diff options
Diffstat (limited to 'drivers/mtd')
39 files changed, 3247 insertions, 1268 deletions
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig index 14f11f8b9e5..a90d50c2c3e 100644 --- a/drivers/mtd/Kconfig +++ b/drivers/mtd/Kconfig @@ -172,6 +172,11 @@ config MTD_CHAR memory chips, and also use ioctl() to obtain information about the device, or to erase parts of it. +config HAVE_MTD_OTP + bool + help + Enable access to OTP regions using MTD_CHAR. + config MTD_BLKDEVS tristate "Common interface to block layer for MTD 'translation layers'" depends on BLOCK diff --git a/drivers/mtd/chips/Kconfig b/drivers/mtd/chips/Kconfig index 479d32b57a1..9408099eec4 100644 --- a/drivers/mtd/chips/Kconfig +++ b/drivers/mtd/chips/Kconfig @@ -6,6 +6,7 @@ menu "RAM/ROM/Flash chip drivers" config MTD_CFI tristate "Detect flash chips by Common Flash Interface (CFI) probe" select MTD_GEN_PROBE + select MTD_CFI_UTIL help The Common Flash Interface specification was developed by Intel, AMD and other flash manufactures that provides a universal method @@ -154,6 +155,7 @@ config MTD_CFI_I8 config MTD_OTP bool "Protection Registers aka one-time programmable (OTP) bits" depends on MTD_CFI_ADV_OPTIONS + select HAVE_MTD_OTP default n help This enables support for reading, writing and locking so called @@ -187,7 +189,7 @@ config MTD_CFI_INTELEXT StrataFlash and other parts. config MTD_CFI_AMDSTD - tristate "Support for AMD/Fujitsu flash chips" + tristate "Support for AMD/Fujitsu/Spansion flash chips" depends on MTD_GEN_PROBE select MTD_CFI_UTIL help diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c index 5f1b472137a..c93a8be5d5f 100644 --- a/drivers/mtd/chips/cfi_cmdset_0001.c +++ b/drivers/mtd/chips/cfi_cmdset_0001.c @@ -478,6 +478,28 @@ struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) else cfi->chips[i].erase_time = 2000000; + if (cfi->cfiq->WordWriteTimeoutTyp && + cfi->cfiq->WordWriteTimeoutMax) + cfi->chips[i].word_write_time_max = + 1<<(cfi->cfiq->WordWriteTimeoutTyp + + cfi->cfiq->WordWriteTimeoutMax); + else + cfi->chips[i].word_write_time_max = 50000 * 8; + + if (cfi->cfiq->BufWriteTimeoutTyp && + cfi->cfiq->BufWriteTimeoutMax) + cfi->chips[i].buffer_write_time_max = + 1<<(cfi->cfiq->BufWriteTimeoutTyp + + cfi->cfiq->BufWriteTimeoutMax); + + if (cfi->cfiq->BlockEraseTimeoutTyp && + cfi->cfiq->BlockEraseTimeoutMax) + cfi->chips[i].erase_time_max = + 1000<<(cfi->cfiq->BlockEraseTimeoutTyp + + cfi->cfiq->BlockEraseTimeoutMax); + else + cfi->chips[i].erase_time_max = 2000000 * 8; + cfi->chips[i].ref_point_counter = 0; init_waitqueue_head(&(cfi->chips[i].wq)); } @@ -703,6 +725,10 @@ static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long struct cfi_pri_intelext *cfip = cfi->cmdset_priv; unsigned long timeo = jiffies + HZ; + /* Prevent setting state FL_SYNCING for chip in suspended state. */ + if (mode == FL_SYNCING && chip->oldstate != FL_READY) + goto sleep; + switch (chip->state) { case FL_STATUS: @@ -808,8 +834,9 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr DECLARE_WAITQUEUE(wait, current); retry: - if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING - || mode == FL_OTP_WRITE || mode == FL_SHUTDOWN)) { + if (chip->priv && + (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE + || mode == FL_SHUTDOWN) && chip->state != FL_SYNCING) { /* * OK. We have possibility for contention on the write/erase * operations which are global to the real chip and not per @@ -859,6 +886,14 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr return ret; } spin_lock(&shared->lock); + + /* We should not own chip if it is already + * in FL_SYNCING state. Put contender and retry. */ + if (chip->state == FL_SYNCING) { + put_chip(map, contender, contender->start); + spin_unlock(contender->mutex); + goto retry; + } spin_unlock(contender->mutex); } @@ -1012,7 +1047,7 @@ static void __xipram xip_enable(struct map_info *map, struct flchip *chip, static int __xipram xip_wait_for_operation( struct map_info *map, struct flchip *chip, - unsigned long adr, unsigned int chip_op_time ) + unsigned long adr, unsigned int chip_op_time_max) { struct cfi_private *cfi = map->fldrv_priv; struct cfi_pri_intelext *cfip = cfi->cmdset_priv; @@ -1021,7 +1056,7 @@ static int __xipram xip_wait_for_operation( flstate_t oldstate, newstate; start = xip_currtime(); - usec = chip_op_time * 8; + usec = chip_op_time_max; if (usec == 0) usec = 500000; done = 0; @@ -1131,8 +1166,8 @@ static int __xipram xip_wait_for_operation( #define XIP_INVAL_CACHED_RANGE(map, from, size) \ INVALIDATE_CACHED_RANGE(map, from, size) -#define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec) \ - xip_wait_for_operation(map, chip, cmd_adr, usec) +#define INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, inval_adr, inval_len, usec, usec_max) \ + xip_wait_for_operation(map, chip, cmd_adr, usec_max) #else @@ -1144,7 +1179,7 @@ static int __xipram xip_wait_for_operation( static int inval_cache_and_wait_for_operation( struct map_info *map, struct flchip *chip, unsigned long cmd_adr, unsigned long inval_adr, int inval_len, - unsigned int chip_op_time) + unsigned int chip_op_time, unsigned int chip_op_time_max) { struct cfi_private *cfi = map->fldrv_priv; map_word status, status_OK = CMD(0x80); @@ -1156,8 +1191,7 @@ static int inval_cache_and_wait_for_operation( INVALIDATE_CACHED_RANGE(map, inval_adr, inval_len); spin_lock(chip->mutex); - /* set our timeout to 8 times the expected delay */ - timeo = chip_op_time * 8; + timeo = chip_op_time_max; if (!timeo) timeo = 500000; reset_timeo = timeo; @@ -1217,8 +1251,8 @@ static int inval_cache_and_wait_for_operation( #endif -#define WAIT_TIMEOUT(map, chip, adr, udelay) \ - INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay); +#define WAIT_TIMEOUT(map, chip, adr, udelay, udelay_max) \ + INVAL_CACHE_AND_WAIT(map, chip, adr, 0, 0, udelay, udelay_max); static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) @@ -1452,7 +1486,8 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, ret = INVAL_CACHE_AND_WAIT(map, chip, adr, adr, map_bankwidth(map), - chip->word_write_time); + chip->word_write_time, + chip->word_write_time_max); if (ret) { xip_enable(map, chip, adr); printk(KERN_ERR "%s: word write error (status timeout)\n", map->name); @@ -1623,7 +1658,7 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, chip->state = FL_WRITING_TO_BUFFER; map_write(map, write_cmd, cmd_adr); - ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0); + ret = WAIT_TIMEOUT(map, chip, cmd_adr, 0, 0); if (ret) { /* Argh. Not ready for write to buffer */ map_word Xstatus = map_read(map, cmd_adr); @@ -1640,7 +1675,7 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, /* Figure out the number of words to write */ word_gap = (-adr & (map_bankwidth(map)-1)); - words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map); + words = DIV_ROUND_UP(len - word_gap, map_bankwidth(map)); if (!word_gap) { words--; } else { @@ -1692,7 +1727,8 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, ret = INVAL_CACHE_AND_WAIT(map, chip, cmd_adr, initial_adr, initial_len, - chip->buffer_write_time); + chip->buffer_write_time, + chip->buffer_write_time_max); if (ret) { map_write(map, CMD(0x70), cmd_adr); chip->state = FL_STATUS; @@ -1827,7 +1863,8 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, ret = INVAL_CACHE_AND_WAIT(map, chip, adr, adr, len, - chip->erase_time); + chip->erase_time, + chip->erase_time_max); if (ret) { map_write(map, CMD(0x70), adr); chip->state = FL_STATUS; @@ -2006,7 +2043,7 @@ static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip */ udelay = (!extp || !(extp->FeatureSupport & (1 << 5))) ? 1000000/HZ : 0; - ret = WAIT_TIMEOUT(map, chip, adr, udelay); + ret = WAIT_TIMEOUT(map, chip, adr, udelay, udelay * 100); if (ret) { map_write(map, CMD(0x70), adr); chip->state = FL_STATUS; diff --git a/drivers/mtd/chips/cfi_probe.c b/drivers/mtd/chips/cfi_probe.c index c418e92e1d9..e63e6749429 100644 --- a/drivers/mtd/chips/cfi_probe.c +++ b/drivers/mtd/chips/cfi_probe.c @@ -44,17 +44,14 @@ do { \ #define xip_enable(base, map, cfi) \ do { \ - cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \ - cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \ + cfi_qry_mode_off(base, map, cfi); \ xip_allowed(base, map); \ } while (0) #define xip_disable_qry(base, map, cfi) \ do { \ xip_disable(); \ - cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \ - cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \ - cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); \ + cfi_qry_mode_on(base, map, cfi); \ } while (0) #else @@ -70,32 +67,6 @@ do { \ in: interleave,type,mode ret: table index, <0 for error */ -static int __xipram qry_present(struct map_info *map, __u32 base, - struct cfi_private *cfi) -{ - int osf = cfi->interleave * cfi->device_type; // scale factor - map_word val[3]; - map_word qry[3]; - - qry[0] = cfi_build_cmd('Q', map, cfi); - qry[1] = cfi_build_cmd('R', map, cfi); - qry[2] = cfi_build_cmd('Y', map, cfi); - - val[0] = map_read(map, base + osf*0x10); - val[1] = map_read(map, base + osf*0x11); - val[2] = map_read(map, base + osf*0x12); - - if (!map_word_equal(map, qry[0], val[0])) - return 0; - - if (!map_word_equal(map, qry[1], val[1])) - return 0; - - if (!map_word_equal(map, qry[2], val[2])) - return 0; - - return 1; // "QRY" found -} static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, unsigned long *chip_map, struct cfi_private *cfi) @@ -116,11 +87,7 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, } xip_disable(); - cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); - cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); - cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); - - if (!qry_present(map,base,cfi)) { + if (!cfi_qry_mode_on(base, map, cfi)) { xip_enable(base, map, cfi); return 0; } @@ -141,14 +108,13 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, start = i << cfi->chipshift; /* This chip should be in read mode if it's one we've already touched. */ - if (qry_present(map, start, cfi)) { + if (cfi_qry_present(map, start, cfi)) { /* Eep. This chip also had the QRY marker. * Is it an alias for the new one? */ - cfi_send_gen_cmd(0xF0, 0, start, map, cfi, cfi->device_type, NULL); - cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL); + cfi_qry_mode_off(start, map, cfi); /* If the QRY marker goes away, it's an alias */ - if (!qry_present(map, start, cfi)) { + if (!cfi_qry_present(map, start, cfi)) { xip_allowed(base, map); printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", map->name, base, start); @@ -158,10 +124,9 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, * unfortunate. Stick the new chip in read mode * too and if it's the same, assume it's an alias. */ /* FIXME: Use other modes to do a proper check */ - cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); - cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL); + cfi_qry_mode_off(base, map, cfi); - if (qry_present(map, base, cfi)) { + if (cfi_qry_present(map, base, cfi)) { xip_allowed(base, map); printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n", map->name, base, start); @@ -176,8 +141,7 @@ static int __xipram cfi_probe_chip(struct map_info *map, __u32 base, cfi->numchips++; /* Put it back into Read Mode */ - cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); - cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); + cfi_qry_mode_off(base, map, cfi); xip_allowed(base, map); printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n", @@ -237,9 +201,7 @@ static int __xipram cfi_chip_setup(struct map_info *map, cfi_read_query(map, base + 0xf * ofs_factor); /* Put it back into Read Mode */ - cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); - /* ... even if it's an Intel chip */ - cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); + cfi_qry_mode_off(base, map, cfi); xip_allowed(base, map); /* Do any necessary byteswapping */ diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c index 0ee45701801..34d40e25d31 100644 --- a/drivers/mtd/chips/cfi_util.c +++ b/drivers/mtd/chips/cfi_util.c @@ -24,6 +24,66 @@ #include <linux/mtd/cfi.h> #include <linux/mtd/compatmac.h> +int __xipram cfi_qry_present(struct map_info *map, __u32 base, + struct cfi_private *cfi) +{ + int osf = cfi->interleave * cfi->device_type; /* scale factor */ + map_word val[3]; + map_word qry[3]; + + qry[0] = cfi_build_cmd('Q', map, cfi); + qry[1] = cfi_build_cmd('R', map, cfi); + qry[2] = cfi_build_cmd('Y', map, cfi); + + val[0] = map_read(map, base + osf*0x10); + val[1] = map_read(map, base + osf*0x11); + val[2] = map_read(map, base + osf*0x12); + + if (!map_word_equal(map, qry[0], val[0])) + return 0; + + if (!map_word_equal(map, qry[1], val[1])) + return 0; + + if (!map_word_equal(map, qry[2], val[2])) + return 0; + + return 1; /* "QRY" found */ +} +EXPORT_SYMBOL_GPL(cfi_qry_present); + +int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map, + struct cfi_private *cfi) +{ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); + if (cfi_qry_present(map, base, cfi)) + return 1; + /* QRY not found probably we deal with some odd CFI chips */ + /* Some revisions of some old Intel chips? */ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); + if (cfi_qry_present(map, base, cfi)) + return 1; + /* ST M29DW chips */ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL); + if (cfi_qry_present(map, base, cfi)) + return 1; + /* QRY not found */ + return 0; +} +EXPORT_SYMBOL_GPL(cfi_qry_mode_on); + +void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map, + struct cfi_private *cfi) +{ + cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); + cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); +} +EXPORT_SYMBOL_GPL(cfi_qry_mode_off); + struct cfi_extquery * __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name) { @@ -48,8 +108,7 @@ __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* n #endif /* Switch it into Query Mode */ - cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); - + cfi_qry_mode_on(base, map, cfi); /* Read in the Extended Query Table */ for (i=0; i<size; i++) { ((unsigned char *)extp)[i] = @@ -57,8 +116,7 @@ __xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* n } /* Make sure it returns to read mode */ - cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL); - cfi_send_gen_cmd(0xff, 0, base, map, cfi, cfi->device_type, NULL); + cfi_qry_mode_off(base, map, cfi); #ifdef CONFIG_MTD_XIP (void) map_read(map, base); diff --git a/drivers/mtd/chips/gen_probe.c b/drivers/mtd/chips/gen_probe.c index f061885b281..e2dc96441e0 100644 --- a/drivers/mtd/chips/gen_probe.c +++ b/drivers/mtd/chips/gen_probe.c @@ -111,7 +111,7 @@ static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chi max_chips = 1; } - mapsize = sizeof(long) * ( (max_chips + BITS_PER_LONG-1) / BITS_PER_LONG ); + mapsize = sizeof(long) * DIV_ROUND_UP(max_chips, BITS_PER_LONG); chip_map = kzalloc(mapsize, GFP_KERNEL); if (!chip_map) { printk(KERN_WARNING "%s: kmalloc failed for CFI chip map\n", map->name); diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig index 9c613f06623..6fde0a2e356 100644 --- a/drivers/mtd/devices/Kconfig +++ b/drivers/mtd/devices/Kconfig @@ -59,6 +59,27 @@ config MTD_DATAFLASH Sometimes DataFlash chips are packaged inside MMC-format cards; at this writing, the MMC stack won't handle those. +config MTD_DATAFLASH_WRITE_VERIFY + bool "Verify DataFlash page writes" + depends on MTD_DATAFLASH + help + This adds an extra check when data is written to the flash. + It may help if you are verifying chip setup (timings etc) on + your board. There is a rare possibility that even though the + device thinks the write was successful, a bit could have been + flipped accidentally due to device wear or something else. + +config MTD_DATAFLASH_OTP + bool "DataFlash OTP support (Security Register)" + depends on MTD_DATAFLASH + select HAVE_MTD_OTP + help + Newer DataFlash chips (revisions C and D) support 128 bytes of + one-time-programmable (OTP) data. The first half may be written + (once) with up to 64 bytes of data, such as a serial number or + other key product data. The second half is programmed with a + unique-to-each-chip bit pattern at the factory. + config MTD_M25P80 tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)" depends on SPI_MASTER && EXPERIMENTAL diff --git a/drivers/mtd/devices/m25p80.c b/drivers/mtd/devices/m25p80.c index b35c3333e21..697a3a21783 100644 --- a/drivers/mtd/devices/m25p80.c +++ b/drivers/mtd/devices/m25p80.c @@ -39,6 +39,7 @@ #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */ #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */ #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */ +#define OPCODE_BE 0xc7 /* Erase whole flash block */ #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */ #define OPCODE_RDID 0x9f /* Read JEDEC ID */ @@ -133,7 +134,7 @@ static inline int write_enable(struct m25p *flash) { u8 code = OPCODE_WREN; - return spi_write_then_read(flash->spi, &code, 1, NULL, 0); + return spi_write(flash->spi, &code, 1); } @@ -161,6 +162,31 @@ static int wait_till_ready(struct m25p *flash) return 1; } +/* + * Erase the whole flash memory + * + * Returns 0 if successful, non-zero otherwise. + */ +static int erase_block(struct m25p *flash) +{ + DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB\n", + flash->spi->dev.bus_id, __func__, + flash->mtd.size / 