block erase
* is reliable (according to the MTD test infrastructure)
- * if you are in MAIN_ACCESS.
+ * if you are in MAIN_ACCESS.
*/
addr = BANK(denali->flash_bank) | denali->page;
- cmd = MODE_10 | addr;
+ cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize;
+ denali->irq_debug_array[denali->idx++] =
+ 0x60000000 | mtd->oobsize;
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
}
}
-/* this function examines buffers to see if they contain data that
+/* this function examines buffers to see if they contain data that
* indicate that the buffer is part of an erased region of flash.
*/
bool is_erased(uint8_t *buf, int len)
{
int i = 0;
for (i = 0; i < len; i++)
- {
if (buf[i] != 0xFF)
- {
return false;
- }
- }
return true;
}
#define ECC_SECTOR_SIZE 512
@@ -1358,65 +1033,59 @@ bool is_erased(uint8_t *buf, int len)
#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
-static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
+static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
uint8_t *oobbuf, uint32_t irq_status)
{
bool check_erased_page = false;
- if (irq_status & INTR_STATUS0__ECC_ERR)
- {
+ if (irq_status & INTR_STATUS0__ECC_ERR) {
/* read the ECC errors. we'll ignore them for now */
uint32_t err_address = 0, err_correction_info = 0;
uint32_t err_byte = 0, err_sector = 0, err_device = 0;
uint32_t err_correction_value = 0;
- do
- {
- err_address = ioread32(denali->flash_reg +
+ do {
+ err_address = ioread32(denali->flash_reg +
ECC_ERROR_ADDRESS);
err_sector = ECC_SECTOR(err_address);
err_byte = ECC_BYTE(err_address);
- err_correction_info = ioread32(denali->flash_reg +
+ err_correction_info = ioread32(denali->flash_reg +
ERR_CORRECTION_INFO);
- err_correction_value =
+ err_correction_value =
ECC_CORRECTION_VALUE(err_correction_info);
err_device = ECC_ERR_DEVICE(err_correction_info);
- if (ECC_ERROR_CORRECTABLE(err_correction_info))
- {
+ if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
/* offset in our buffer is computed as:
- sector number * sector size + offset in
+ sector number * sector size + offset in
sector
*/
- int offset = err_sector * ECC_SECTOR_SIZE +
+ int offset = err_sector * ECC_SECTOR_SIZE +
err_byte;
- if (offset < denali->mtd.writesize)
- {
+ if (offset < denali->mtd.writesize) {
/* correct the ECC error */
buf[offset] ^= err_correction_value;
denali->mtd.ecc_stats.corrected++;
- }
- else
- {
+ } else {
/* bummer, couldn't correct the error */
printk(KERN_ERR "ECC offset invalid\n");
denali->mtd.ecc_stats.failed++;
}
- }
- else
- {
- /* if the error is not correctable, need to
- * look at the page to see if it is an erased page.