1024); + + /* Wait until finished previous write command. */ + if (wait_till_ready(flash)) + return 1; + + /* Send write enable, then erase commands. */ + write_enable(flash); + + /* Set up command buffer. */ + flash->command[0] = OPCODE_BE; + + spi_write(flash->spi, flash->command, 1); + + return 0; +} /* * Erase one sector of flash memory at offset ``offset'' which is any @@ -229,15 +255,21 @@ static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr) */ /* now erase those sectors */ - while (len) { - if (erase_sector(flash, addr)) { - instr->state = MTD_ERASE_FAILED; - mutex_unlock(&flash->lock); - return -EIO; - } + if (len == flash->mtd.size && erase_block(flash)) { + instr->state = MTD_ERASE_FAILED; + mutex_unlock(&flash->lock); + return -EIO; + } else { + while (len) { + if (erase_sector(flash, addr)) { + instr->state = MTD_ERASE_FAILED; + mutex_unlock(&flash->lock); + return -EIO; + } - addr += mtd->erasesize; - len -= mtd->erasesize; + addr += mtd->erasesize; + len -= mtd->erasesize; + } } mutex_unlock(&flash->lock); @@ -437,6 +469,7 @@ struct flash_info { * then a two byte device id. */ u32 jedec_id; + u16 ext_id; /* The size listed here is what works with OPCODE_SE, which isn't * necessarily called a "sector" by the vendor. @@ -456,72 +489,75 @@ struct flash_info { static struct flash_info __devinitdata m25p_data [] = { /* Atmel -- some are (confusingly) marketed as "DataFlash" */ - { "at25fs010", 0x1f6601, 32 * 1024, 4, SECT_4K, }, - { "at25fs040", 0x1f6604, 64 * 1024, 8, SECT_4K, }, + { "at25fs010", 0x1f6601, 0, 32 * 1024, 4, SECT_4K, }, + { "at25fs040", 0x1f6604, 0, 64 * 1024, 8, SECT_4K, }, - { "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, }, - { "at25df641", 0x1f4800, 64 * 1024, 128, SECT_4K, }, + { "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, }, + { "at25df641", 0x1f4800, 0, 64 * 1024, 128, SECT_4K, }, - { "at26f004", 0x1f0400, 64 * 1024, 8, SECT_4K, }, - { "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, }, - { "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, }, - { "at26df321", 0x1f4701, 64 * 1024, 64, SECT_4K, }, + { "at26f004", 0x1f0400, 0, 64 * 1024, 8, SECT_4K, }, + { "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, }, + { "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, }, + { "at26df321", 0x1f4701, 0, 64 * 1024, 64, SECT_4K, }, /* Spansion -- single (large) sector size only, at least * for the chips listed here (without boot sectors). */ - { "s25sl004a", 0x010212, 64 * 1024, 8, }, - { "s25sl008a", 0x010213, 64 * 1024, 16, }, - { "s25sl016a", 0x010214, 64 * 1024, 32, }, - { "s25sl032a", 0x010215, 64 * 1024, 64, }, - { "s25sl064a", 0x010216, 64 * 1024, 128, }, + { "s25sl004a", 0x010212, 0, 64 * 1024, 8, }, + { "s25sl008a", 0x010213, 0, 64 * 1024, 16, }, + { "s25sl016a", 0x010214, 0, 64 * 1024, 32, }, + { "s25sl032a", 0x010215, 0, 64 * 1024, 64, }, + { "s25sl064a", 0x010216, 0, 64 * 1024, 128, }, + { "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, }, + { "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, }, /* SST -- large erase sizes are "overlays", "sectors" are 4K */ - { "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, }, - { "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, }, - { "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, }, - { "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, }, + { "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, }, + { "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, }, + { "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, }, + { "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, }, /* ST Microelectronics -- newer production may have feature updates */ - { "m25p05", 0x202010, 32 * 1024, 2, }, - { "m25p10", 0x202011, 32 * 1024, 4, }, - { "m25p20", 0x202012, 64 * 1024, 4, }, - { "m25p40", 0x202013, 64 * 1024, 8, }, - { "m25p80", 0, 64 * 1024, 16, }, - { "m25p16", 0x202015, 64 * 1024, 32, }, - { "m25p32", 0x202016, 64 * 1024, 64, }, - { "m25p64", 0x202017, 64 * 1024, 128, }, - { "m25p128", 0x202018, 256 * 1024, 64, }, - - { "m45pe80", 0x204014, 64 * 1024, 16, }, - { "m45pe16", 0x204015, 64 * 1024, 32, }, - - { "m25pe80", 0x208014, 64 * 1024, 16, }, - { "m25pe16", 0x208015, 64 * 1024, 32, SECT_4K, }, + { "m25p05", 0x202010, 0, 32 * 1024, 2, }, + { "m25p10", 0x202011, 0, 32 * 1024, 4, }, + { "m25p20", 0x202012, 0, 64 * 1024, 4, }, + { "m25p40", 0x202013, 0, 64 * 1024, 8, }, + { "m25p80", 0, 0, 64 * 1024, 16, }, + { "m25p16", 0x202015, 0, 64 * 1024, 32, }, + { "m25p32", 0x202016, 0, 64 * 1024, 64, }, + { "m25p64", 0x202017, 0, 64 * 1024, 128, }, + { "m25p128", 0x202018, 0, 256 * 1024, 64, }, + + { "m45pe80", 0x204014, 0, 64 * 1024, 16, }, + { "m45pe16", 0x204015, 0, 64 * 1024, 32, }, + + { "m25pe80", 0x208014, 0, 64 * 1024, 16, }, + { "m25pe16", 0x208015, 0, 64 * 1024, 32, SECT_4K, }, /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ - { "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, }, - { "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, }, - { "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, }, - { "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, }, - { "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, }, - { "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, }, - { "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, }, + { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, }, + { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, }, + { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, }, + { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, }, + { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, }, + { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, }, + { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, }, }; static struct flash_info *__devinit jedec_probe(struct spi_device *spi) { int tmp; u8 code = OPCODE_RDID; - u8 id[3]; + u8 id[5]; u32 jedec; + u16 ext_jedec; struct flash_info *info; /* JEDEC also defines an optional "extended device information" * string for after vendor-specific data, after the three bytes * we use here. Supporting some chips might require using it. */ - tmp = spi_write_then_read(spi, &code, 1, id, 3); + tmp = spi_write_then_read(spi, &code, 1, id, 5); if (tmp < 0) { DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n", spi->dev.bus_id, tmp); @@ -533,10 +569,14 @@ static struct flash_info *__devinit jedec_probe(struct spi_device *spi) jedec = jedec << 8; jedec |= id[2]; + ext_jedec = id[3] << 8 | id[4]; + for (tmp = 0, info = m25p_data; tmp < ARRAY_SIZE(m25p_data); tmp++, info++) { if (info->jedec_id == jedec) + if (ext_jedec != 0 && info->ext_id != ext_jedec) + continue; return info; } dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec); diff --git a/drivers/mtd/devices/mtd_dataflash.c b/drivers/mtd/devices/mtd_dataflash.c index 8bd0dea6885..6dd9aff8bb2 100644 --- a/drivers/mtd/devices/mtd_dataflash.c +++ b/drivers/mtd/devices/mtd_dataflash.c @@ -30,12 +30,10 @@ * doesn't (yet) use these for any kind of i/o overlap or prefetching. * * Sometimes DataFlash is packaged in MMC-format cards, although the - * MMC stack can't use SPI (yet), or distinguish between MMC and DataFlash + * MMC stack can't (yet?) distinguish between MMC and DataFlash * protocols during enumeration. */ -#define CONFIG_DATAFLASH_WRITE_VERIFY - /* reads can bypass the buffers */ #define OP_READ_CONTINUOUS 0xE8 #define OP_READ_PAGE 0xD2 @@ -80,7 +78,8 @@ */ #define OP_READ_ID 0x9F #define OP_READ_SECURITY 0x77 -#define OP_WRITE_SECURITY 0x9A /* OTP bits */ +#define OP_WRITE_SECURITY_REVC 0x9A +#define OP_WRITE_SECURITY 0x9B /* revision D */ struct dataflash { @@ -402,7 +401,7 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, (void) dataflash_waitready(priv->spi); -#ifdef CONFIG_DATAFLASH_WRITE_VERIFY +#ifdef CONFIG_MTD_DATAFLASH_VERIFY_WRITE /* (3) Compare to Buffer1 */ addr = pageaddr << priv->page_offset; @@ -431,7 +430,7 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, } else status = 0; -#endif /* CONFIG_DATAFLASH_WRITE_VERIFY */ +#endif /* CONFIG_MTD_DATAFLASH_VERIFY_WRITE */ remaining = remaining - writelen; pageaddr++; @@ -451,16 +450,192 @@ static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, /* ......................................................................... */ +#ifdef CONFIG_MTD_DATAFLASH_OTP + +static int dataflash_get_otp_info(struct mtd_info *mtd, + struct otp_info *info, size_t len) +{ + /* Report both blocks as identical: bytes 0..64, locked. + * Unless the user block changed from all-ones, we can't + * tell whether it's still writable; so we assume it isn't. + */ + info->start = 0; + info->length = 64; + info->locked = 1; + return sizeof(*info); +} + +static ssize_t otp_read(struct spi_device *spi, unsigned base, + uint8_t *buf, loff_t off, size_t len) +{ + struct spi_message m; + size_t l; + uint8_t *scratch; + struct spi_transfer t; + int status; + + if (off > 64) + return -EINVAL; + + if ((off + len) > 64) + len = 64 - off; + if (len == 0) + return len; + + spi_message_init(&m); + + l = 4 + base + off + len; + scratch = kzalloc(l, GFP_KERNEL); + if (!scratch) + return -ENOMEM; + + /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes + * IN: ignore 4 bytes, data bytes 0..N (max 127) + */ + scratch[0] = OP_READ_SECURITY; + + memset(&t, 0, sizeof t); + t.tx_buf = scratch; + t.rx_buf = scratch; + t.len = l; + spi_message_add_tail(&t, &m); + + dataflash_waitready(spi); + + status = spi_sync(spi, &m); + if (status >= 0) { + memcpy(buf, scratch + 4 + base + off, len); + status = len; + } + + kfree(scratch); + return status; +} + +static int dataflash_read_fact_otp(struct mtd_info *mtd, + loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct dataflash *priv = (struct dataflash *)mtd->priv; + int status; + + /* 64 bytes, from 0..63 ... start at 64 on-chip */ + mutex_lock(&priv->lock); + status = otp_read(priv->spi, 64, buf, from, len); + mutex_unlock(&priv->lock); + + if (status < 0) + return status; + *retlen = status; + return 0; +} + +static int dataflash_read_user_otp(struct mtd_info *mtd, + loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct dataflash *priv = (struct dataflash *)mtd->priv; + int status; + + /* 64 bytes, from 0..63 ... start at 0 on-chip */ + mutex_lock(&priv->lock); + status = otp_read(priv->spi, 0, buf, from, len); + mutex_unlock(&priv->lock); + + if (status < 0) + return status; + *retlen = status; + return 0; +} + +static int dataflash_write_user_otp(struct mtd_info *mtd, + loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct spi_message m; + const size_t l = 4 + 64; + uint8_t *scratch; + struct spi_transfer t; + struct dataflash *priv = (struct dataflash *)mtd->priv; + int status; + + if (len > 64) + return -EINVAL; + + /* Strictly speaking, we *could* truncate the write ... but + * let's not do that for the only write that's ever possible. + */ + if ((from + len) > 64) + return -EINVAL; + + /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes + * IN: ignore all + */ + scratch = kzalloc(l, GFP_KERNEL); + if (!scratch) + return -ENOMEM; + scratch[0] = OP_WRITE_SECURITY; + memcpy(scratch + 4 + from, buf, len); + + spi_message_init(&m); + + memset(&t, 0, sizeof t); + t.tx_buf = scratch; + t.len = l; + spi_message_add_tail(&t, &m); + + /* Write the OTP bits, if they've not yet been written. + * This modifies SRAM buffer1. + */ + mutex_lock(&priv->lock); + dataflash_waitready(priv->spi); + status = spi_sync(priv->spi, &m); + mutex_unlock(&priv->lock); + + kfree(scratch); + + if (status >= 0) { + status = 0; + *retlen = len; + } + return status; +} + +static char *otp_setup(struct mtd_info *device, char revision) +{ + device->get_fact_prot_info = dataflash_get_otp_info; + device->read_fact_prot_reg = dataflash_read_fact_otp; + device->get_user_prot_info = dataflash_get_otp_info; + device->read_user_prot_reg = dataflash_read_user_otp; + + /* rev c parts (at45db321c and at45db1281 only!) use a + * different write procedure; not (yet?) implemented. + */ + if (revision > 'c') + device->write_user_prot_reg = dataflash_write_user_otp; + + return ", OTP"; +} + +#else + +static char *otp_setup(struct mtd_info *device, char revision) +{ + return " (OTP)"; +} + +#endif + +/* ......................................................................... */ + /* * Register DataFlash device with MTD subsystem. */ static int __devinit -add_dataflash(struct spi_device *spi, char *name, - int nr_pages, int pagesize, int pageoffset) +add_dataflash_otp(struct spi_device *spi, char *name, + int nr_pages, int pagesize, int pageoffset, char revision) { struct dataflash *priv; struct mtd_info *device; struct flash_platform_data *pdata = spi->dev.platform_data; + char *otp_tag = ""; priv = kzalloc(sizeof *priv, GFP_KERNEL); if (!priv) @@ -489,8 +664,12 @@ add_dataflash(struct spi_device *spi, char *name, device->write = dataflash_write; device->priv = priv; - dev_info(&spi->dev, "%s (%d KBytes) pagesize %d bytes\n", - name, DIV_ROUND_UP(device->size, 1024), pagesize); + if (revision >= 'c') + otp_tag = otp_setup(device, revision); + + dev_info(&spi->dev, "%s (%d KBytes) pagesize %d bytes%s\n", + name, DIV_ROUND_UP(device->size, 1024), + pagesize, otp_tag); dev_set_drvdata(&spi->dev, priv); if (mtd_has_partitions()) { @@ -519,6 +698,14 @@ add_dataflash(struct spi_device *spi, char *name, return add_mtd_device(device) == 1 ? -ENODEV : 0; } +static inline int __devinit +add_dataflash(struct spi_device *spi, char *name, + int nr_pages, int pagesize, int pageoffset) +{ + return add_dataflash_otp(spi, name, nr_pages, pagesize, + pageoffset, 0); +} + struct flash_info { char *name; @@ -664,13 +851,16 @@ static int __devinit dataflash_probe(struct spi_device *spi) * Try to detect dataflash by JEDEC ID. * If it succeeds we know we have either a C or D part. * D will support power of 2 pagesize option. + * Both support the security register, though with different + * write procedures. */ info = jedec_probe(spi); if (IS_ERR(info)) return PTR_ERR(info); if (info != NULL) - return add_dataflash(spi, info->name, info->nr_pages, - info->pagesize, info->pageoffset); + return add_dataflash_otp(spi, info->name, info->nr_pages, + info->pagesize, info->pageoffset, + (info->flags & SUP_POW2PS) ? 'd' : 'c'); /* * Older chips support only legacy commands, identifing diff --git a/drivers/mtd/inftlcore.c b/drivers/mtd/inftlcore.c index c4f9d3378b2..50ce13887f6 100644 --- a/drivers/mtd/inftlcore.c +++ b/drivers/mtd/inftlcore.c @@ -388,6 +388,10 @@ static u16 INFTL_foldchain(struct INFTLrecord *inftl, unsigned thisVUC, unsigned if (thisEUN == targetEUN) break; + /* Unlink the last block from the chain. */ + inftl->PUtable[prevEUN] = BLOCK_NIL; + + /* Now try to erase it. */ if (INFTL_formatblock(inftl, thisEUN) < 0) { /* * Could not erase : mark block as reserved. @@ -396,7 +400,6 @@ static u16 INFTL_foldchain(struct INFTLrecord *inftl, unsigned thisVUC, unsigned } else { /* Correctly erased : mark it as free */ inftl->PUtable[thisEUN] = BLOCK_FREE; - inftl->PUtable[prevEUN] = BLOCK_NIL; inftl->numfreeEUNs++; } } diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig index df8e00bba07..5ea16936216 100644 --- a/drivers/mtd/maps/Kconfig +++ b/drivers/mtd/maps/Kconfig @@ -332,30 +332,6 @@ config MTD_CFI_FLAGADM Mapping for the Flaga digital module. If you don't have one, ignore this setting. -config MTD_WALNUT - tristate "Flash device mapped on IBM 405GP Walnut" - depends on MTD_JEDECPROBE && WALNUT && !PPC_MERGE - help - This enables access routines for the flash chips on the IBM 405GP - Walnut board. If you have one of these boards and would like to - use the flash chips on it, say 'Y'. - -config MTD_EBONY - tristate "Flash devices mapped on IBM 440GP Ebony" - depends on MTD_JEDECPROBE && EBONY && !PPC_MERGE - help - This enables access routines for the flash chips on the IBM 440GP - Ebony board. If you have one of these boards and would like to - use the flash chips on it, say 'Y'. - -config MTD_OCOTEA - tristate "Flash devices mapped on IBM 440GX Ocotea" - depends on MTD_CFI && OCOTEA && !PPC_MERGE - help - This enables access routines for the flash chips on the IBM 440GX - Ocotea board. If you have one of these boards and would like to - use the flash chips on it, say 'Y'. - config MTD_REDWOOD tristate "CFI Flash devices mapped on IBM Redwood" depends on MTD_CFI && ( REDWOOD_4 || REDWOOD_5 || REDWOOD_6 ) @@ -458,13 +434,6 @@ config MTD_CEIVA PhotoMax Digital Picture Frame. If you have such a device, say 'Y'. -config MTD_NOR_TOTO - tristate "NOR Flash device on TOTO board" - depends on ARCH_OMAP && OMAP_TOTO - help - This enables access to the NOR flash on the Texas Instruments - TOTO board. - config MTD_H720X tristate "Hynix evaluation board mappings" depends on MTD_CFI && ( ARCH_H7201 || ARCH_H7202 ) @@ -522,7 +491,7 @@ config MTD_BFIN_ASYNC config MTD_UCLINUX tristate "Generic uClinux RAM/ROM filesystem support" - depends on MTD_PARTITIONS && !MMU + depends on MTD_PARTITIONS && MTD_RAM && !MMU help Map driver to support image based filesystems for uClinux. diff --git a/drivers/mtd/maps/Makefile b/drivers/mtd/maps/Makefile index 6cda6df973e..6d9ba35caf1 100644 --- a/drivers/mtd/maps/Makefile +++ b/drivers/mtd/maps/Makefile @@ -50,12 +50,8 @@ obj-$(CONFIG_MTD_REDWOOD) += redwood.o obj-$(CONFIG_MTD_UCLINUX) += uclinux.o obj-$(CONFIG_MTD_NETtel) += nettel.o obj-$(CONFIG_MTD_SCB2_FLASH) += scb2_flash.o -obj-$(CONFIG_MTD_EBONY) += ebony.o -obj-$(CONFIG_MTD_OCOTEA) += ocotea.o -obj-$(CONFIG_MTD_WALNUT) += walnut.o obj-$(CONFIG_MTD_H720X) += h720x-flash.o obj-$(CONFIG_MTD_SBC8240) += sbc8240.o -obj-$(CONFIG_MTD_NOR_TOTO) += omap-toto-flash.o obj-$(CONFIG_MTD_IXP4XX) += ixp4xx.o obj-$(CONFIG_MTD_IXP2000) += ixp2000.o obj-$(CONFIG_MTD_WRSBC8260) += wr_sbc82xx_flash.o diff --git a/drivers/mtd/maps/ebony.c b/drivers/mtd/maps/ebony.c deleted file mode 100644 index d92b7c70d3e..00000000000 --- a/drivers/mtd/maps/ebony.c +++ /dev/null @@ -1,163 +0,0 @@ -/* - * Mapping for Ebony user flash - * - * Matt Porter <mporter@kernel.crashing.org> - * - * Copyright 2002-2004 MontaVista Software Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 of the License, or (at your - * option) any later version. - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <asm/ibm44x.h> -#include <platforms/4xx/ebony.h> - -static struct mtd_info *flash; - -static struct map_info ebony_small_map = { - .name = "Ebony small flash", - .size = EBONY_SMALL_FLASH_SIZE, - .bankwidth = 1, -}; - -static struct map_info ebony_large_map = { - .name = "Ebony large flash", - .size = EBONY_LARGE_FLASH_SIZE, - .bankwidth = 1, -}; - -static struct mtd_partition ebony_small_partitions[] = { - { - .name = "OpenBIOS", - .offset = 0x0, - .size = 0x80000, - } -}; - -static struct mtd_partition ebony_large_partitions[] = { - { - .name = "fs", - .offset = 0, - .size = 0x380000, - }, - { - .name = "firmware", - .offset = 0x380000, - .size = 0x80000, - } -}; - -int __init init_ebony(void) -{ - u8 fpga0_reg; - u8 __iomem *fpga0_adr; - unsigned long long small_flash_base, large_flash_base; - - fpga0_adr = ioremap64(EBONY_FPGA_ADDR, 16); - if (!fpga0_adr) - return -ENOMEM; - - fpga0_reg = readb(fpga0_adr); - iounmap(fpga0_adr); - - if (EBONY_BOOT_SMALL_FLASH(fpga0_reg) && - !EBONY_FLASH_SEL(fpga0_reg)) - small_flash_base = EBONY_SMALL_FLASH_HIGH2; - else if (EBONY_BOOT_SMALL_FLASH(fpga0_reg) && - EBONY_FLASH_SEL(fpga0_reg)) - small_flash_base = EBONY_SMALL_FLASH_HIGH1; - else if (!EBONY_BOOT_SMALL_FLASH(fpga0_reg) && - !EBONY_FLASH_SEL(fpga0_reg)) - small_flash_base = EBONY_SMALL_FLASH_LOW2; - else - small_flash_base = EBONY_SMALL_FLASH_LOW1; - - if (EBONY_BOOT_SMALL_FLASH(fpga0_reg) && - !EBONY_ONBRD_FLASH_EN(fpga0_reg)) - large_flash_base = EBONY_LARGE_FLASH_LOW; - else - large_flash_base = EBONY_LARGE_FLASH_HIGH; - - ebony_small_map.phys = small_flash_base; - ebony_small_map.virt = ioremap64(small_flash_base, - ebony_small_map.size); - - if (!ebony_small_map.virt) { - printk("Failed to ioremap flash\n"); - return -EIO; - } - - simple_map_init(&ebony_small_map); - - flash = do_map_probe("jedec_probe", &ebony_small_map); - if (flash) { - flash->owner = THIS_MODULE; - add_mtd_partitions(flash, ebony_small_partitions, - ARRAY_SIZE(ebony_small_partitions)); - } else { - printk("map probe failed for flash\n"); - iounmap(ebony_small_map.virt); - return -ENXIO; - } - - ebony_large_map.phys = large_flash_base; - ebony_large_map.virt = ioremap64(large_flash_base, - ebony_large_map.size); - - if (!ebony_large_map.virt) { - printk("Failed to ioremap flash\n"); - iounmap(ebony_small_map.virt); - return -EIO; - } - - simple_map_init(&ebony_large_map); - - flash = do_map_probe("jedec_probe", &ebony_large_map); - if (flash) { - flash->owner = THIS_MODULE; - add_mtd_partitions(flash, ebony_large_partitions, - ARRAY_SIZE(ebony_large_partitions)); - } else { - printk("map probe failed for flash\n"); - iounmap(ebony_small_map.virt); - iounmap(ebony_large_map.virt); - return -ENXIO; - } - - return 0; -} - -static void __exit cleanup_ebony(void) -{ - if (flash) { - del_mtd_partitions(flash); - map_destroy(flash); - } - - if (ebony_small_map.virt) { - iounmap(ebony_small_map.virt); - ebony_small_map.virt = NULL; - } - - if (ebony_large_map.virt) { - iounmap(ebony_large_map.virt); - ebony_large_map.virt = NULL; - } -} - -module_init(init_ebony); -module_exit(cleanup_ebony); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>"); -MODULE_DESCRIPTION("MTD map and partitions for IBM 440GP Ebony boards"); diff --git a/drivers/mtd/maps/ocotea.c b/drivers/mtd/maps/ocotea.c deleted file mode 100644 index 5522eac8c98..00000000000 --- a/drivers/mtd/maps/ocotea.c +++ /dev/null @@ -1,154 +0,0 @@ -/* - * Mapping for Ocotea user flash - * - * Matt Porter <mporter@kernel.crashing.org> - * - * Copyright 2002-2004 MontaVista Software Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 of the License, or (at your - * option) any later version. - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <asm/ibm44x.h> -#include <platforms/4xx/ocotea.h> - -static struct mtd_info *flash; - -static struct map_info ocotea_small_map = { - .name = "Ocotea small flash", - .size = OCOTEA_SMALL_FLASH_SIZE, - .buswidth = 1, -}; - -static struct map_info ocotea_large_map = { - .name = "Ocotea large flash", - .size = OCOTEA_LARGE_FLASH_SIZE, - .buswidth = 1, -}; - -static struct mtd_partition ocotea_small_partitions[] = { - { - .name = "pibs", - .offset = 0x0, - .size = 0x100000, - } -}; - -static struct mtd_partition ocotea_large_partitions[] = { - { - .name = "fs", - .offset = 0, - .size = 0x300000, - }, - { - .name = "firmware", - .offset = 0x300000, - .size = 0x100000, - } -}; - -int __init init_ocotea(void) -{ - u8 fpga0_reg; - u8 *fpga0_adr; - unsigned long long small_flash_base, large_flash_base; - - fpga0_adr = ioremap64(OCOTEA_FPGA_ADDR, 16); - if (!fpga0_adr) - return -ENOMEM; - - fpga0_reg = readb((unsigned long)fpga0_adr); - iounmap(fpga0_adr); - - if (OCOTEA_BOOT_LARGE_FLASH(fpga0_reg)) { - small_flash_base = OCOTEA_SMALL_FLASH_HIGH; - large_flash_base = OCOTEA_LARGE_FLASH_LOW; - } - else { - small_flash_base = OCOTEA_SMALL_FLASH_LOW; - large_flash_base = OCOTEA_LARGE_FLASH_HIGH; - } - - ocotea_small_map.phys = small_flash_base; - ocotea_small_map.virt = ioremap64(small_flash_base, - ocotea_small_map.size); - - if (!ocotea_small_map.virt) { - printk("Failed to ioremap flash\n"); - return -EIO; - } - - simple_map_init(&ocotea_small_map); - - flash = do_map_probe("map_rom", &ocotea_small_map); - if (flash) { - flash->owner = THIS_MODULE; - add_mtd_partitions(flash, ocotea_small_partitions, - ARRAY_SIZE(ocotea_small_partitions)); - } else { - printk("map probe failed for flash\n"); - iounmap(ocotea_small_map.virt); - return -ENXIO; - } - - ocotea_large_map.phys = large_flash_base; - ocotea_large_map.virt = ioremap64(large_flash_base, - ocotea_large_map.size); - - if (!ocotea_large_map.virt) { - printk("Failed to ioremap flash\n"); - iounmap(ocotea_small_map.virt); - return -EIO; - } - - simple_map_init(&ocotea_large_map); - - flash = do_map_probe("cfi_probe", &ocotea_large_map); - if (flash) { - flash->owner = THIS_MODULE; - add_mtd_partitions(flash, ocotea_large_partitions, - ARRAY_SIZE(ocotea_large_partitions)); - } else { - printk("map probe failed for flash\n"); - iounmap(ocotea_small_map.virt); - iounmap(ocotea_large_map.virt); - return -ENXIO; - } - - return 0; -} - -static void __exit cleanup_ocotea(void) -{ - if (flash) { - del_mtd_partitions(flash); - map_destroy(flash); - } - - if (ocotea_small_map.virt) { - iounmap((void *)ocotea_small_map.virt); - ocotea_small_map.virt = 0; - } - - if (ocotea_large_map.virt) { - iounmap((void *)ocotea_large_map.virt); - ocotea_large_map.virt = 0; - } -} - -module_init(init_ocotea); -module_exit(cleanup_ocotea); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>"); -MODULE_DESCRIPTION("MTD map and partitions for IBM 440GX Ocotea boards"); diff --git a/drivers/mtd/maps/omap-toto-flash.c b/drivers/mtd/maps/omap-toto-flash.c deleted file mode 100644 index 0a60ebbc217..00000000000 --- a/drivers/mtd/maps/omap-toto-flash.c +++ /dev/null @@ -1,133 +0,0 @@ -/* - * NOR Flash memory access on TI Toto board - * - * jzhang@ti.com (C) 2003 Texas Instruments. - * - * (C) 2002 MontVista Software, Inc. - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/errno.h> -#include <linux/init.h> -#include <linux/slab.h> - -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> - -#include <asm/hardware.h> -#include <asm/io.h> - - -#ifndef CONFIG_ARCH_OMAP -#error This is for OMAP architecture only -#endif - -//these lines need be moved to a hardware header file -#define OMAP_TOTO_FLASH_BASE 0xd8000000 -#define OMAP_TOTO_FLASH_SIZE 0x80000 - -static struct map_info omap_toto_map_flash = { - .name = "OMAP Toto flash", - .bankwidth = 2, - .virt = (void __iomem *)OMAP_TOTO_FLASH_BASE, -}; - - -static struct mtd_partition toto_flash_partitions[] = { - { - .name = "BootLoader", - .size = 0x00040000, /* hopefully u-boot will stay 128k + 128*/ - .offset = 0, - .mask_flags = MTD_WRITEABLE, /* force read-only */ - }, { - .name = "ReservedSpace", - .size = 0x00030000, - .offset = MTDPART_OFS_APPEND, - //mask_flags: MTD_WRITEABLE, /* force read-only */ - }, { - .name = "EnvArea", /* bottom 64KiB for env vars */ - .size = MTDPART_SIZ_FULL, - .offset = MTDPART_OFS_APPEND, - } -}; - -static struct mtd_partition *parsed_parts; - -static struct mtd_info *flash_mtd; - -static int __init init_flash (void) -{ - - struct mtd_partition *parts; - int nb_parts = 0; - int parsed_nr_parts = 0; - const char *part_type; - - /* - * Static partition definition selection - */ - part_type = "static"; - - parts = toto_flash_partitions; - nb_parts = ARRAY_SIZE(toto_flash_partitions); - omap_toto_map_flash.size = OMAP_TOTO_FLASH_SIZE; - omap_toto_map_flash.phys = virt_to_phys(OMAP_TOTO_FLASH_BASE); - - simple_map_init(&omap_toto_map_flash); - /* - * Now let's probe for the actual flash. Do it here since - * specific machine settings might have been set above. - */ - printk(KERN_NOTICE "OMAP toto flash: probing %d-bit flash bus\n", - omap_toto_map_flash.bankwidth*8); - flash_mtd = do_map_probe("jedec_probe", &omap_toto_map_flash); - if (!flash_mtd) - return -ENXIO; - - if (parsed_nr_parts > 0) { - parts = parsed_parts; - nb_parts = parsed_nr_parts; - } - - if (nb_parts == 0) { - printk(KERN_NOTICE "OMAP toto flash: no partition info available," - "registering whole flash at once\n"); - if (add_mtd_device(flash_mtd)){ - return -ENXIO; - } - } else { - printk(KERN_NOTICE "Using %s partition definition\n", - part_type); - return add_mtd_partitions(flash_mtd, parts, nb_parts); - } - return 0; -} - -int __init omap_toto_mtd_init(void) -{ - int status; - - if (status = init_flash()) { - printk(KERN_ERR "OMAP Toto Flash: unable to init map for toto flash\n"); - } - return status; -} - -static void __exit omap_toto_mtd_cleanup(void) -{ - if (flash_mtd) { - del_mtd_partitions(flash_mtd); - map_destroy(flash_mtd); - kfree(parsed_parts); - } -} - -module_init(omap_toto_mtd_init); -module_exit(omap_toto_mtd_cleanup); - -MODULE_AUTHOR("Jian Zhang"); -MODULE_DESCRIPTION("OMAP Toto board map driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/maps/pci.c b/drivers/mtd/maps/pci.c index 5c6a25c9038..48f4cf5cb9d 100644 --- a/drivers/mtd/maps/pci.c +++ b/drivers/mtd/maps/pci.c @@ -203,15 +203,8 @@ intel_dc21285_init(struct pci_dev *dev, struct map_pci_info *map) * not enabled, should we be allocating a new resource for it * or simply enabling it? */ - if (!(pci_resource_flags(dev, PCI_ROM_RESOURCE) & - IORESOURCE_ROM_ENABLE)) { - u32 val; - pci_resource_flags(dev, PCI_ROM_RESOURCE) |= IORESOURCE_ROM_ENABLE; - pci_read_config_dword(dev, PCI_ROM_ADDRESS, &val); - val |= PCI_ROM_ADDRESS_ENABLE; - pci_write_config_dword(dev, PCI_ROM_ADDRESS, val); - printk("%s: enabling expansion ROM\n", pci_name(dev)); - } + pci_enable_rom(dev); + printk("%s: enabling expansion ROM\n", pci_name(dev)); } if (!len || !base) @@ -232,18 +225,13 @@ intel_dc21285_init(struct pci_dev *dev, struct map_pci_info *map) static void intel_dc21285_exit(struct pci_dev *dev, struct map_pci_info *map) { - u32 val; - if (map->base) iounmap(map->base); /* * We need to undo the PCI BAR2/PCI ROM BAR address alteration. */ - pci_resource_flags(dev, PCI_ROM_RESOURCE) &= ~IORESOURCE_ROM_ENABLE; - pci_read_config_dword(dev, PCI_ROM_ADDRESS, &val); - val &= ~PCI_ROM_ADDRESS_ENABLE; - pci_write_config_dword(dev, PCI_ROM_ADDRESS, val); + pci_disable_rom(dev); } static unsigned long diff --git a/drivers/mtd/maps/physmap_of.c b/drivers/mtd/maps/physmap_of.c index 49acd417189..5fcfec034a9 100644 --- a/drivers/mtd/maps/physmap_of.c +++ b/drivers/mtd/maps/physmap_of.c @@ -230,8 +230,7 @@ static int __devinit of_flash_probe(struct of_device *dev, #ifdef CONFIG_MTD_OF_PARTS if (err == 0) { - err = of_mtd_parse_partitions(&dev->dev, info->mtd, - dp, &info->parts); + err = of_mtd_parse_partitions(&dev->dev, dp, &info->parts); if (err < 0) return err; } diff --git a/drivers/mtd/maps/walnut.c b/drivers/mtd/maps/walnut.c deleted file mode 100644 index e243476c817..00000000000 --- a/drivers/mtd/maps/walnut.c +++ /dev/null @@ -1,122 +0,0 @@ -/* - * Mapping for Walnut flash - * (used ebony.c as a "framework") - * - * Heikki Lindholm <holindho@infradead.org> - * - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 of the License, or (at your - * option) any later version. - */ - -#include <linux/module.h> -#include <linux/types.h> -#include <linux/kernel.h> -#include <linux/init.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/map.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <asm/ibm4xx.h> -#include <platforms/4xx/walnut.h> - -/* these should be in platforms/4xx/walnut.h ? */ -#define WALNUT_FLASH_ONBD_N(x) (x & 0x02) -#define WALNUT_FLASH_SRAM_SEL(x) (x & 0x01) -#define WALNUT_FLASH_LOW 0xFFF00000 -#define WALNUT_FLASH_HIGH 0xFFF80000 -#define WALNUT_FLASH_SIZE 0x80000 - -static struct mtd_info *flash; - -static struct map_info walnut_map = { - .name = "Walnut flash", - .size = WALNUT_FLASH_SIZE, - .bankwidth = 1, -}; - -/* Actually, OpenBIOS is the last 128 KiB of the flash - better - * partitioning could be made */ -static struct mtd_partition walnut_partitions[] = { - { - .name = "OpenBIOS", - .offset = 0x0, - .size = WALNUT_FLASH_SIZE, - /*.mask_flags = MTD_WRITEABLE, */ /* force read-only */ - } -}; - -int __init init_walnut(void) -{ - u8 fpga_brds1; - void *fpga_brds1_adr; - void *fpga_status_adr; - unsigned long flash_base; - - /* this should already be mapped (platform/4xx/walnut.c) */ - fpga_status_adr = ioremap(WALNUT_FPGA_BASE, 8); - if (!fpga_status_adr) - return -ENOMEM; - - fpga_brds1_adr = fpga_status_adr+5; - fpga_brds1 = readb(fpga_brds1_adr); - /* iounmap(fpga_status_adr); */ - - if (WALNUT_FLASH_ONBD_N(fpga_brds1)) { - printk("The on-board flash is disabled (U79 sw 5)!"); - iounmap(fpga_status_adr); - return -EIO; - } - if (WALNUT_FLASH_SRAM_SEL(fpga_brds1)) - flash_base = WALNUT_FLASH_LOW; - else - flash_base = WALNUT_FLASH_HIGH; - - walnut_map.phys = flash_base; - walnut_map.virt = - (void __iomem *)ioremap(flash_base, walnut_map.size); - - if (!walnut_map.virt) { - printk("Failed to ioremap flash.