- * if so, then it's not a real ECC error */
+ } else {
+ /* if the error is not correctable, need to
+ * look at the page to see if it is an erased
+ * page. if so, then it's not a real ECC error
+ * */
check_erased_page = true;
}
-#if DEBUG_DENALI
- printk("Detected ECC error in page %d: err_addr = 0x%08x,"
- " info to fix is 0x%08x\n", denali->page, err_address,
- err_correction_info);
+#if DEBUG_DENALI
+ printk(KERN_INFO "Detected ECC error in page %d:"
+ " err_addr = 0x%08x, info to fix is"
+ " 0x%08x\n", denali->page, err_address,
+ err_correction_info);
#endif
} while (!ECC_LAST_ERR(err_correction_info));
}
@@ -1428,7 +1097,8 @@ static void denali_enable_dma(struct denali_nand_info *denali, bool en)
{
uint32_t reg_val = 0x0;
- if (en) reg_val = DMA_ENABLE__FLAG;
+ if (en)
+ reg_val = DMA_ENABLE__FLAG;
denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
ioread32(denali->flash_reg + DMA_ENABLE);
@@ -1458,9 +1128,9 @@ static void denali_setup_dma(struct denali_nand_info *denali, int op)
index_addr(denali, mode | 0x14000, 0x2400);
}
-/* writes a page. user specifies type, and this function handles the
+/* writes a page. user specifies type, and this function handles the
configuration details. */
-static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
+static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, bool raw_xfer)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
@@ -1470,7 +1140,7 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
+ uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
INTR_STATUS0__PROGRAM_FAIL;
/* if it is a raw xfer, we want to disable ecc, and send
@@ -1483,74 +1153,73 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
/* copy buffer into DMA buffer */
memcpy(denali->buf.buf, buf, mtd->writesize);
- if (raw_xfer)
- {
+ if (raw_xfer) {
/* transfer the data to the spare area */
- memcpy(denali->buf.buf + mtd->writesize,
- chip->oob_poi,
- mtd->oobsize);
+ memcpy(denali->buf.buf + mtd->writesize,
+ chip->oob_poi,
+ mtd->oobsize);
}
pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
clear_interrupts(denali);
- denali_enable_dma(denali, true);
+ denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_WRITE);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
- if (irq_status == 0)
- {
- printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer);
- denali->status =
- (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL :
- PASS;
+ if (irq_status == 0) {
+ printk(KERN_ERR "timeout on write_page"
+ " (type = %d)\n", raw_xfer);
+ denali->status =
+ (irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
+ NAND_STATUS_FAIL : PASS;
}
- denali_enable_dma(denali, false);
+ denali_enable_dma(denali, false);
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
}
/* NAND core entry points */
-/* this is the callback that the NAND core calls to write a page. Since
- writing a page with ECC or without is similar, all the work is done
+/* this is the callback that the NAND core calls to write a page. Since
+ writing a page with ECC or without is similar, all the work is done
by write_page above. */
-static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
/* for regular page writes, we let HW handle all the ECC
- * data written to the device. */
+ * data written to the device. */
write_page(mtd, chip, buf, false);
}
-/* This is the callback that the NAND core calls to write a page without ECC.
+/* This is the callback that the NAND core calls to write a page without ECC.
raw access is similiar to ECC page writes, so all the work is done in the
- write_page() function above.
+ write_page() function above.
*/
-static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
- /* for raw page writes, we want to disable ECC and simply write
+ /* for raw page writes, we want to disable ECC and simply write
whatever data is in the buffer. */
write_page(mtd, chip, buf, true);
}
-static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
- return write_oob_data(mtd, chip->oob_poi, page);
+ return write_oob_data(mtd, chip->oob_poi, page);
}
-static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int sndcmd)
{
read_oob_data(mtd, chip->oob_poi, page);
- return 0; /* notify NAND core to send command to
- * NAND device. */
+ return 0; /* notify NAND core to send command to
+ NAND device. */
}
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
@@ -1563,7 +1232,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
- uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
+ uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
INTR_STATUS0__ECC_ERR;
bool check_erased_page = false;
@@ -1581,26 +1250,20 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
memcpy(buf, denali->buf.buf, mtd->writesize);
-
+
check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
denali_enable_dma(denali, false);
- if (check_erased_page)
- {
+ if (check_erased_page) {
read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