\n"); - iounmap(fpga_status_adr); - return -EIO; - } - - simple_map_init(&walnut_map); - - flash = do_map_probe("jedec_probe", &walnut_map); - if (flash) { - flash->owner = THIS_MODULE; - add_mtd_partitions(flash, walnut_partitions, - ARRAY_SIZE(walnut_partitions)); - } else { - printk("map probe failed for flash\n"); - iounmap(fpga_status_adr); - return -ENXIO; - } - - iounmap(fpga_status_adr); - return 0; -} - -static void __exit cleanup_walnut(void) -{ - if (flash) { - del_mtd_partitions(flash); - map_destroy(flash); - } - - if (walnut_map.virt) { - iounmap((void *)walnut_map.virt); - walnut_map.virt = 0; - } -} - -module_init(init_walnut); -module_exit(cleanup_walnut); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Heikki Lindholm <holindho@infradead.org>"); -MODULE_DESCRIPTION("MTD map and partitions for IBM 405GP Walnut boards"); diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c index d2f331876e4..13cc67ad272 100644 --- a/drivers/mtd/mtdchar.c +++ b/drivers/mtd/mtdchar.c @@ -350,7 +350,7 @@ static void mtdchar_erase_callback (struct erase_info *instr) wake_up((wait_queue_head_t *)instr->priv); } -#if defined(CONFIG_MTD_OTP) || defined(CONFIG_MTD_ONENAND_OTP) +#ifdef CONFIG_HAVE_MTD_OTP static int otp_select_filemode(struct mtd_file_info *mfi, int mode) { struct mtd_info *mtd = mfi->mtd; @@ -663,7 +663,7 @@ static int mtd_ioctl(struct inode *inode, struct file *file, break; } -#if defined(CONFIG_MTD_OTP) || defined(CONFIG_MTD_ONENAND_OTP) +#ifdef CONFIG_HAVE_MTD_OTP case OTPSELECT: { int mode; diff --git a/drivers/mtd/mtdconcat.c b/drivers/mtd/mtdconcat.c index 2972a5edb73..789842d0e6f 100644 --- a/drivers/mtd/mtdconcat.c +++ b/drivers/mtd/mtdconcat.c @@ -444,7 +444,7 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) return -EINVAL; } - instr->fail_addr = 0xffffffff; + instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; /* make a local copy of instr to avoid modifying the caller's struct */ erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL); @@ -493,7 +493,7 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) /* sanity check: should never happen since * block alignment has been checked above */ BUG_ON(err == -EINVAL); - if (erase->fail_addr != 0xffffffff) + if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr = erase->fail_addr + offset; break; } diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c index edb90b58a9b..8e77e36e75e 100644 --- a/drivers/mtd/mtdpart.c +++ b/drivers/mtd/mtdpart.c @@ -214,7 +214,7 @@ static int part_erase(struct mtd_info *mtd, struct erase_info *instr) instr->addr += part->offset; ret = part->master->erase(part->master, instr); if (ret) { - if (instr->fail_addr != 0xffffffff) + if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= part->offset; instr->addr -= part->offset; } @@ -226,7 +226,7 @@ void mtd_erase_callback(struct erase_info *instr) if (instr->mtd->erase == part_erase) { struct mtd_part *part = PART(instr->mtd); - if (instr->fail_addr != 0xffffffff) + if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) instr->fail_addr -= part->offset; instr->addr -= part->offset; } diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 41f361c49b3..89b4d39386a 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -68,12 +68,6 @@ config MTD_NAND_AMS_DELTA help Support for NAND flash on Amstrad E3 (Delta). -config MTD_NAND_TOTO - tristate "NAND Flash device on TOTO board" - depends on ARCH_OMAP && BROKEN - help - Support for NAND flash on Texas Instruments Toto platform. - config MTD_NAND_TS7250 tristate "NAND Flash device on TS-7250 board" depends on MACH_TS72XX @@ -163,13 +157,6 @@ config MTD_NAND_S3C2410_HWECC incorrect ECC generation, and if using these, the default of software ECC is preferable. -config MTD_NAND_NDFC - tristate "NDFC NanD Flash Controller" - depends on 4xx && !PPC_MERGE - select MTD_NAND_ECC_SMC - help - NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs - config MTD_NAND_S3C2410_CLKSTOP bool "S3C2410 NAND IDLE clock stop" depends on MTD_NAND_S3C2410 @@ -340,6 +327,13 @@ config MTD_NAND_PXA3xx This enables the driver for the NAND flash device found on PXA3xx processors +config MTD_NAND_PXA3xx_BUILTIN + bool "Use builtin definitions for some NAND chips (deprecated)" + depends on MTD_NAND_PXA3xx + help + This enables builtin definitions for some NAND chips. This + is deprecated in favor of platform specific data. + config MTD_NAND_CM_X270 tristate "Support for NAND Flash on CM-X270 modules" depends on MTD_NAND && MACH_ARMCORE @@ -400,10 +394,24 @@ config MTD_NAND_FSL_ELBC config MTD_NAND_FSL_UPM tristate "Support for NAND on Freescale UPM" - depends on MTD_NAND && OF_GPIO && (PPC_83xx || PPC_85xx) + depends on MTD_NAND && (PPC_83xx || PPC_85xx) select FSL_LBC help Enables support for NAND Flash chips wired onto Freescale PowerPC processor localbus with User-Programmable Machine support. +config MTD_NAND_MXC + tristate "MXC NAND support" + depends on ARCH_MX2 + help + This enables the driver for the NAND flash controller on the + MXC processors. + +config MTD_NAND_SH_FLCTL + tristate "Support for NAND on Renesas SuperH FLCTL" + depends on MTD_NAND && SUPERH && CPU_SUBTYPE_SH7723 + help + Several Renesas SuperH CPU has FLCTL. This option enables support + for NAND Flash using FLCTL. This driver support SH7723. + endif # MTD_NAND diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index b786c5da82d..9bfeca324b3 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -8,7 +8,6 @@ obj-$(CONFIG_MTD_NAND_IDS) += nand_ids.o obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o obj-$(CONFIG_MTD_NAND_SPIA) += spia.o obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o -obj-$(CONFIG_MTD_NAND_TOTO) += toto.o obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o @@ -34,5 +33,7 @@ obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o +obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o +obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o nand-objs := nand_base.o nand_bbt.o diff --git a/drivers/mtd/nand/atmel_nand.c b/drivers/mtd/nand/atmel_nand.c index 3387e0d5076..c98c1570a40 100644 --- a/drivers/mtd/nand/atmel_nand.c +++ b/drivers/mtd/nand/atmel_nand.c @@ -174,48 +174,6 @@ static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len) } /* - * write oob for small pages - */ -static int atmel_nand_write_oob_512(struct mtd_info *mtd, - struct nand_chip *chip, int page) -{ - int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; - int eccsize = chip->ecc.size, length = mtd->oobsize; - int len, pos, status = 0; - const uint8_t *bufpoi = chip->oob_poi; - - pos = eccsize + chunk; - - chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page); - len = min_t(int, length, chunk); - chip->write_buf(mtd, bufpoi, len); - bufpoi += len; - length -= len; - if (length > 0) - chip->write_buf(mtd, bufpoi, length); - - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - status = chip->waitfunc(mtd, chip); - - return status & NAND_STATUS_FAIL ? -EIO : 0; - -} - -/* - * read oob for small pages - */ -static int atmel_nand_read_oob_512(struct mtd_info *mtd, - struct nand_chip *chip, int page, int sndcmd) -{ - if (sndcmd) { - chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); - sndcmd = 0; - } - chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - return sndcmd; -} - -/* * Calculate HW ECC * * function called after a write @@ -235,14 +193,14 @@ static int atmel_nand_calculate(struct mtd_info *mtd, /* get the first 2 ECC bytes */ ecc_value = ecc_readl(host->ecc, PR); - ecc_code[eccpos[0]] = ecc_value & 0xFF; - ecc_code[eccpos[1]] = (ecc_value >> 8) & 0xFF; + ecc_code[0] = ecc_value & 0xFF; + ecc_code[1] = (ecc_value >> 8) & 0xFF; /* get the last 2 ECC bytes */ ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY; - ecc_code[eccpos[2]] = ecc_value & 0xFF; - ecc_code[eccpos[3]] = (ecc_value >> 8) & 0xFF; + ecc_code[2] = ecc_value & 0xFF; + ecc_code[3] = (ecc_value >> 8) & 0xFF; return 0; } @@ -476,14 +434,12 @@ static int __init atmel_nand_probe(struct platform_device *pdev) res = -EIO; goto err_ecc_ioremap; } - nand_chip->ecc.mode = NAND_ECC_HW_SYNDROME; + nand_chip->ecc.mode = NAND_ECC_HW; nand_chip->ecc.calculate = atmel_nand_calculate; nand_chip->ecc.correct = atmel_nand_correct; nand_chip->ecc.hwctl = atmel_nand_hwctl; nand_chip->ecc.read_page = atmel_nand_read_page; nand_chip->ecc.bytes = 4; - nand_chip->ecc.prepad = 0; - nand_chip->ecc.postpad = 0; } nand_chip->chip_delay = 20; /* 20us command delay time */ @@ -514,7 +470,7 @@ static int __init atmel_nand_probe(struct platform_device *pdev) goto err_scan_ident; } - if (nand_chip->ecc.mode == NAND_ECC_HW_SYNDROME) { + if (nand_chip->ecc.mode == NAND_ECC_HW) { /* ECC is calculated for the whole page (1 step) */ nand_chip->ecc.size = mtd->writesize; @@ -522,8 +478,6 @@ static int __init atmel_nand_probe(struct platform_device *pdev) switch (mtd->writesize) { case 512: nand_chip->ecc.layout = &atmel_oobinfo_small; - nand_chip->ecc.read_oob = atmel_nand_read_oob_512; - nand_chip->ecc.write_oob = atmel_nand_write_oob_512; ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528); break; case 1024: diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c index 98ad3cefcaf..4aa5bd6158d 100644 --- a/drivers/mtd/nand/fsl_elbc_nand.c +++ b/drivers/mtd/nand/fsl_elbc_nand.c @@ -918,8 +918,7 @@ static int __devinit fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl, #ifdef CONFIG_MTD_OF_PARTS if (ret == 0) { - ret = of_mtd_parse_partitions(priv->dev, &priv->mtd, - node, &parts); + ret = of_mtd_parse_partitions(priv->dev, node, &parts); if (ret < 0) goto err; } diff --git a/drivers/mtd/nand/fsl_upm.c b/drivers/mtd/nand/fsl_upm.c index 1ebfd87f00b..024e3fffd4b 100644 --- a/drivers/mtd/nand/fsl_upm.c +++ b/drivers/mtd/nand/fsl_upm.c @@ -13,6 +13,7 @@ #include <linux/kernel.h> #include <linux/module.h> +#include <linux/delay.h> #include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> #include <linux/mtd/partitions.h> @@ -36,8 +37,6 @@ struct fsl_upm_nand { uint8_t upm_cmd_offset; void __iomem *io_base; int rnb_gpio; - const uint32_t *wait_pattern; - const uint32_t *wait_write; int chip_delay; }; @@ -61,10 +60,11 @@ static void fun_wait_rnb(struct fsl_upm_nand *fun) if (fun->rnb_gpio >= 0) { while (--cnt && !fun_chip_ready(&fun->mtd)) cpu_relax(); + if (!cnt) + dev_err(fun->dev, "tired waiting for RNB\n"); + } else { + ndelay(100); } - - if (!cnt) - dev_err(fun->dev, "tired waiting for RNB\n"); } static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) @@ -89,8 +89,7 @@ static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) fsl_upm_run_pattern(&fun->upm, fun->io_base, cmd); - if (fun->wait_pattern) - fun_wait_rnb(fun); + fun_wait_rnb(fun); } static uint8_t fun_read_byte(struct mtd_info *mtd) @@ -116,14 +115,16 @@ static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) for (i = 0; i < len; i++) { out_8(fun->chip.IO_ADDR_W, buf[i]); - if (fun->wait_write) - fun_wait_rnb(fun); + fun_wait_rnb(fun); } } -static int __devinit fun_chip_init(struct fsl_upm_nand *fun) +static int __devinit fun_chip_init(struct fsl_upm_nand *fun, + const struct device_node *upm_np, + const struct resource *io_res) { int ret; + struct device_node *flash_np; #ifdef CONFIG_MTD_PARTITIONS static const char *part_types[] = { "cmdlinepart", NULL, }; #endif @@ -143,18 +144,37 @@ static int __devinit fun_chip_init(struct fsl_upm_nand *fun) fun->mtd.priv = &fun->chip; fun->mtd.owner = THIS_MODULE; + flash_np = of_get_next_child(upm_np, NULL); + if (!flash_np) + return -ENODEV; + + fun->mtd.name = kasprintf(GFP_KERNEL, "%x.%s", io_res->start, + flash_np->name); + if (!fun->mtd.name) { + ret = -ENOMEM; + goto err; + } + ret = nand_scan(&fun->mtd, 1); if (ret) - return ret; - - fun->mtd.name = fun->dev->bus_id; + goto err; #ifdef CONFIG_MTD_PARTITIONS ret = parse_mtd_partitions(&fun->mtd, part_types, &fun->parts, 0); + +#ifdef CONFIG_MTD_OF_PARTS + if (ret == 0) + ret = of_mtd_parse_partitions(fun->dev, &fun->mtd, + flash_np, &fun->parts); +#endif if (ret > 0) - return add_mtd_partitions(&fun->mtd, fun->parts, ret); + ret = add_mtd_partitions(&fun->mtd, fun->parts, ret); + else #endif - return add_mtd_device(&fun->mtd); + ret = add_mtd_device(&fun->mtd); +err: + of_node_put(flash_np); + return ret; } static int __devinit fun_probe(struct of_device *ofdev, @@ -211,6 +231,12 @@ static int __devinit fun_probe(struct of_device *ofdev, goto err2; } + prop = of_get_property(ofdev->node, "chip-delay", NULL); + if (prop) + fun->chip_delay = *prop; + else + fun->chip_delay = 50; + fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start, io_res.end - io_res.start + 1); if (!fun->io_base) { @@ -220,17 +246,8 @@ static int __devinit fun_probe(struct of_device *ofdev, fun->dev = &ofdev->dev; fun->last_ctrl = NAND_CLE; - fun->wait_pattern = of_get_property(ofdev->node, "fsl,wait-pattern", - NULL); - fun->wait_write = of_get_property(ofdev->node, "fsl,wait-write", NULL); - - prop = of_get_property(ofdev->node, "chip-delay", NULL); - if (prop) - fun->chip_delay = *prop; - else - fun->chip_delay = 50; - ret = fun_chip_init(fun); + ret = fun_chip_init(fun, ofdev->node, &io_res); if (ret) goto err2; @@ -251,6 +268,7 @@ static int __devexit fun_remove(struct of_device *ofdev) struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev); nand_release(&fun->mtd); + kfree(fun->mtd.name); if (fun->rnb_gpio >= 0) gpio_free(fun->rnb_gpio); diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c new file mode 100644 index 00000000000..21fd4f1c480 --- /dev/null +++ b/drivers/mtd/nand/mxc_nand.c @@ -0,0 +1,1077 @@ +/* + * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. + * Copyright 2008 Sascha Hauer, kernel@pengutronix.de + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, + * MA 02110-1301, USA. + */ + +#include <linux/delay.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/interrupt.h> +#include <linux/device.h> +#include <linux/platform_device.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/io.h> + +#include <asm/mach/flash.h> +#include <mach/mxc_nand.h> + +#define DRIVER_NAME "mxc_nand" + +/* Addresses for NFC registers */ +#define NFC_BUF_SIZE 0xE00 +#define NFC_BUF_ADDR 0xE04 +#define NFC_FLASH_ADDR 0xE06 +#define NFC_FLASH_CMD 0xE08 +#define NFC_CONFIG 0xE0A +#define NFC_ECC_STATUS_RESULT 0xE0C +#define NFC_RSLTMAIN_AREA 0xE0E +#define NFC_RSLTSPARE_AREA 0xE10 +#define NFC_WRPROT 0xE12 +#define NFC_UNLOCKSTART_BLKADDR 0xE14 +#define NFC_UNLOCKEND_BLKADDR 0xE16 +#define NFC_NF_WRPRST 0xE18 +#define NFC_CONFIG1 0xE1A +#define NFC_CONFIG2 0xE1C + +/* Addresses for NFC RAM BUFFER Main area 0 */ +#define MAIN_AREA0 0x000 +#define MAIN_AREA1 0x200 +#define MAIN_AREA2 0x400 +#define MAIN_AREA3 0x600 + +/* Addresses for NFC SPARE BUFFER Spare area 0 */ +#define SPARE_AREA0 0x800 +#define SPARE_AREA1 0x810 +#define SPARE_AREA2 0x820 +#define SPARE_AREA3 0x830 + +/* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register + * for Command operation */ +#define NFC_CMD 0x1 + +/* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register + * for Address operation */ +#define NFC_ADDR 0x2 + +/* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register + * for Input operation */ +#define NFC_INPUT 0x4 + +/* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register + * for Data Output operation */ +#define NFC_OUTPUT 0x8 + +/* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register + * for Read ID operation */ +#define NFC_ID 0x10 + +/* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register + * for Read Status operation */ +#define NFC_STATUS 0x20 + +/* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read + * Status operation */ +#define NFC_INT 0x8000 + +#define NFC_SP_EN (1 << 2) +#define NFC_ECC_EN (1 << 3) +#define NFC_INT_MSK (1 << 4) +#define NFC_BIG (1 << 5) +#define NFC_RST (1 << 6) +#define NFC_CE (1 << 7) +#define NFC_ONE_CYCLE (1 << 8) + +struct mxc_nand_host { + struct mtd_info mtd; + struct nand_chip nand; + struct mtd_partition *parts; + struct device *dev; + + void __iomem *regs; + int spare_only; + int status_request; + int pagesize_2k; + uint16_t col_addr; + struct clk *clk; + int clk_act; + int irq; + + wait_queue_head_t irq_waitq; +}; + +/* Define delays in microsec for NAND device operations */ +#define TROP_US_DELAY 2000 +/* Macros to get byte and bit positions of ECC */ +#define COLPOS(x) ((x) >> 3) +#define BITPOS(x) ((x) & 0xf) + +/* Define single bit Error positions in Main & Spare area */ +#define MAIN_SINGLEBIT_ERROR 0x4 +#define SPARE_SINGLEBIT_ERROR 0x1 + +/* OOB placement block for use with hardware ecc generation */ +static struct nand_ecclayout nand_hw_eccoob_8 = { + .eccbytes = 5, + .eccpos = {6, 7, 8, 9, 10}, + .oobfree = {{0, 5}, {11, 5}, } +}; + +static struct nand_ecclayout nand_hw_eccoob_16 = { + .eccbytes = 5, + .eccpos = {6, 7, 8, 9, 10}, + .oobfree = {{0, 6}, {12, 4}, } +}; + +#ifdef CONFIG_MTD_PARTITIONS +static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL }; +#endif + +static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) +{ + struct mxc_nand_host *host = dev_id; + + uint16_t tmp; + + tmp = readw(host->regs + NFC_CONFIG1); + tmp |= NFC_INT_MSK; /* Disable interrupt */ + writew(tmp, host->regs + NFC_CONFIG1); + + wake_up(&host->irq_waitq); + + return IRQ_HANDLED; +} + +/* This function polls the NANDFC to wait for the basic operation to + * complete by checking the INT bit of config2 register. + */ +static void wait_op_done(struct mxc_nand_host *host, int max_retries, + uint16_t param, int useirq) +{ + uint32_t tmp; + + if (useirq) { + if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) { + + tmp = readw(host->regs + NFC_CONFIG1); + tmp &= ~NFC_INT_MSK; /* Enable interrupt */ + writew(tmp, host->regs + NFC_CONFIG1); + + wait_event(host->irq_waitq, + readw(host->regs + NFC_CONFIG2) & NFC_INT); + + tmp = readw(host->regs + NFC_CONFIG2); + tmp &= ~NFC_INT; + writew(tmp, host->regs + NFC_CONFIG2); + } + } else { + while (max_retries-- > 0) { + if (readw(host->regs + NFC_CONFIG2) & NFC_INT) { + tmp = readw(host->regs + NFC_CONFIG2); + tmp &= ~NFC_INT; + writew(tmp, host->regs + NFC_CONFIG2); + break; + } + udelay(1); + } + if (max_retries <= 0) + DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", + __func__, param); + } +} + +/* This function issues the specified command to the NAND device and + * waits for completion. */ +static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq) +{ + DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); + + writew(cmd, host->regs + NFC_FLASH_CMD); + writew(NFC_CMD, host->regs + NFC_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, cmd, useirq); +} + +/* This function sends an address (or partial address) to the + * NAND device. The address is used to select the source/destination for + * a NAND command. */ +static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast) +{ + DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast); + + writew(addr, host->regs + NFC_FLASH_ADDR); + writew(NFC_ADDR, host->regs + NFC_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, addr, islast); +} + +/* This function requests the NANDFC to initate the transfer + * of data currently in the NANDFC RAM buffer to the NAND device. */ +static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id, + int spare_only) +{ + DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only); + + /* NANDFC buffer 0 is used for page read/write */ + writew(buf_id, host->regs + NFC_BUF_ADDR); + + /* Configure spare or page+spare access */ + if (!host->pagesize_2k) { + uint16_t config1 = readw(host->regs + NFC_CONFIG1); + if (spare_only) + config1 |= NFC_SP_EN; + else + config1 &= ~(NFC_SP_EN); + writew(config1, host->regs + NFC_CONFIG1); + } + + writew(NFC_INPUT, host->regs + NFC_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, spare_only, true); +} + +/* Requests NANDFC to initated the transfer of data from the + * NAND device into in the NANDFC ram buffer. */ +static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id, + int spare_only) +{ + DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only); + + /* NANDFC buffer 0 is used for page read/write */ + writew(buf_id, host->regs + NFC_BUF_ADDR); + + /* Configure spare or page+spare access */ + if (!host->pagesize_2k) { + uint32_t config1 = readw(host->regs + NFC_CONFIG1); + if (spare_only) + config1 |= NFC_SP_EN; + else + config1 &= ~NFC_SP_EN; + writew(config1, host->regs + NFC_CONFIG1); + } + + writew(NFC_OUTPUT, host->regs + NFC_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, spare_only, true); +} + +/* Request the NANDFC to perform a read of the NAND device ID. */ +static void send_read_id(struct mxc_nand_host *host) +{ + struct nand_chip *this = &host->nand; + uint16_t tmp; + + /* NANDFC buffer 0 is used for device ID output */ + writew(0x0, host->regs + NFC_BUF_ADDR); + + /* Read ID into main buffer */ + tmp = readw(host->regs + NFC_CONFIG1); + tmp &= ~NFC_SP_EN; + writew(tmp, host->regs + NFC_CONFIG1); + + writew(NFC_ID, host->regs + NFC_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, 0, true); + + if (this->options & NAND_BUSWIDTH_16) { + void __iomem *main_buf = host->regs + MAIN_AREA0; + /* compress the ID info */ + writeb(readb(main_buf + 2), main_buf + 1); + writeb(readb(main_buf + 4), main_buf + 2); + writeb(readb(main_buf + 6), main_buf + 3); + writeb(readb(main_buf + 8), main_buf + 4); + writeb(readb(main_buf + 10), main_buf + 5); + } +} + +/* This function requests the NANDFC to perform a read of the + * NAND device status and returns the current status. */ +static uint16_t get_dev_status(struct mxc_nand_host *host) +{ + void __iomem *main_buf = host->regs + MAIN_AREA1; + uint32_t store; + uint16_t ret, tmp; + /* Issue status request to NAND device */ + + /* store the main area1 first word, later do recovery */ + store = readl(main_buf); + /* NANDFC buffer 1 is used for device status to prevent + * corruption of read/write buffer on status requests. */ + writew(1, host->regs + NFC_BUF_ADDR); + + /* Read status into main buffer */ + tmp = readw(host->regs + NFC_CONFIG1); + tmp &= ~NFC_SP_EN; + writew(tmp, host->regs + NFC_CONFIG1); + + writew(NFC_STATUS, host->regs + NFC_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, TROP_US_DELAY, 0, true); + + /* Status is placed in first word of main buffer */ + /* get status, then recovery area 1 data */ + ret = readw(main_buf); + writel(store, main_buf); + + return ret; +} + +/* This functions is used by upper layer to checks if device is ready */ +static int mxc_nand_dev_ready(struct mtd_info *mtd) +{ + /* + * NFC handles R/B internally. Therefore, this function + * always returns status as ready. + */ + return 1; +} + +static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + /* + * If HW ECC is enabled, we turn it on during init. There is + * no need to enable again here. + */ +} + +static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + + /* + * 1-Bit errors are automatically corrected in HW. No need for + * additional correction. 2-Bit errors cannot be corrected by + * HW ECC, so we need to return failure + */ + uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT); + + if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { + DEBUG(MTD_DEBUG_LEVEL0, + "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); + return -1; + } + + return 0; +} + +static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + return 0; +} + +static u_char mxc_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + uint8_t ret = 0; + uint16_t col, rd_word; + uint16_t __iomem *main_buf = host->regs + MAIN_AREA0; + uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0; + + /* Check for status request */ + if (host->status_request) + return get_dev_status(host) & 0xFF; + + /* Get column for 16-bit access */ + col = host->col_addr >> 1; + + /* If we are accessing the spare region */ + if (host->spare_only) + rd_word = readw(&spare_buf[col]); + else + rd_word = readw(&main_buf[col]); + + /* Pick upper/lower byte of word from RAM buffer */ + if (host->col_addr & 0x1) + ret = (rd_word >> 8) & 0xFF; + else + ret = rd_word & 0xFF; + + /* Update saved column address */ + host->col_addr++; + + return ret; +} + +static uint16_t mxc_nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + uint16_t col, rd_word, ret; + uint16_t __iomem *p; + + DEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_read_word(col = %d)\n", host->col_addr); + + col = host->col_addr; + /* Adjust saved column address */ + if (col < mtd->writesize && host->spare_only) + col += mtd->writesize; + + if (col < mtd->writesize) + p = (host->regs + MAIN_AREA0) + (col >> 1); + else + p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1); + + if (col & 1) { + rd_word = readw(p); + ret = (rd_word >> 8) & 0xff; + rd_word = readw(&p[1]); + ret |= (rd_word << 8) & 0xff00; + + } else + ret = readw(p); + + /* Update saved column address */ + host->col_addr = col + 2; + + return ret; +} + +/* Write data of length len to buffer buf. The data to be + * written on NAND Flash is first copied to RAMbuffer. After the Data Input + * Operation by the NFC, the data is written to NAND Flash */ +static void mxc_nand_write_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + int n, col, i = 0; + + DEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr, + len); + + col = host->col_addr; + + /* Adjust saved column address */ + if (col < mtd->writesize && host->spare_only) + col += mtd->writesize; + + n = mtd->writesize + mtd->oobsize - col; + n = min(len, n); + + DEBUG(MTD_DEBUG_LEVEL3, + "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n); + + while (n) { + void __iomem *p; + + if (col < mtd->writesize) + p = host->regs + MAIN_AREA0 + (col & ~3); + else + p = host->regs + SPARE_AREA0 - + mtd->writesize + (col & ~3); + + DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__, + __LINE__, p); + + if (((col | (int)&buf[i]) & 3) || n < 16) { + uint32_t data = 0; + + if (col & 3 || n < 4) + data = readl(p); + + switch (col & 3) { + case 0: + if (n) { + data = (data & 0xffffff00) | + (buf[i++] << 0); + n--; + col++; + } + case 1: + if (n) { + data = (data & 0xffff00ff) | + (buf[i++] << 8); + n--; + col++; + } + case 2: + if (n) { + data = (data & 0xff00ffff) | + (buf[i++] << 16); + n--; + col++; + } + case 3: + if (n) { + data = (data & 0x00ffffff) | + (buf[i++] << 24); + n--; + col++; + } + } + + writel(data, p); + } else { + int m = mtd->writesize - col; + + if (col >= mtd->writesize) + m += mtd->oobsize; + + m = min(n, m) & ~3; + + DEBUG(MTD_DEBUG_LEVEL3, + "%s:%d: n = %d, m = %d, i = %d, col = %d\n", + __func__, __LINE__, n, m, i, col); + + memcpy(p, &buf[i], m); + col += m; + i += m; + n -= m; + } + } + /* Update saved column address */ + host->col_addr = col; +} + +/* Read the data buffer from the NAND Flash. To read the data from NAND + * Flash first the data output cycle is initiated by the NFC, which copies + * the data to RAMbuffer. This data of length len is then copied to buffer buf. + */ +static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + int n, col, i = 0; + + DEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len); + + col = host->col_addr; + + /* Adjust saved column address */ + if (col < mtd->writesize && host->spare_only) + col += mtd->writesize; + + n = mtd->writesize + mtd->oobsize - col; + n = min(len, n); + + while (n) { + void __iomem *p; + + if (col < mtd->writesize) + p = host->regs + MAIN_AREA0 + (col & ~3); + else + p = host->regs + SPARE_AREA0 - + mtd->writesize + (col & ~3); + + if (((col | (int)&buf[i]) & 3) || n < 16) { + uint32_t data; + + data = readl(p); + switch (col & 3) { + case 0: + if (n) { + buf[i++] = (uint8_t) (data); + n--; + col++; + } + case 1: + if (n) { + buf[i++] = (uint8_t) (data >> 8); + n--; + col++; + } + case 2: + if (n) { + buf[i++] = (uint8_t) (data >> 16); + n--; + col++; + } + case 3: + if (n) { + buf[i++] = (uint8_t) (data >> 24); + n--; + col++; + } + } + } else { + int m = mtd->writesize - col; + + if (col >= mtd->writesize) + m += mtd->oobsize; + + m = min(n, m) & ~3; + memcpy(&buf[i], p, m); + col += m; + i += m; + n -= m; + } + } + /* Update saved column address */ + host->col_addr = col; + +} + +/* Used by the upper layer to verify the data in NAND Flash + * with the data in the buf. */ +static int mxc_nand_verify_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + return -EFAULT; +} + +/* This function is used by upper layer for select and + * deselect of the NAND chip */ +static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + +#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE + if (chip > 0) { + DEBUG(MTD_DEBUG_LEVEL0, + "ERROR: Illegal chip select (chip = %d)\n", chip); + return; + } + + if (chip == -1) { + writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE, + host->regs + NFC_CONFIG1); + return; + } + + writew(readw(host->regs + NFC_CONFIG1) | NFC_CE, + host->regs + NFC_CONFIG1); +#endif + + switch (chip) { + case -1: + /* Disable the NFC clock */ + if (host->clk_act) { + clk_disable(host->clk); + host->clk_act = 0; + } + break; + case 0: + /* Enable the NFC clock */ + if (!host->clk_act) { + clk_enable(host->clk); + host->clk_act = 1; + } + break; + + default: + break; + } +} + +/* Used by the upper layer to write command to NAND Flash for + * different operations to be carried out on NAND Flash */ +static void mxc_nand_command(struct mtd_info *mtd, unsigned command, + int column, int page_addr) +{ + struct nand_chip *nand_chip = mtd->priv; + struct mxc_nand_host *host = nand_chip->priv; + int useirq = true; + + DEBUG(MTD_DEBUG_LEVEL3, + "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", + command, column, page_addr); + + /* Reset command state information */ + host->status_request = false; + + /* Command pre-processing step */ + switch (command) { + + case NAND_CMD_STATUS: + host->col_addr = 0; + host->status_request = true; + break; + + case NAND_CMD_READ0: + host->col_addr = column; + host->spare_only = false; + useirq = false; + break; + + case NAND_CMD_READOOB: + host->col_addr = column; + host->spare_only = true; + useirq = false; + if (host->pagesize_2k) + command = NAND_CMD_READ0; /* only READ0 is valid */ + break; + + case NAND_CMD_SEQIN: + if (column >= mtd->writesize) { + /* + * FIXME: before send SEQIN command for write OOB, + * We must read one page out. + * For K9F1GXX has no READ1 command to set current HW + * pointer to spare area, we must write the whole page + * including OOB together. + */ + if (host->pagesize_2k) + /* call ourself to read a page */ + mxc_nand_command(mtd, NAND_CMD_READ0, 0, + page_addr); + + host->col_addr = column - mtd->writesize; + host->spare_only = true; + + /* Set program pointer to spare region */ + if (!host->pagesize_2k) + send_cmd(host, NAND_CMD_READOOB, false); + } else { + host->spare_only = false; + host->col_addr = column; + + /* Set program pointer to page start */ + if (!host->pagesize_2k) + send_cmd(host, NAND_CMD_READ0, false); + } + useirq = false; + break; + + case NAND_CMD_PAGEPROG: + send_prog_page(host, 0, host->spare_only); + + if (host->pagesize_2k) { + /* data in 4 areas datas */ + send_prog_page(host, 1, host->spare_only); + send_prog_page(host, 2, host->spare_only); + send_prog_page(host, 3, host->spare_only); + } + + break; + + case NAND_CMD_ERASE1: + useirq = false; + break; + } + + /* Write out the command to the device. */ + send_cmd(host, command, useirq); + + /* Write out column address, if necessary */ + if (column != -1) { + /* + * MXC NANDFC can only perform full page+spare or + * spare-only read/write. When the upper layers + * layers perform a read/write buf operation, + * we will used the saved column adress to index into + * the full page. + */ + send_addr(host, 0, page_addr == -1); + if (host->pagesize_2k) + /* another col addr cycle for 2k page */ + send_addr(host, 0, false); + } + + /* Write out page address, if necessary */ + if (page_addr != -1) { + /* paddr_0 - p_addr_7 */ + send_addr(host, (page_addr & 0xff), false); + + if (host->pagesize_2k) { + send_addr(host, (page_addr >> 8) & 0xFF, false); + if (mtd->size >= 0x40000000) + send_addr(host, (page_addr >> 16) & 0xff, true); + } else { + /* One more address cycle for higher density devices */ + if (mtd->size >= 0x4000000) { + /* paddr_8 - paddr_15 */ + send_addr(host, (page_addr >> 8) & 0xff, false); + send_addr(host, (page_addr >> 16) & 0xff, true); + } else + /* paddr_8 - paddr_15 */ + send_addr(host, (page_addr >> 8) & 0xff, true); + } + } + + /* Command post-processing step */ + switch (command) { + + case NAND_CMD_RESET: + break; + + case NAND_CMD_READOOB: + case NAND_CMD_READ0: + if (host->pagesize_2k) { + /* send read confirm command */ + send_cmd(host, NAND_CMD_READSTART, true); + /* read for each AREA */ + send_read_page(host, 0, host->spare_only); + send_read_page(host, 1, host->spare_only); + send_read_page(host, 2, host->spare_only); + send_read_page(host, 3, host->spare_only); + } else + send_read_page(host, 0, host->spare_only); + break; + + case NAND_CMD_READID: + send_read_id(host); + break; + + case NAND_CMD_PAGEPROG: + break; + + case NAND_CMD_STATUS: + break; + + case NAND_CMD_ERASE2: + break; + } +} + +static int __init mxcnd_probe(struct platform_device *pdev) +{ + struct nand_chip *this; + struct mtd_info *mtd; + struct mxc_nand_platform_data *pdata = pdev->dev.platform_data; + struct mxc_nand_host *host; + struct resource *res; + uint16_t tmp; + int err = 0, nr_parts = 0; + + /* Allocate memory for MTD device structure and private data */ + host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + host->dev = &pdev->dev; + /* structures must be linked */ + this = &host->nand; + mtd = &host->mtd; + mtd->priv = this; + mtd->owner = THIS_MODULE; + + /* 50 us command delay time */ + this->chip_delay = 5; + + this->priv = host; + this->dev_ready = mxc_nand_dev_ready; + this->cmdfunc = mxc_nand_command; + this->select_chip = mxc_nand_select_chip; + this->read_byte = mxc_nand_read_byte; + this->read_word = mxc_nand_read_word; + this->write_buf = mxc_nand_write_buf; + this->read_buf = mxc_nand_read_buf; + this->verify_buf = mxc_nand_verify_buf; + + host->clk = clk_get(&pdev->dev, "nfc_clk"); + if (IS_ERR(host->clk)) + goto eclk; + + clk_enable(host->clk); + host->clk_act = 1; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res) { + err = -ENODEV; + goto eres; + } + + host->regs = ioremap(res->start, res->end - res->start + 1); + if (!host->regs) { + err = -EIO; + goto eres; + } + + tmp = readw(host->regs + NFC_CONFIG1); + tmp |= NFC_INT_MSK; + writew(tmp, host->regs + NFC_CONFIG1); + + init_waitqueue_head(&host->irq_waitq); + + host->irq = platform_get_irq(pdev, 0); + + err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host); + if (err) + goto eirq; + + if (pdata->hw_ecc) { + this->ecc.calculate = mxc_nand_calculate_ecc; + this->ecc.hwctl = mxc_nand_enable_hwecc; + this->ecc.correct = mxc_nand_correct_data; + this->ecc.mode = NAND_ECC_HW; + this->ecc.size = 512; + this->ecc.bytes = 3; + this->ecc.layout = &nand_hw_eccoob_8; + tmp = readw(host->regs + NFC_CONFIG1); + tmp |= NFC_ECC_EN; + writew(tmp, host->regs + NFC_CONFIG1); + } else { + this->ecc.size = 512; + this->ecc.bytes = 3; + this->ecc.layout = &nand_hw_eccoob_8; + this->ecc.mode = NAND_ECC_SOFT; + tmp = readw(host->regs + NFC_CONFIG1); + tmp &= ~NFC_ECC_EN; + writew(tmp, host->regs + NFC_CONFIG1); + } + + /* Reset NAND */ + this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + + /* preset operation */ + /* Unlock the internal RAM Buffer */ + writew(0x2, host->regs + NFC_CONFIG); + + /* Blocks to be unlocked */ + writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR); + writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR); + + /* Unlock Block Command for given address range */ + writew(0x4, host->regs + NFC_WRPROT); + + /* NAND bus width determines access funtions used by upper layer */ + if (pdata->width == 2) { + this->options |= NAND_BUSWIDTH_16; + this->ecc.layout = &nand_hw_eccoob_16; + } + + host->pagesize_2k = 0; + + /* Scan to find existence of the device */ + if (nand_scan(mtd, 1)) { + DEBUG(MTD_DEBUG_LEVEL0, + "MXC_ND: Unable to find any NAND device.