/* check ECC failures that may have occurred on erased pages */
- if (check_erased_page)
- {
+ if (check_erased_page) {
if (!is_erased(buf, denali->mtd.writesize))
- {
denali->mtd.ecc_stats.failed++;
- }
if (!is_erased(buf, denali->mtd.oobsize))
- {
denali->mtd.ecc_stats.failed++;
- }
- }
+ }
}
return 0;
}
@@ -1616,7 +1279,7 @@ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
-
+
setup_ecc_for_xfer(denali, false, true);
denali_enable_dma(denali, true);
@@ -1644,12 +1307,10 @@ static uint8_t denali_read_byte(struct mtd_info *mtd)
uint8_t result = 0xff;
if (denali->buf.head < denali->buf.tail)
- {
result = denali->buf.buf[denali->buf.head++];
- }
#if DEBUG_DENALI
- printk("read byte -> 0x%02x\n", result);
+ printk(KERN_INFO "read byte -> 0x%02x\n", result);
#endif
return result;
}
@@ -1658,7 +1319,7 @@ static void denali_select_chip(struct mtd_info *mtd, int chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
#if DEBUG_DENALI
- printk("denali select chip %d\n", chip);
+ printk(KERN_INFO "denali select chip %d\n", chip);
#endif
spin_lock_irq(&denali->irq_lock);
denali->flash_bank = chip;
@@ -1672,7 +1333,7 @@ static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
denali->status = 0;
#if DEBUG_DENALI
- printk("waitfunc %d\n", status);
+ printk(KERN_INFO "waitfunc %d\n", status);
#endif
return status;
}
@@ -1684,76 +1345,74 @@ static void denali_erase(struct mtd_info *mtd, int page)
uint32_t cmd = 0x0, irq_status = 0;
#if DEBUG_DENALI
- printk("erase page: %d\n", page);
+ printk(KERN_INFO "erase page: %d\n", page);
#endif
/* clear interrupts */
- clear_interrupts(denali);
+ clear_interrupts(denali);
/* setup page read request for access type */
cmd = MODE_10 | BANK(denali->flash_bank) | page;
index_addr(denali, (uint32_t)cmd, 0x1);
/* wait for erase to complete or failure to occur */
- irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
+ irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
INTR_STATUS0__ERASE_FAIL);
- denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL :
- PASS;
+ denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
+ NAND_STATUS_FAIL : PASS;
}
-static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
+ uint32_t addr, id;
+ int i;
#if DEBUG_DENALI
- printk("cmdfunc: 0x%x %d %d\n", cmd, col, page);
+ printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
#endif
- switch (cmd)
- {
- case NAND_CMD_PAGEPROG:
- break;
- case NAND_CMD_STATUS:
- read_status(denali);
- break;
- case NAND_CMD_READID:
- reset_buf(denali);
- if (denali->flash_bank < denali->total_used_banks)
- {
- /* write manufacturer information into nand
- buffer for NAND subsystem to fetch.
- */
- write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
- write_byte_to_buf(denali, denali->dev_info.wDeviceID);
- write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
- write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
- write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
- }
- else
- {
- int i;
- for (i = 0; i < 5; i++)
- write_byte_to_buf(denali, 0xff);
- }
- break;
- case NAND_CMD_READ0:
- case NAND_CMD_SEQIN:
- denali->page = page;
- break;
- case NAND_CMD_RESET:
- reset_bank(denali);
- break;
- case NAND_CMD_READOOB:
- /* TODO: Read OOB data */
- break;
- default:
- printk(KERN_ERR ": unsupported command received 0x%x\n", cmd);
- break;
+ switch (cmd) {
+ case NAND_CMD_PAGEPROG:
+ break;
+ case NAND_CMD_STATUS:
+ read_status(denali);
+ break;
+ case NAND_CMD_READID:
+ reset_buf(denali);
+ /*sometimes ManufactureId read from register is not right
+ * e.g. some of Micron MT29F32G08QAA MLC NAND chips
+ * So here we send READID cmd to NAND insteand
+ * */
+ addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
+ index_addr(denali, (uint32_t)addr | 0, 0x90);
+ index_addr(denali, (uint32_t)addr | 1, 0);
+ for (i = 0; i < 5; i++) {
+ index_addr_read_data(denali,
+ (uint32_t)addr | 2,
+ &id);
+ write_byte_to_buf(denali, id);
+ }
+ break;
+ case NAND_CMD_READ0:
+ case NAND_CMD_SEQIN:
+ denali->page = page;
+ break;
+ case NAND_CMD_RESET:
+ reset_bank(denali);
+ break;
+ case NAND_CMD_READOOB:
+ /* TODO: Read OOB data */
+ break;
+ default:
+ printk(KERN_ERR ": unsupported command"
+ " received 0x%x\n", cmd);
+ break;
}
}
/* stubs for ECC functions not used by the NAND core */
-static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
+static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc_code)
{
printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
@@ -1761,7 +1420,7 @@ static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
return -EIO;
}
-static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
+static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
@@ -1779,10 +1438,18 @@ static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
+ /* tell driver how many bit controller will skip before
+ * writing ECC code in OOB, this register may be already
+ * set by firmware. So we read this value out.