\n"); + err = -ENXIO; + goto escan; + } + + /* Register the partitions */ +#ifdef CONFIG_MTD_PARTITIONS + nr_parts = + parse_mtd_partitions(mtd, part_probes, &host->parts, 0); + if (nr_parts > 0) + add_mtd_partitions(mtd, host->parts, nr_parts); + else +#endif + { + pr_info("Registering %s as whole device\n", mtd->name); + add_mtd_device(mtd); + } + + platform_set_drvdata(pdev, host); + + return 0; + +escan: + free_irq(host->irq, NULL); +eirq: + iounmap(host->regs); +eres: + clk_put(host->clk); +eclk: + kfree(host); + + return err; +} + +static int __devexit mxcnd_remove(struct platform_device *pdev) +{ + struct mxc_nand_host *host = platform_get_drvdata(pdev); + + clk_put(host->clk); + + platform_set_drvdata(pdev, NULL); + + nand_release(&host->mtd); + free_irq(host->irq, NULL); + iounmap(host->regs); + kfree(host); + + return 0; +} + +#ifdef CONFIG_PM +static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state) +{ + struct mtd_info *info = platform_get_drvdata(pdev); + int ret = 0; + + DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n"); + if (info) + ret = info->suspend(info); + + /* Disable the NFC clock */ + clk_disable(nfc_clk); /* FIXME */ + + return ret; +} + +static int mxcnd_resume(struct platform_device *pdev) +{ + struct mtd_info *info = platform_get_drvdata(pdev); + int ret = 0; + + DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n"); + /* Enable the NFC clock */ + clk_enable(nfc_clk); /* FIXME */ + + if (info) + info->resume(info); + + return ret; +} + +#else +# define mxcnd_suspend NULL +# define mxcnd_resume NULL +#endif /* CONFIG_PM */ + +static struct platform_driver mxcnd_driver = { + .driver = { + .name = DRIVER_NAME, + }, + .remove = __exit_p(mxcnd_remove), + .suspend = mxcnd_suspend, + .resume = mxcnd_resume, +}; + +static int __init mxc_nd_init(void) +{ + /* Register the device driver structure. */ + pr_info("MXC MTD nand Driver\n"); + if (platform_driver_probe(&mxcnd_driver, mxcnd_probe) != 0) { + printk(KERN_ERR "Driver register failed for mxcnd_driver\n"); + return -ENODEV; + } + return 0; +} + +static void __exit mxc_nd_cleanup(void) +{ + /* Unregister the device structure */ + platform_driver_unregister(&mxcnd_driver); +} + +module_init(mxc_nd_init); +module_exit(mxc_nd_cleanup); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("MXC NAND MTD driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index d1129bae6c2..0a9c9cd33f9 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c @@ -801,9 +801,9 @@ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function * @mtd: mtd info structure * @chip: nand chip info structure - * @dataofs offset of requested data within the page - * @readlen data length - * @buf: buffer to store read data + * @data_offs: offset of requested data within the page + * @readlen: data length + * @bufpoi: buffer to store read data */ static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi) { @@ -2042,7 +2042,7 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, return -EINVAL; } - instr->fail_addr = 0xffffffff; + instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; /* Grab the lock and see if the device is available */ nand_get_device(chip, mtd, FL_ERASING); @@ -2318,6 +2318,12 @@ static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd, /* Select the device */ chip->select_chip(mtd, 0); + /* + * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) + * after power-up + */ + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + /* Send the command for reading device ID */ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); @@ -2488,6 +2494,8 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips) /* Check for a chip array */ for (i = 1; i < maxchips; i++) { chip->select_chip(mtd, i); + /* See comment in nand_get_flash_type for reset */ + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* Send the command for reading device ID */ chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1); /* Read manufacturer and device IDs */ diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c index 918a806a847..868147acce2 100644 --- a/drivers/mtd/nand/nand_ecc.c +++ b/drivers/mtd/nand/nand_ecc.c @@ -1,13 +1,18 @@ /* - * This file contains an ECC algorithm from Toshiba that detects and - * corrects 1 bit errors in a 256 byte block of data. + * This file contains an ECC algorithm that detects and corrects 1 bit + * errors in a 256 byte block of data. * * drivers/mtd/nand/nand_ecc.c * - * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com) - * Toshiba America Electronics Components, Inc. + * Copyright © 2008 Koninklijke Philips Electronics NV. + * Author: Frans Meulenbroeks * - * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de> + * Completely replaces the previous ECC implementation which was written by: + * Steven J. Hill (sjhill@realitydiluted.com) + * Thomas Gleixner (tglx@linutronix.de) + * + * Information on how this algorithm works and how it was developed + * can be found in Documentation/mtd/nand_ecc.txt * * This file is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the @@ -23,174 +28,475 @@ * with this file; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * - * As a special exception, if other files instantiate templates or use - * macros or inline functions from these files, or you compile these - * files and link them with other works to produce a work based on these - * files, these files do not by themselves cause the resulting work to be - * covered by the GNU General Public License. However the source code for - * these files must still be made available in accordance with section (3) - * of the GNU General Public License. - * - * This exception does not invalidate any other reasons why a work based on - * this file might be covered by the GNU General Public License. */ +/* + * The STANDALONE macro is useful when running the code outside the kernel + * e.g. when running the code in a testbed or a benchmark program. + * When STANDALONE is used, the module related macros are commented out + * as well as the linux include files. + * Instead a private definition of mtd_info is given to satisfy the compiler + * (the code does not use mtd_info, so the code does not care) + */ +#ifndef STANDALONE #include <linux/types.h> #include <linux/kernel.h> #include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> #include <linux/mtd/nand_ecc.h> +#include <asm/byteorder.h> +#else +#include <stdint.h> +struct mtd_info; +#define EXPORT_SYMBOL(x) /* x */ + +#define MODULE_LICENSE(x) /* x */ +#define MODULE_AUTHOR(x) /* x */ +#define MODULE_DESCRIPTION(x) /* x */ + +#define printk printf +#define KERN_ERR "" +#endif + +/* + * invparity is a 256 byte table that contains the odd parity + * for each byte. So if the number of bits in a byte is even, + * the array element is 1, and when the number of bits is odd + * the array eleemnt is 0. + */ +static const char invparity[256] = { + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 +}; + +/* + * bitsperbyte contains the number of bits per byte + * this is only used for testing and repairing parity + * (a precalculated value slightly improves performance) + */ +static const char bitsperbyte[256] = { + 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, +}; /* - * Pre-calculated 256-way 1 byte column parity + * addressbits is a lookup table to filter out the bits from the xor-ed + * ecc data that identify the faulty location. + * this is only used for repairing parity + * see the comments in nand_correct_data for more details */ -static const u_char nand_ecc_precalc_table[] = { - 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, - 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, - 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, - 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, - 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, - 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, - 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, - 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, - 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, - 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, - 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, - 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, - 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, - 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, - 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, - 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 +static const char addressbits[256] = { + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f }; /** - * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block + * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte + * block * @mtd: MTD block structure - * @dat: raw data - * @ecc_code: buffer for ECC + * @buf: input buffer with raw data + * @code: output buffer with ECC */ -int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, - u_char *ecc_code) +int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf, + unsigned char *code) { - uint8_t idx, reg1, reg2, reg3, tmp1, tmp2; int i; + const uint32_t *bp = (uint32_t *)buf; + /* 256 or 512 bytes/ecc */ + const uint32_t eccsize_mult = + (((struct nand_chip *)mtd->priv)->ecc.size) >> 8; + uint32_t cur; /* current value in buffer */ + /* rp0..rp15..rp17 are the various accumulated parities (per byte) */ + uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7; + uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16; + uint32_t uninitialized_var(rp17); /* to make compiler happy */ + uint32_t par; /* the cumulative parity for all data */ + uint32_t tmppar; /* the cumulative parity for this iteration; + for rp12, rp14 and rp16 at the end of the + loop */ + + par = 0; + rp4 = 0; + rp6 = 0; + rp8 = 0; + rp10 = 0; + rp12 = 0; + rp14 = 0; + rp16 = 0; + + /* + * The loop is unrolled a number of times; + * This avoids if statements to decide on which rp value to update + * Also we process the data by longwords. + * Note: passing unaligned data might give a performance penalty. + * It is assumed that the buffers are aligned. + * tmppar is the cumulative sum of this iteration. + * needed for calculating rp12, rp14, rp16 and par + * also used as a performance improvement for rp6, rp8 and rp10 + */ + for (i = 0; i < eccsize_mult << 2; i++) { + cur = *bp++; + tmppar = cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= tmppar; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp8 ^= tmppar; - /* Initialize variables */ - reg1 = reg2 = reg3 = 0; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp10 ^= tmppar; - /* Build up column parity */ - for(i = 0; i < 256; i++) { - /* Get CP0 - CP5 from table */ - idx = nand_ecc_precalc_table[*dat++]; - reg1 ^= (idx & 0x3f); + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp6 ^= cur; + rp8 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= cur; + rp8 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp8 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp8 ^= cur; - /* All bit XOR = 1 ? */ - if (idx & 0x40) { - reg3 ^= (uint8_t) i; - reg2 ^= ~((uint8_t) i); - } + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + + par ^= tmppar; + if ((i & 0x1) == 0) + rp12 ^= tmppar; + if ((i & 0x2) == 0) + rp14 ^= tmppar; + if (eccsize_mult == 2 && (i & 0x4) == 0) + rp16 ^= tmppar; } - /* Create non-inverted ECC code from line parity */ - tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */ - tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */ - tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */ - tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */ - tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */ - tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */ - tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */ - tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */ - - tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */ - tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */ - tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */ - tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */ - tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */ - tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */ - tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */ - tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */ - - /* Calculate final ECC code */ -#ifdef CONFIG_MTD_NAND_ECC_SMC - ecc_code[0] = ~tmp2; - ecc_code[1] = ~tmp1; + /* + * handle the fact that we use longword operations + * we'll bring rp4..rp14..rp16 back to single byte entities by + * shifting and xoring first fold the upper and lower 16 bits, + * then the upper and lower 8 bits. + */ + rp4 ^= (rp4 >> 16); + rp4 ^= (rp4 >> 8); + rp4 &= 0xff; + rp6 ^= (rp6 >> 16); + rp6 ^= (rp6 >> 8); + rp6 &= 0xff; + rp8 ^= (rp8 >> 16); + rp8 ^= (rp8 >> 8); + rp8 &= 0xff; + rp10 ^= (rp10 >> 16); + rp10 ^= (rp10 >> 8); + rp10 &= 0xff; + rp12 ^= (rp12 >> 16); + rp12 ^= (rp12 >> 8); + rp12 &= 0xff; + rp14 ^= (rp14 >> 16); + rp14 ^= (rp14 >> 8); + rp14 &= 0xff; + if (eccsize_mult == 2) { + rp16 ^= (rp16 >> 16); + rp16 ^= (rp16 >> 8); + rp16 &= 0xff; + } + + /* + * we also need to calculate the row parity for rp0..rp3 + * This is present in par, because par is now + * rp3 rp3 rp2 rp2 in little endian and + * rp2 rp2 rp3 rp3 in big endian + * as well as + * rp1 rp0 rp1 rp0 in little endian and + * rp0 rp1 rp0 rp1 in big endian + * First calculate rp2 and rp3 + */ +#ifdef __BIG_ENDIAN + rp2 = (par >> 16); + rp2 ^= (rp2 >> 8); + rp2 &= 0xff; + rp3 = par & 0xffff; + rp3 ^= (rp3 >> 8); + rp3 &= 0xff; #else - ecc_code[0] = ~tmp1; - ecc_code[1] = ~tmp2; + rp3 = (par >> 16); + rp3 ^= (rp3 >> 8); + rp3 &= 0xff; + rp2 = par & 0xffff; + rp2 ^= (rp2 >> 8); + rp2 &= 0xff; #endif - ecc_code[2] = ((~reg1) << 2) | 0x03; - return 0; -} -EXPORT_SYMBOL(nand_calculate_ecc); + /* reduce par to 16 bits then calculate rp1 and rp0 */ + par ^= (par >> 16); +#ifdef __BIG_ENDIAN + rp0 = (par >> 8) & 0xff; + rp1 = (par & 0xff); +#else + rp1 = (par >> 8) & 0xff; + rp0 = (par & 0xff); +#endif -static inline int countbits(uint32_t byte) -{ - int res = 0; + /* finally reduce par to 8 bits */ + par ^= (par >> 8); + par &= 0xff; - for (;byte; byte >>= 1) - res += byte & 0x01; - return res; + /* + * and calculate rp5..rp15..rp17 + * note that par = rp4 ^ rp5 and due to the commutative property + * of the ^ operator we can say: + * rp5 = (par ^ rp4); + * The & 0xff seems superfluous, but benchmarking learned that + * leaving it out gives slightly worse results. No idea why, probably + * it has to do with the way the pipeline in pentium is organized. + */ + rp5 = (par ^ rp4) & 0xff; + rp7 = (par ^ rp6) & 0xff; + rp9 = (par ^ rp8) & 0xff; + rp11 = (par ^ rp10) & 0xff; + rp13 = (par ^ rp12) & 0xff; + rp15 = (par ^ rp14) & 0xff; + if (eccsize_mult == 2) + rp17 = (par ^ rp16) & 0xff; + + /* + * Finally calculate the ecc bits. + * Again here it might seem that there are performance optimisations + * possible, but benchmarks showed that on the system this is developed + * the code below is the fastest + */ +#ifdef CONFIG_MTD_NAND_ECC_SMC + code[0] = + (invparity[rp7] << 7) | + (invparity[rp6] << 6) | + (invparity[rp5] << 5) | + (invparity[rp4] << 4) | + (invparity[rp3] << 3) | + (invparity[rp2] << 2) | + (invparity[rp1] << 1) | + (invparity[rp0]); + code[1] = + (invparity[rp15] << 7) | + (invparity[rp14] << 6) | + (invparity[rp13] << 5) | + (invparity[rp12] << 4) | + (invparity[rp11] << 3) | + (invparity[rp10] << 2) | + (invparity[rp9] << 1) | + (invparity[rp8]); +#else + code[1] = + (invparity[rp7] << 7) | + (invparity[rp6] << 6) | + (invparity[rp5] << 5) | + (invparity[rp4] << 4) | + (invparity[rp3] << 3) | + (invparity[rp2] << 2) | + (invparity[rp1] << 1) | + (invparity[rp0]); + code[0] = + (invparity[rp15] << 7) | + (invparity[rp14] << 6) | + (invparity[rp13] << 5) | + (invparity[rp12] << 4) | + (invparity[rp11] << 3) | + (invparity[rp10] << 2) | + (invparity[rp9] << 1) | + (invparity[rp8]); +#endif + if (eccsize_mult == 1) + code[2] = + (invparity[par & 0xf0] << 7) | + (invparity[par & 0x0f] << 6) | + (invparity[par & 0xcc] << 5) | + (invparity[par & 0x33] << 4) | + (invparity[par & 0xaa] << 3) | + (invparity[par & 0x55] << 2) | + 3; + else + code[2] = + (invparity[par & 0xf0] << 7) | + (invparity[par & 0x0f] << 6) | + (invparity[par & 0xcc] << 5) | + (invparity[par & 0x33] << 4) | + (invparity[par & 0xaa] << 3) | + (invparity[par & 0x55] << 2) | + (invparity[rp17] << 1) | + (invparity[rp16] << 0); + return 0; } +EXPORT_SYMBOL(nand_calculate_ecc); /** * nand_correct_data - [NAND Interface] Detect and correct bit error(s) * @mtd: MTD block structure - * @dat: raw data read from the chip + * @buf: raw data read from the chip * @read_ecc: ECC from the chip * @calc_ecc: the ECC calculated from raw data * - * Detect and correct a 1 bit error for 256 byte block + * Detect and correct a 1 bit error for 256/512 byte block */ -int nand_correct_data(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) +int nand_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) { - uint8_t s0, s1, s2; + unsigned char b0, b1, b2; + unsigned char byte_addr, bit_addr; + /* 256 or 512 bytes/ecc */ + const uint32_t eccsize_mult = + (((struct nand_chip *)mtd->priv)->ecc.size) >> 8; + /* + * b0 to b2 indicate which bit is faulty (if any) + * we might need the xor result more than once, + * so keep them in a local var + */ #ifdef CONFIG_MTD_NAND_ECC_SMC - s0 = calc_ecc[0] ^ read_ecc[0]; - s1 = calc_ecc[1] ^ read_ecc[1]; - s2 = calc_ecc[2] ^ read_ecc[2]; + b0 = read_ecc[0] ^ calc_ecc[0]; + b1 = read_ecc[1] ^ calc_ecc[1]; #else - s1 = calc_ecc[0] ^ read_ecc[0]; - s0 = calc_ecc[1] ^ read_ecc[1]; - s2 = calc_ecc[2] ^ read_ecc[2]; + b0 = read_ecc[1] ^ calc_ecc[1]; + b1 = read_ecc[0] ^ calc_ecc[0]; #endif - if ((s0 | s1 | s2) == 0) - return 0; - - /* Check for a single bit error */ - if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 && - ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 && - ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) { + b2 = read_ecc[2] ^ calc_ecc[2]; - uint32_t byteoffs, bitnum; + /* check if there are any bitfaults */ - byteoffs = (s1 << 0) & 0x80; - byteoffs |= (s1 << 1) & 0x40; - byteoffs |= (s1 << 2) & 0x20; - byteoffs |= (s1 << 3) & 0x10; + /* repeated if statements are slightly more efficient than switch ... */ + /* ordered in order of likelihood */ - byteoffs |= (s0 >> 4) & 0x08; - byteoffs |= (s0 >> 3) & 0x04; - byteoffs |= (s0 >> 2) & 0x02; - byteoffs |= (s0 >> 1) & 0x01; - - bitnum = (s2 >> 5) & 0x04; - bitnum |= (s2 >> 4) & 0x02; - bitnum |= (s2 >> 3) & 