+ * if this value is 0, just let it be.
+ * */
+ denali->bbtskipbytes = ioread32(denali->flash_reg +
+ SPARE_AREA_SKIP_BYTES);
denali_irq_init(denali);
- NAND_Flash_Reset(denali);
+ denali_nand_reset(denali);
denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
- denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE);
+ denali_write32(CHIP_EN_DONT_CARE__FLAG,
+ denali->flash_reg + CHIP_ENABLE_DONT_CARE);
denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
@@ -1792,25 +1459,18 @@ static void denali_hw_init(struct denali_nand_info *denali)
denali_write32(1, denali->flash_reg + ECC_ENABLE);
}
-/* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */
-#define ECC_BYTES_SLC 4 * (2048 / ECC_SECTOR_SIZE)
-static struct nand_ecclayout nand_oob_slc = {
- .eccbytes = 4,
- .eccpos = { 0, 1, 2, 3 }, /* not used */
- .oobfree = {{
- .offset = ECC_BYTES_SLC,
- .length = 64 - ECC_BYTES_SLC
- }}
+/* Althogh controller spec said SLC ECC is forceb to be 4bit,
+ * but denali controller in MRST only support 15bit and 8bit ECC
+ * correction
+ * */
+#define ECC_8BITS 14
+static struct nand_ecclayout nand_8bit_oob = {
+ .eccbytes = 14,
};
-#define ECC_BYTES_MLC 14 * (2048 / ECC_SECTOR_SIZE)
-static struct nand_ecclayout nand_oob_mlc_14bit = {
- .eccbytes = 14,
- .eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
- .oobfree = {{
- .offset = ECC_BYTES_MLC,
- .length = 64 - ECC_BYTES_MLC
- }}
+#define ECC_15BITS 26
+static struct nand_ecclayout nand_15bit_oob = {
+ .eccbytes = 26,
};
static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
@@ -1842,12 +1502,12 @@ void denali_drv_init(struct denali_nand_info *denali)
denali->idx = 0;
/* setup interrupt handler */
- /* the completion object will be used to notify
+ /* the completion object will be used to notify
* the callee that the interrupt is done */
init_completion(&denali->complete);
/* the spinlock will be used to synchronize the ISR
- * with any element that might be access shared
+ * with any element that might be access shared
* data (interrupt status) */
spin_lock_init(&denali->irq_lock);
@@ -1880,13 +1540,12 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
}
if (id->driver_data == INTEL_CE4100) {
- /* Due to a silicon limitation, we can only support
- * ONFI timing mode 1 and below.
- */
- if (onfi_timing_mode < -1 || onfi_timing_mode > 1)
- {
- printk("Intel CE4100 only supports ONFI timing mode 1 "
- "or below\n");
+ /* Due to a silicon limitation, we can only support
+ * ONFI timing mode 1 and below.
+ */
+ if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
+ printk(KERN_ERR "Intel CE4100 only supports"
+ " ONFI timing mode 1 or below\n");
ret = -EINVAL;
goto failed_enable;
}
@@ -1905,7 +1564,9 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
mem_base = csr_base + csr_len;
mem_len = csr_len;
nand_dbg_print(NAND_DBG_WARN,
- "Spectra: No second BAR for PCI device; assuming %08Lx\n",
+ "Spectra: No second"
+ " BAR for PCI device;"
+ " assuming %08Lx\n",
(uint64_t)csr_base);
}
}
@@ -1913,16 +1574,16 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
/* Is 32-bit DMA supported? */
ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
- if (ret)
- {
+ if (ret) {
printk(KERN_ERR "Spectra: no usable DMA configuration\n");
goto failed_enable;
}
- denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE,
- PCI_DMA_BIDIRECTIONAL);
+ denali->buf.dma_buf =
+ pci_map_single(dev, denali->buf.buf,
+ DENALI_BUF_SIZE,
+ PCI_DMA_BIDIRECTIONAL);
- if (pci_dma_mapping_error(dev, denali->buf.dma_buf))
- {
+ if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
goto failed_enable;
}
@@ -1970,22 +1631,11 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
}
/* now that our ISR is registered, we can enable interrupts */
- NAND_LLD_Enable_Disable_Interrupts(denali, true);
+ denali_set_intr_modes(denali, true);
pci_set_drvdata(dev, denali);
- NAND_Read_Device_ID(denali);
-
- /* MTD supported page sizes vary by kernel. We validate our
- kernel supports the device here.
- */
- if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
- {
- ret = -ENODEV;
- printk(KERN_ERR "Spectra: device size not supported by this "
- "version of MTD.");
- goto failed_nand;
- }
+ denali_nand_timing_set(denali);
nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
"acc_clks: %d, re_2_we: %d, we_2_re: %d,"
@@ -2009,18 +1659,46 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
denali->nand.read_byte = denali_read_byte;
denali->nand.waitfunc = denali_waitfunc;
- /* scan for NAND devices attached to the controller
+ /* scan for NAND devices attached to the controller
* this is the first stage in a two step process to register
- * with the nand subsystem */
- if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL))
- {
+ * with the nand subsystem */
+ if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
ret = -ENXIO;
goto failed_nand;
}
-
- /* second stage of the NAND scan
- * this stage requires information regarding ECC and
- * bad block management. */
+
+ /* MTD supported page sizes vary by kernel. We validate our
+ * kernel supports the device here.
+ */
+ if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
+ ret = -ENODEV;
+ printk(KERN_ERR "Spectra: device size not supported by this "
+ "version of MTD.");
+ goto failed_nand;
+ }
+
+ /* support for multi nand
+ * MTD known nothing about multi nand,
+ * so we should tell it the real pagesize
+ * and anything necessery
+ */
+ denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
+ denali->nand.chipsize <<= (denali->devnum - 1);
+ denali->nand.page_shift += (denali->devnum - 1);
+ denali->nand.pagemask = (denali->nand.chipsize >>
+ denali->nand.page_shift) - 1;
+ denali->nand.bbt_erase_shift += (denali->devnum - 1);
+ denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
+ denali->nand.chip_shift += (denali->devnum - 1);
+ denali->mtd.writesize <<= (denali->devnum - 1);
+ denali->mtd.oobsize <<= (denali->devnum - 1);
+ denali->mtd.erasesize <<= (denali->devnum - 1);
+ denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
+ denali->bbtskipbytes *= denali->devnum;
+
+ /* second stage of the NAND scan
+ * this stage requires information regarding ECC and
+ * bad block management. */
/* Bad block management */
denali->nand.bbt_td = &bbt_main_descr;
@@ -2030,26 +1708,57 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
- if (denali->dev_info.MLCDevice)
- {
- denali->nand.ecc.layout = &nand_oob_mlc_14bit;
- denali->nand.ecc.bytes = ECC_BYTES_MLC;
- }
- else /* SLC */
- {
- denali->nand.ecc.layout = &nand_oob_slc;
- denali->nand.ecc.bytes = ECC_BYTES_SLC;
+ /* Denali Controller only support 15bit and 8bit ECC in MRST,
+ * so just let controller do 15bit ECC for MLC and 8bit ECC for
+ * SLC if possible.
+ * */
+ if (denali->nand.cellinfo & 0xc &&
+ (denali->mtd.oobsize > (denali->bbtskipbytes +
+ ECC_15BITS * (denali->mtd.writesize /
+ ECC_SECTOR_SIZE)))) {
+ /* if MLC OOB size is large enough, use 15bit ECC*/
+ denali->nand.ecc.layout = &nand_15bit_oob;
+ denali->nand.ecc.bytes = ECC_15BITS;
+ denali_write32(15, denali->flash_reg + ECC_CORRECTION);
+ } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
+ ECC_8BITS * (denali->mtd.writesize /
+ ECC_SECTOR_SIZE))) {
+ printk(KERN_ERR "Your NAND chip OOB is not large enough to"
+ " contain 8bit ECC correction codes");
+ goto failed_nand;
+ } else {
+ denali->nand.ecc.layout = &nand_8bit_oob;
+ denali->nand.ecc.bytes = ECC_8BITS;
+ denali_write32(8, denali->flash_reg + ECC_CORRECTION);
}
- /* These functions are required by the NAND core framework, otherwise,
- the NAND core will assert. However, we don't need them, so we'll stub
- them out. */
+ denali->nand.ecc.bytes *= denali->devnum;
+ denali->nand.ecc.layout->eccbytes *=
+ denali->mtd.writesize / ECC_SECTOR_SIZE;
+ denali->nand.ecc.layout->oobfree[0].offset =
+ denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
+ denali->nand.ecc.layout->oobfree[0].length =
+ denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
+ denali->bbtskipbytes;
+
+ /* Let driver know the total blocks number and
+ * how many blocks contained by each nand chip.
+ * blksperchip will help driver to know how many
+ * blocks is taken by FW.
+ * */
+ denali->totalblks = denali->mtd.size >>
+ denali->nand.phys_erase_shift;
+ denali->blksperchip = denali->totalblks / denali->nand.numchips;
+
+ /* These functions are required by the NAND core framework, otherwise,
+ * the NAND core will assert. However, we don't need them, so we'll stub
+ * them out. */
denali->nand.ecc.calculate = denali_ecc_calculate;
denali->nand.ecc.correct = denali_ecc_correct;
denali->nand.ecc.hwctl = denali_ecc_hwctl;
/* override the default read operations */
- denali->nand.ecc.size = denali->mtd.writesize;
+ denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
denali->nand.ecc.read_page = denali_read_page;
denali->nand.ecc.read_page_raw = denali_read_page_raw;
denali->nand.ecc.write_page = denali_write_page;
@@ -2058,15 +1767,15 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
denali->nand.ecc.write_oob = denali_write_oob;
denali->nand.erase_cmd = denali_erase;
- if (nand_scan_tail(&denali->mtd))
- {
+ if (nand_scan_tail(&denali->mtd)) {
ret = -ENXIO;
goto failed_nand;
}
ret = add_mtd_device(&denali->mtd);
if (ret) {
- printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret);
+ printk(KERN_ERR "Spectra: Failed to register"
+ " MTD device: %d\n", ret);
goto failed_nand;
}
return 0;
@@ -2079,7 +1788,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
failed_remap_csr:
pci_release_regions(dev);
failed_req_csr:
- pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
+ pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
PCI_DMA_BIDIRECTIONAL);
failed_enable:
kfree(denali);
@@ -2103,7 +1812,7 @@ static void denali_pci_remove(struct pci_dev *dev)
iounmap(denali->flash_mem);
pci_release_regions(dev);
pci_disable_device(dev);
- pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
+ pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
PCI_DMA_BIDIRECTIONAL);
pci_set_drvdata(dev, NULL);
kfree(denali);
@@ -2120,7 +1829,8 @@ static struct pci_driver denali_pci_driver = {
static int __devinit denali_init(void)
{
- printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__);
+ printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
+ __DATE__, __TIME__);
return pci_register_driver(&denali_pci_driver);
}