0x01; - - dat[byteoffs] ^= (1 << bitnum); + if ((b0 | b1 | b2) == 0) + return 0; /* no error */ + if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) && + (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) && + ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) || + (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) { + /* single bit error */ + /* + * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty + * byte, cp 5/3/1 indicate the faulty bit. + * A lookup table (called addressbits) is used to filter + * the bits from the byte they are in. + * A marginal optimisation is possible by having three + * different lookup tables. + * One as we have now (for b0), one for b2 + * (that would avoid the >> 1), and one for b1 (with all values + * << 4). However it was felt that introducing two more tables + * hardly justify the gain. + * + * The b2 shift is there to get rid of the lowest two bits. + * We could also do addressbits[b2] >> 1 but for the + * performace it does not make any difference + */ + if (eccsize_mult == 1) + byte_addr = (addressbits[b1] << 4) + addressbits[b0]; + else + byte_addr = (addressbits[b2 & 0x3] << 8) + + (addressbits[b1] << 4) + addressbits[b0]; + bit_addr = addressbits[b2 >> 2]; + /* flip the bit */ + buf[byte_addr] ^= (1 << bit_addr); return 1; - } - if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1) - return 1; + } + /* count nr of bits; use table lookup, faster than calculating it */ + if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) + return 1; /* error in ecc data; no action needed */ - return -EBADMSG; + printk(KERN_ERR "uncorrectable error : "); + return -1; } EXPORT_SYMBOL(nand_correct_data); MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); +MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>"); MODULE_DESCRIPTION("Generic NAND ECC support"); diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c index 556e8131ecd..ae7c57781a6 100644 --- a/drivers/mtd/nand/nandsim.c +++ b/drivers/mtd/nand/nandsim.c @@ -38,7 +38,6 @@ #include <linux/delay.h> #include <linux/list.h> #include <linux/random.h> -#include <asm/div64.h> /* Default simulator parameters values */ #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c index a64ad15b8fd..c0fa9c9edf0 100644 --- a/drivers/mtd/nand/pxa3xx_nand.c +++ b/drivers/mtd/nand/pxa3xx_nand.c @@ -115,55 +115,11 @@ enum { STATE_PIO_WRITING, }; -struct pxa3xx_nand_timing { - unsigned int tCH; /* Enable signal hold time */ - unsigned int tCS; /* Enable signal setup time */ - unsigned int tWH; /* ND_nWE high duration */ - unsigned int tWP; /* ND_nWE pulse time */ - unsigned int tRH; /* ND_nRE high duration */ - unsigned int tRP; /* ND_nRE pulse width */ - unsigned int tR; /* ND_nWE high to ND_nRE low for read */ - unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */ - unsigned int tAR; /* ND_ALE low to ND_nRE low delay */ -}; - -struct pxa3xx_nand_cmdset { - uint16_t read1; - uint16_t read2; - uint16_t program; - uint16_t read_status; - uint16_t read_id; - uint16_t erase; - uint16_t reset; - uint16_t lock; - uint16_t unlock; - uint16_t lock_status; -}; - -struct pxa3xx_nand_flash { - struct pxa3xx_nand_timing *timing; /* NAND Flash timing */ - struct pxa3xx_nand_cmdset *cmdset; - - uint32_t page_per_block;/* Pages per block (PG_PER_BLK) */ - uint32_t page_size; /* Page size in bytes (PAGE_SZ) */ - uint32_t flash_width; /* Width of Flash memory (DWIDTH_M) */ - uint32_t dfc_width; /* Width of flash controller(DWIDTH_C) */ - uint32_t num_blocks; /* Number of physical blocks in Flash */ - uint32_t chip_id; - - /* NOTE: these are automatically calculated, do not define */ - size_t oob_size; - size_t read_id_bytes; - - unsigned int col_addr_cycles; - unsigned int row_addr_cycles; -}; - struct pxa3xx_nand_info { struct nand_chip nand_chip; struct platform_device *pdev; - struct pxa3xx_nand_flash *flash_info; + const struct pxa3xx_nand_flash *flash_info; struct clk *clk; void __iomem *mmio_base; @@ -202,12 +158,20 @@ struct pxa3xx_nand_info { uint32_t ndcb0; uint32_t ndcb1; uint32_t ndcb2; + + /* calculated from pxa3xx_nand_flash data */ + size_t oob_size; + size_t read_id_bytes; + + unsigned int col_addr_cycles; + unsigned int row_addr_cycles; }; static int use_dma = 1; module_param(use_dma, bool, 0444); MODULE_PARM_DESC(use_dma, "enable DMA for data transfering to/from NAND HW"); +#ifdef CONFIG_MTD_NAND_PXA3xx_BUILTIN static struct pxa3xx_nand_cmdset smallpage_cmdset = { .read1 = 0x0000, .read2 = 0x0050, @@ -291,11 +255,35 @@ static struct pxa3xx_nand_flash micron1GbX16 = { .chip_id = 0xb12c, }; +static struct pxa3xx_nand_timing stm2GbX16_timing = { + .tCH = 10, + .tCS = 35, + .tWH = 15, + .tWP = 25, + .tRH = 15, + .tRP = 25, + .tR = 25000, + .tWHR = 60, + .tAR = 10, +}; + +static struct pxa3xx_nand_flash stm2GbX16 = { + .timing = &stm2GbX16_timing, + .page_per_block = 64, + .page_size = 2048, + .flash_width = 16, + .dfc_width = 16, + .num_blocks = 2048, + .chip_id = 0xba20, +}; + static struct pxa3xx_nand_flash *builtin_flash_types[] = { &samsung512MbX16, µn1GbX8, µn1GbX16, + &stm2GbX16, }; +#endif /* CONFIG_MTD_NAND_PXA3xx_BUILTIN */ #define NDTR0_tCH(c) (min((c), 7) << 19) #define NDTR0_tCS(c) (min((c), 7) << 16) @@ -312,7 +300,7 @@ static struct pxa3xx_nand_flash *builtin_flash_types[] = { #define ns2cycle(ns, clk) (int)(((ns) * (clk / 1000000) / 1000) + 1) static void pxa3xx_nand_set_timing(struct pxa3xx_nand_info *info, - struct pxa3xx_nand_timing *t) + const struct pxa3xx_nand_timing *t) { unsigned long nand_clk = clk_get_rate(info->clk); uint32_t ndtr0, ndtr1; @@ -354,8 +342,8 @@ static int wait_for_event(struct pxa3xx_nand_info *info, uint32_t event) static int prepare_read_prog_cmd(struct pxa3xx_nand_info *info, uint16_t cmd, int column, int page_addr) { - struct pxa3xx_nand_flash *f = info->flash_info; - struct pxa3xx_nand_cmdset *cmdset = f->cmdset; + const struct pxa3xx_nand_flash *f = info->flash_info; + const struct pxa3xx_nand_cmdset *cmdset = f->cmdset; /* calculate data size */ switch (f->page_size) { @@ -373,14 +361,14 @@ static int prepare_read_prog_cmd(struct pxa3xx_nand_info *info, info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); info->ndcb1 = 0; info->ndcb2 = 0; - info->ndcb0 |= NDCB0_ADDR_CYC(f->row_addr_cycles + f->col_addr_cycles); + info->ndcb0 |= NDCB0_ADDR_CYC(info->row_addr_cycles + info->col_addr_cycles); - if (f->col_addr_cycles == 2) { + if (info->col_addr_cycles == 2) { /* large block, 2 cycles for column address * row address starts from 3rd cycle */ info->ndcb1 |= (page_addr << 16) | (column & 0xffff); - if (f->row_addr_cycles == 3) + if (info->row_addr_cycles == 3) info->ndcb2 = (page_addr >> 16) & 0xff; } else /* small block, 1 cycles for column address @@ -406,7 +394,7 @@ static int prepare_erase_cmd(struct pxa3xx_nand_info *info, static int prepare_other_cmd(struct pxa3xx_nand_info *info, uint16_t cmd) { - struct pxa3xx_nand_cmdset *cmdset = info->flash_info->cmdset; + const struct pxa3xx_nand_cmdset *cmdset = info->flash_info->cmdset; info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); info->ndcb1 = 0; @@ -641,8 +629,8 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct pxa3xx_nand_info *info = mtd->priv; - struct pxa3xx_nand_flash *flash_info = info->flash_info; - struct pxa3xx_nand_cmdset *cmdset = flash_info->cmdset; + const struct pxa3xx_nand_flash *flash_info = info->flash_info; + const struct pxa3xx_nand_cmdset *cmdset = flash_info->cmdset; int ret; info->use_dma = (use_dma) ? 1 : 0; @@ -720,7 +708,7 @@ static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, info->use_dma = 0; /* force PIO read */ info->buf_start = 0; info->buf_count = (command == NAND_CMD_READID) ? - flash_info->read_id_bytes : 1; + info->read_id_bytes : 1; if (prepare_other_cmd(info, (command == NAND_CMD_READID) ? cmdset->read_id : cmdset->read_status)) @@ -861,8 +849,8 @@ static int pxa3xx_nand_ecc_correct(struct mtd_info *mtd, static int __readid(struct pxa3xx_nand_info *info, uint32_t *id) { - struct pxa3xx_nand_flash *f = info->flash_info; - struct pxa3xx_nand_cmdset *cmdset = f->cmdset; + const struct pxa3xx_nand_flash *f = info->flash_info; + const struct pxa3xx_nand_cmdset *cmdset = f->cmdset; uint32_t ndcr; uint8_t id_buff[8]; @@ -891,7 +879,7 @@ fail_timeout: } static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, - struct pxa3xx_nand_flash *f) + const struct pxa3xx_nand_flash *f) { struct platform_device *pdev = info->pdev; struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; @@ -904,25 +892,25 @@ static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, return -EINVAL; /* calculate flash information */ - f->oob_size = (f->page_size == 2048) ? 64 : 16; - f->read_id_bytes = (f->page_size == 2048) ? 4 : 2; + info->oob_size = (f->page_size == 2048) ? 64 : 16; + info->read_id_bytes = (f->page_size == 2048) ? 4 : 2; /* calculate addressing information */ - f->col_addr_cycles = (f->page_size == 2048) ? 2 : 1; + info->col_addr_cycles = (f->page_size == 2048) ? 2 : 1; if (f->num_blocks * f->page_per_block > 65536) - f->row_addr_cycles = 3; + info->row_addr_cycles = 3; else - f->row_addr_cycles = 2; + info->row_addr_cycles = 2; ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; - ndcr |= (f->col_addr_cycles == 2) ? NDCR_RA_START : 0; + ndcr |= (info->col_addr_cycles == 2) ? NDCR_RA_START : 0; ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0; ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0; ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0; ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0; - ndcr |= NDCR_RD_ID_CNT(f->read_id_bytes); + ndcr |= NDCR_RD_ID_CNT(info->read_id_bytes); ndcr |= NDCR_SPARE_EN; /* enable spare by default */ info->reg_ndcr = ndcr; @@ -932,12 +920,27 @@ static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, return 0; } -static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info) +static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info, + const struct pxa3xx_nand_platform_data *pdata) { - struct pxa3xx_nand_flash *f; - uint32_t id; + const struct pxa3xx_nand_flash *f; + uint32_t id = -1; int i; + for (i = 0; i<pdata->num_flash; ++i) { + f = pdata->flash + i; + + if (pxa3xx_nand_config_flash(info, f)) + continue; + + if (__readid(info, &id)) + continue; + + if (id == f->chip_id) + return 0; + } + +#ifdef CONFIG_MTD_NAND_PXA3xx_BUILTIN for (i = 0; i < ARRAY_SIZE(builtin_flash_types); i++) { f = builtin_flash_types[i]; @@ -951,7 +954,11 @@ static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info) if (id == f->chip_id) return 0; } +#endif + dev_warn(&info->pdev->dev, + "failed to detect configured nand flash; found %04x instead of\n", + id); return -ENODEV; } @@ -1014,7 +1021,7 @@ static struct nand_ecclayout hw_largepage_ecclayout = { static void pxa3xx_nand_init_mtd(struct mtd_info *mtd, struct pxa3xx_nand_info *info) { - struct pxa3xx_nand_flash *f = info->flash_info; + const struct pxa3xx_nand_flash *f = info->flash_info; struct nand_chip *this = &info->nand_chip; this->options = (f->flash_width == 16) ? NAND_BUSWIDTH_16: 0; @@ -1135,7 +1142,7 @@ static int pxa3xx_nand_probe(struct platform_device *pdev) goto fail_free_buf; } - ret = pxa3xx_nand_detect_flash(info); + ret = pxa3xx_nand_detect_flash(info, pdata); if (ret) { dev_err(&pdev->dev, "failed to detect flash\n"); ret = -ENODEV; diff --git a/drivers/mtd/nand/sh_flctl.c b/drivers/mtd/nand/sh_flctl.c new file mode 100644 index 00000000000..600a76f5580 --- /dev/null +++ b/drivers/mtd/nand/sh_flctl.c @@ -0,0 +1,301 @@ +/* + * SuperH FLCTL nand controller + * + * Copyright © 2008 Renesas Solutions Corp. + * Copyright © 2008 Atom Create Engineering Co., Ltd. + * + * Based on fsl_elbc_nand.c, Copyright © 2006-2007 Freescale Semiconductor + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; version 2 of the License. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/platform_device.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/sh_flctl.h> + +static struct nand_ecclayout flctl_4secc_oob_16 = { + .eccbytes = 10, + .eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, + .oobfree = { + {.offset = 12, + . length = 4} }, +}; + +static struct nand_ecclayout flctl_4secc_oob_64 = { + .eccbytes = 10, + .eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57}, + .oobfree = { + {.offset = 60, + . length = 4} }, +}; + +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +static struct nand_bbt_descr flctl_4secc_smallpage = { + .options = NAND_BBT_SCAN2NDPAGE, + .offs = 11, + .len = 1, + .pattern = scan_ff_pattern, +}; + +static struct nand_bbt_descr flctl_4secc_largepage = { + .options = 0, + .offs = 58, + .len = 2, + .pattern = scan_ff_pattern, +}; + +static void empty_fifo(struct sh_flctl *flctl) +{ + writel(0x000c0000, FLINTDMACR(flctl)); /* FIFO Clear */ + writel(0x00000000, FLINTDMACR(flctl)); /* Clear Error flags */ +} + +static void start_translation(struct sh_flctl *flctl) +{ + writeb(TRSTRT, FLTRCR(flctl)); +} + +static void wait_completion(struct sh_flctl *flctl) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + + while (timeout--) { + if (readb(FLTRCR(flctl)) & TREND) { + writeb(0x0, FLTRCR(flctl)); + return; + } + udelay(1); + } + + printk(KERN_ERR "wait_completion(): Timeout occured \n"); + writeb(0x0, FLTRCR(flctl)); +} + +static void set_addr(struct mtd_info *mtd, int column, int page_addr) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint32_t addr = 0; + + if (column == -1) { + addr = page_addr; /* ERASE1 */ + } else if (page_addr != -1) { + /* SEQIN, READ0, etc.. */ + if (flctl->page_size) { + addr = column & 0x0FFF; + addr |= (page_addr & 0xff) << 16; + addr |= ((page_addr >> 8) & 0xff) << 24; + /* big than 128MB */ + if (flctl->rw_ADRCNT == ADRCNT2_E) { + uint32_t addr2; + addr2 = (page_addr >> 16) & 0xff; + writel(addr2, FLADR2(flctl)); + } + } else { + addr = column; + addr |= (page_addr & 0xff) << 8; + addr |= ((page_addr >> 8) & 0xff) << 16; + addr |= ((page_addr >> 16) & 0xff) << 24; + } + } + writel(addr, FLADR(flctl)); +} + +static void wait_rfifo_ready(struct sh_flctl *flctl) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + + while (timeout--) { + uint32_t val; + /* check FIFO */ + val = readl(FLDTCNTR(flctl)) >> 16; + if (val & 0xFF) + return; + udelay(1); + } + printk(KERN_ERR "wait_rfifo_ready(): Timeout occured \n"); +} + +static void wait_wfifo_ready(struct sh_flctl *flctl) +{ + uint32_t len, timeout = LOOP_TIMEOUT_MAX; + + while (timeout--) { + /* check FIFO */ + len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF; + if (len >= 4) + return; + udelay(1); + } + printk(KERN_ERR "wait_wfifo_ready(): Timeout occured \n"); +} + +static int wait_recfifo_ready(struct sh_flctl *flctl) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + int checked[4]; + void __iomem *ecc_reg[4]; + int i; + uint32_t data, size; + + memset(checked, 0, sizeof(checked)); + + while (timeout--) { + size = readl(FLDTCNTR(flctl)) >> 24; + if (size & 0xFF) + return 0; /* success */ + + if (readl(FL4ECCCR(flctl)) & _4ECCFA) + return 1; /* can't correct */ + + udelay(1); + if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) + continue; + + /* start error correction */ + ecc_reg[0] = FL4ECCRESULT0(flctl); + ecc_reg[1] = FL4ECCRESULT1(flctl); + ecc_reg[2] = FL4ECCRESULT2(flctl); + ecc_reg[3] = FL4ECCRESULT3(flctl); + + for (i = 0; i < 3; i++) { + data = readl(ecc_reg[i]); + if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) { + uint8_t org; + int index; + + index = data >> 16; + org = flctl->done_buff[index]; + flctl->done_buff[index] = org ^ (data & 0xFF); + checked[i] = 1; + } + } + + writel(0, FL4ECCCR(flctl)); + } + + printk(KERN_ERR "wait_recfifo_ready(): Timeout occured \n"); + return 1; /* timeout */ +} + +static void wait_wecfifo_ready(struct sh_flctl *flctl) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + uint32_t len; + + while (timeout--) { + /* check FLECFIFO */ + len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF; + if (len >= 4) + return; + udelay(1); + } + printk(KERN_ERR "wait_wecfifo_ready(): Timeout occured \n"); +} + +static void read_datareg(struct sh_flctl *flctl, int offset) +{ + unsigned long data; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + + wait_completion(flctl); + + data = readl(FLDATAR(flctl)); + *buf = le32_to_cpu(data); +} + +static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) +{ + int i, len_4align; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + void *fifo_addr = (void *)FLDTFIFO(flctl); + + len_4align = (rlen + 3) / 4; + + for (i = 0; i < len_4align; i++) { + wait_rfifo_ready(flctl); + buf[i] = readl(fifo_addr); + buf[i] = be32_to_cpu(buf[i]); + } +} + +static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff) +{ + int i; + unsigned long *ecc_buf = (unsigned long *)buff; + void *fifo_addr = (void *)FLECFIFO(flctl); + + for (i = 0; i < 4; i++) { + if (wait_recfifo_ready(flctl)) + return 1; + ecc_buf[i] = readl(fifo_addr); + ecc_buf[i] = be32_to_cpu(ecc_buf[i]); + } + + return 0; +} + +static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset) +{ + int i, len_4align; + unsigned long *data = (unsigned long *)&flctl->done_buff[offset]; + void *fifo_addr = (void *)FLDTFIFO(flctl); + + len_4align = (rlen + 3) / 4; + for (i = 0; i < len_4align; i++) { + wait_wfifo_ready(flctl); + writel(cpu_to_be32(data[i]), fifo_addr); + } +} + +static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint32_t flcmncr_val = readl(FLCMNCR(flctl)); + uint32_t flcmdcr_val, addr_len_bytes = 0; + + /* Set SNAND bit if page size is 2048byte */ + if (flctl->page_size) + flcmncr_val |= SNAND_E; + else + flcmncr_val &= ~SNAND_E; + + /* default FLCMDCR val */ + flcmdcr_val = DOCMD1_E | DOADR_E; + + /* Set for FLCMDCR */ + switch (cmd) { + case NAND_CMD_ERASE1: + addr_len_bytes = flctl->erase_ADRCNT; + flcmdcr_val |= DOCMD2_E; + break; + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + addr_len_bytes = flctl->rw_ADRCNT; + flcmdcr_val |= CDSRC_E; + break; + case NAND_CMD_SEQIN: + /* This case is that cmd is READ0 or READ1 or READ00 */ + flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */ + break; + case NAND_CMD_PAGEPROG: + addr_len_bytes = flctl->rw_ADRCNT; diff --git a/drivers/mtd/nand/toto.c b/drivers/mtd/nand/toto.c deleted file mode 100644 index bbf492e6830..00000000000 --- a/drivers/mtd/nand/toto.c +++ /dev/null @@ -1,206 +0,0 @@ -/* - * drivers/mtd/nand/toto.c - * - * Copyright (c) 2003 Texas Instruments - * - * Derived from drivers/mtd/autcpu12.c - * - * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de> - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash device found on the - * TI fido board. It supports 32MiB and 64MiB cards - */ - -#include <linux/slab.h> -#include <linux/init.h> -#include <linux/module.h> -#include <linux/delay.h> -#include <linux/mtd/mtd.h> -#include <linux/mtd/nand.h> -#include <linux/mtd/partitions.h> -#include <asm/io.h> -#include <asm/arch/hardware.h> -#include <asm/sizes.h> -#include <asm/arch/toto.h> -#include <asm/arch-omap1510/hardware.h> -#include <asm/arch/gpio.h> - -#define CONFIG_NAND_WORKAROUND 1 - -/* - * MTD structure for TOTO board - */ -static struct mtd_info *toto_mtd = NULL; - -static unsigned long toto_io_base = OMAP_FLASH_1_BASE; - -/* - * Define partitions for flash devices - */ - -static struct mtd_partition partition_info64M[] = { - { .name = "toto kernel partition 1", - .offset = 0, - .size = 2 * SZ_1M }, - { .name = "toto file sys partition 2", - .offset = 2 * SZ_1M, - .size = 14 * SZ_1M }, - { .name = "toto user partition 3", - .offset = 16 * SZ_1M, - .size = 16 * SZ_1M }, - { .name = "toto devboard extra partition 4", - .offset = 32 * SZ_1M, - .size = 32 * SZ_1M }, -}; - -static struct mtd_partition partition_info32M[] = { - { .name = "toto kernel partition 1", - .offset = 0, - .size = 2 * SZ_1M }, - { .name = "toto file sys partition 2", - .offset = 2 * SZ_1M, - .size = 14 * SZ_1M }, - { .name = "toto user partition 3", - .offset = 16 * SZ_1M, - .size = 16 * SZ_1M }, -}; - -#define NUM_PARTITIONS32M 3 -#define NUM_PARTITIONS64M 4 - -/* - * hardware specific access to control-lines - * - * ctrl: - * NAND_NCE: bit 0 -> bit 14 (0x4000) - * NAND_CLE: bit 1 -> bit 12 (0x1000) - * NAND_ALE: bit 2 -> bit 1 (0x0002) - */ -static void toto_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd->priv; - - if (ctrl & NAND_CTRL_CHANGE) { - unsigned long bits; - - /* hopefully enough time for tc make proceding write to clear */ - udelay(1); - - bits = (~ctrl & NAND_NCE) << 14; - bits |= (ctrl & NAND_CLE) << 12; - bits |= (ctrl & NAND_ALE) >> 1; - -#warning Wild guess as gpiosetout() is nowhere defined in the kernel source - tglx - gpiosetout(0x5002, bits); - -#ifdef CONFIG_NAND_WORKAROUND - /* "some" dev boards busted, blue wired to rts2 :( */ - rts2setout(2, (ctrl & NAND_CLE) << 1); -#endif - /* allow time to ensure gpio state to over take memory write */ - udelay(1); - } - - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -/* - * Main initialization routine - */ -static int __init toto_init(void) -{ - struct nand_chip *this; - int err = 0; - - /* Allocate memory for MTD device structure and private data */ - toto_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL); - if (!toto_mtd) { - printk(KERN_WARNING "Unable to allocate toto NAND MTD device structure.\n"); - err = -ENOMEM; - goto out; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&toto_mtd[1]); - - /* Initialize structures */ - memset(toto_mtd, 0, sizeof(struct mtd_info)); - memset(this, 0, sizeof(struct nand_chip)); - - /* Link the private data with the MTD structure */ - toto_mtd->priv = this; - toto_mtd->owner = THIS_MODULE; - - /* Set address of NAND IO lines */ - this->IO_ADDR_R = toto_io_base; - this->IO_ADDR_W = toto_io_base; - this->cmd_ctrl = toto_hwcontrol; - this->dev_ready = NULL; - /* 25 us command delay time */ - this->chip_delay = 30; - this->ecc.mode = NAND_ECC_SOFT; - - /* Scan to find existance of the device */ - if (nand_scan(toto_mtd, 1)) { - err = -ENXIO; - goto out_mtd; - } - - /* Register the partitions */ - switch (toto_mtd->size) { - case SZ_64M: - add_mtd_partitions(toto_mtd, partition_info64M, NUM_PARTITIONS64M); - break; - case SZ_32M: - add_mtd_partitions(toto_mtd, partition_info32M, NUM_PARTITIONS32M); - break; - default:{ - printk(KERN_WARNING "Unsupported Nand device\n"); - err = -ENXIO; - goto out_buf; - } - } - - gpioreserve(NAND_MASK); /* claim our gpios */ - archflashwp(0, 0); /* open up flash for writing */ - - goto out; - - out_mtd: - kfree(toto_mtd); - out: - return err; -} - -module_init(toto_init); - -/* - * Clean up routine - */ -static void __exit toto_cleanup(void) -{ - /* Release resources, unregister device */ - nand_release(toto_mtd); - - /* Free the MTD device structure */ - kfree(toto_mtd); - - /* stop flash writes */ - archflashwp(0, 1); - - /* release gpios to system */ - gpiorelease(NAND_MASK); -} - -module_exit(toto_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Richard Woodruff <r-woodruff2@ti.com>"); -MODULE_DESCRIPTION("Glue layer for NAND flash on toto board"); diff --git a/drivers/mtd/ofpart.c b/drivers/mtd/ofpart.c index 4f80c2fd89a..9e45b3f39c0 100644 --- a/drivers/mtd/ofpart.c +++ b/drivers/mtd/ofpart.c @@ -20,7 +20,6 @@ #include <linux/mtd/partitions.h> int __devinit of_mtd_parse_partitions(struct device *dev, - struct mtd_info *mtd, struct device_node *node, struct mtd_partition **pparts) { diff --git a/drivers/mtd/onenand/Kconfig b/drivers/mtd/onenand/Kconfig index cb41cbca64f..79fa79e8f8d 100644 --- a/drivers/mtd/onenand/Kconfig +++ b/drivers/mtd/onenand/Kconfig @@ -27,8 +27,16 @@ config MTD_ONENAND_GENERIC help Support for OneNAND flash via platform device driver. +config MTD_ONENAND_OMAP2 + tristate "OneNAND on OMAP2/OMAP3 support" + depends on MTD_ONENAND && (ARCH_OMAP2 || ARCH_OMAP3) + help + Support for a OneNAND flash device connected to an OMAP2/OMAP3 CPU + via the GPMC memory controller. + config MTD_ONENAND_OTP bool "OneNAND OTP Support" + select HAVE_MTD_OTP help One Block of the NAND Flash Array memory is reserved as a One-Time Programmable Block memory area. diff --git a/drivers/mtd/onenand/Makefile b/drivers/mtd/onenand/Makefile index 4d2eacfd7e1..64b6cc61a52 100644 --- a/drivers/mtd/onenand/Makefile +++ b/drivers/mtd/onenand/Makefile @@ -7,6 +7,7 @@ obj-$(CONFIG_MTD_ONENAND) += onenand.o # Board specific. obj-$(CONFIG_MTD_ONENAND_GENERIC) += generic.o +obj-$(CONFIG_MTD_ONENAND_OMAP2) += omap2.o # Simulator obj-$(CONFIG_MTD_ONENAND_SIM) += onenand_sim.o diff --git a/drivers/mtd/onenand/omap2.c b/drivers/mtd/onenand/omap2.c new file mode 100644 index 00000000000..8387e05daae --- /dev/null +++ b/drivers/mtd/onenand/omap2.c @@ -0,0 +1,802 @@ +/* + * linux/drivers/mtd/onenand/omap2.c + * + * OneNAND driver for OMAP2 / OMAP3 + * + * Copyright © 2005-2006 Nokia Corporation + * + * Author: Jarkko Lavinen <jarkko.lavinen@nokia.com> and Juha Yrjölä + * IRQ and DMA support written by Timo Teras + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; see the file COPYING. If not, write to the Free Software + * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + */ + +#include <linux/device.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/onenand.h> +#include <linux/mtd/partitions.h> +#include <linux/platform_device.h> +#include <linux/interrupt.h> +#include <linux/delay.h> + +#include <asm/io.h> +#include <asm/mach/flash.h> +#include <asm/arch/gpmc.h> +#include <asm/arch/onenand.h> +#include <asm/arch/gpio.h> +#include <asm/arch/gpmc.h> +#include <asm/arch/pm.h> + +#include <linux/dma-mapping.h> +#include <asm/dma-mapping.h> +#include <asm/arch/dma.h> + +#include <asm/arch/board.h> + +#define DRIVER_NAME "omap2-onenand" + +#define ONENAND_IO_SIZE SZ_128K +#define ONENAND_BUFRAM_SIZE (1024 * 5) + +struct omap2_onenand { + struct platform_device *pdev; + int gpmc_cs; + unsigned long phys_base; + int gpio_irq; + struct mtd_info mtd; + struct mtd_partition *parts; + struct onenand_chip onenand; + struct completion irq_done; + struct completion dma_done; + int dma_channel; + int freq; + int (*setup)(void __iomem *base, int freq); +}; + +static void omap2_onenand_dma_cb(int lch, u16 ch_status, void *data) +{ + struct omap2_onenand *c = data; + + complete(&c->dma_done); +} + +static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id) +{ + struct omap2_onenand *c = dev_id; + + complete(&c->irq_done); + + return IRQ_HANDLED; +} + +static inline unsigned short read_reg(struct omap2_onenand *c, int reg) +{ + return readw(c->onenand.base + reg); +} + +static inline void write_reg(struct omap2_onenand *c, unsigned short value, + int reg) +{ + writew(value, c->onenand.base + reg); +} + +static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr) +{ + printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n", + msg, state, ctrl, intr); +} + +static void wait_warn(char *msg, int state, unsigned int ctrl, + unsigned int intr) +{ + printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x " + "intr 0x%04x\n", msg, state, ctrl, intr); +} + +static int omap2_onenand_wait(struct mtd_info *mtd, int state) +{ + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + unsigned int intr = 0; + unsigned int ctrl; + unsigned long timeout; + u32 syscfg; + + if (state == FL_RESETING) { + int i; + + for (i = 0; i < 20; i++) { + udelay(1); + intr = read_reg(c, ONENAND_REG_INTERRUPT); + if (intr & ONENAND_INT_MASTER) + break; + } + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + if (ctrl & ONENAND_CTRL_ERROR) { + wait_err("controller error", state, ctrl, intr); + return -EIO; + } + if (!(intr & ONENAND_INT_RESET)) { + wait_err("timeout", state, ctrl, intr); + return -EIO; + } + return 0; + } + + if (state != FL_READING) { + int result; + + /* Turn interrupts on */ + syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); + if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) { + syscfg |= ONENAND_SYS_CFG1_IOBE; + write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); + if (cpu_is_omap34xx()) + /* Add a delay to let GPIO settle */ + syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); + } + + INIT_COMPLETION(c->irq_done); + if (c->gpio_irq) { + result = omap_get_gpio_datain(c->gpio_irq); + if (result == -1) { + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + intr = read_reg(c, ONENAND_REG_INTERRUPT); + wait_err("gpio error", state, ctrl, intr); + return -EIO; + } + } else + result = 0; + if (result == 0) { + int retry_cnt = 0; +retry: + result = wait_for_completion_timeout(&c->irq_done, + msecs_to_jiffies(20)); + if (result == 0) { + /* Timeout after 20ms */ + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + if (ctrl & ONENAND_CTRL_ONGO) { + /* + * The operation seems to be still going + * so give it some more time. + */ + retry_cnt += 1; + if (retry_cnt < 3) + goto retry; + intr = read_reg(c, + ONENAND_REG_INTERRUPT); + wait_err("timeout", state, ctrl, intr); + return -EIO; + } + intr = read_reg(c, ONENAND_REG_INTERRUPT); + if ((intr & ONENAND_INT_MASTER) == 0) + wait_warn("timeout", state, ctrl, intr); + } + } + } else { + int retry_cnt = 0; + + /* Turn interrupts off */ + syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); + syscfg &= ~ONENAND_SYS_CFG1_IOBE; + write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); + + timeout = jiffies + msecs_to_jiffies(20); + while (1) { + if (time_before(jiffies, timeout)) { + intr = read_reg(c, ONENAND_REG_INTERRUPT); + if (intr & ONENAND_INT_MASTER) + break; + } else { + /* Timeout after 20ms */ + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + if (ctrl & ONENAND_CTRL_ONGO) { + /* + * The operation seems to be still going + * so give it some more time. + */ + retry_cnt += 1; + if (retry_cnt < 3) { + timeout = jiffies + + msecs_to_jiffies(20); + continue; + } + } + break; + } + } + } + + intr = read_reg(c, ONENAND_REG_INTERRUPT); + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + + if (intr & ONENAND_INT_READ) { + int ecc = read_reg(c, ONENAND_REG_ECC_STATUS); + + if (ecc) { + unsigned int addr1, addr8; + + addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1); + addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8); + if (ecc & ONENAND_ECC_2BIT_ALL) { + printk(KERN_ERR "onenand_wait: ECC error = " + "0x%04x, addr1 %#x, addr8 %#x\n", + ecc, addr1, addr8); + mtd->ecc_stats.failed++; + return -EBADMSG; + } else if (ecc & ONENAND_ECC_1BIT_ALL) { + printk(KERN_NOTICE "onenand_wait: correctable " + "ECC error = 0x%04x, addr1 %#x, " + "addr8 %#x\n", ecc, addr1, addr8); + mtd->ecc_stats.corrected++; + } + } + } else if (state == FL_READING) { + wait_err("timeout", state, ctrl, intr); + return -EIO; + } + + if (ctrl & ONENAND_CTRL_ERROR) { + wait_err("controller error", state, ctrl, intr); + if (ctrl & ONENAND_CTRL_LOCK) + printk(KERN_ERR "onenand_wait: " + "Device is write protected!!!\n"); + return -EIO; + } + + if (ctrl & 0xFE9F) + wait_warn("unexpected controller status", state, ctrl, intr); + + return 0; +} + +static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area) +{ + struct onenand_chip *this = mtd->priv; + + if (ONENAND_CURRENT_BUFFERRAM(this)) { + if (area == ONENAND_DATARAM) + return mtd->writesize; + if (area == ONENAND_SPARERAM) + return mtd->oobsize; + } + + return 0; +} + +#if defined(CONFIG_ARCH_OMAP3) || defined(MULTI_OMAP2) + +static int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count) +{ + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + struct onenand_chip *this = mtd->priv; + dma_addr_t dma_src, dma_dst; + int bram_offset; + unsigned long timeout; + void *buf = (void *)buffer; + size_t xtra; + volatile unsigned *done; + + bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; + if (bram_offset & 3 || (size_t)buf & 3 || count < 384) + goto out_copy; + + if (buf >= high_memory) { + struct page *p1; + + if (((size_t)buf & PAGE_MASK) != + ((size_t)(buf + count - 1) & PAGE_MASK)) + goto out_copy; + p1 = vmalloc_to_page(buf); + if (!p1) + goto out_copy; + buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK); + } + + xtra = count & 3; + if (xtra) { + count -= xtra; + memcpy(buf + count, this->base + bram_offset + count, xtra); + } + + dma_src = c->phys_base + bram_offset; + dma_dst = dma_map_single(&c->pdev->dev, buf, count, DMA_FROM_DEVICE); + if (dma_mapping_error(&c->pdev->dev, dma_dst)) { + dev_err(&c->pdev->dev, + "Couldn't DMA map a %d byte buffer\n", + count); + goto out_copy; + } + + omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32, + count >> 2, 1, 0, 0, 0); + omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, + dma_src, 0, 0); + omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, + dma_dst, 0, 0); + + INIT_COMPLETION(c->dma_done); + omap_start_dma(c->dma_channel); + + timeout = jiffies + msecs_to_jiffies(20); + done = &c->dma_done.done; + while (time_before(jiffies, timeout)) + if (*done) + break; + + dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE); + + if (!*done) { + dev_err(&c->pdev->dev, "timeout waiting for DMA\n"); + goto out_copy; + } + + return 0; + +out_copy: + memcpy(buf, this->base + bram_offset, count); + return 0; +} + +static int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, + int offset, size_t count) +{ + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + struct onenand_chip *this = mtd->priv; + dma_addr_t dma_src, dma_dst; + int bram_offset; + unsigned long timeout; + void *buf = (void *)buffer; + volatile unsigned *done; + + bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; + if (bram_offset & 3 || (size_t)buf & 3 || count < 384) + goto out_copy; + + /* panic_write() may be in an interrupt context */ + if (in_interrupt()) + goto out_copy; + + if (buf >= high_memory) { + struct page *p1; + + if (((size_t)buf & PAGE_MASK) != + ((size_t)(buf + count - 1) & PAGE_MASK)) + goto out_copy; + p1 = vmalloc_to_page(buf); + if (!p1) + goto out_copy; + buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK); + } + + dma_src = dma_map_single(&c->pdev->dev, buf, count, DMA_TO_DEVICE); + dma_dst = c->phys_base + bram_offset; + if (dma_mapping_error(&c->pdev->dev, dma_dst)) { + dev_err(&c->pdev->dev, + "Couldn't DMA map a %d byte buffer\n", + count); + return -1; + } + + omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32, + count >> 2, 1, 0, 0, 0); + omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, + dma_src, 0, 0); + omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, + dma_dst, 0, 0); + + INIT_COMPLETION(c->dma_done); + omap_start_dma(c->dma_channel); + + timeout = jiffies + msecs_to_jiffies(20); + done = &c->dma_done.done; + while (time_before(jiffies, timeout)) + if (*done) + break; + + dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_TO_DEVICE); + + if (!*done) { + dev_err(&c->pdev->dev, "timeout waiting for DMA\n"); + goto out_copy; + } + + return 0; + +out_copy: + memcpy(this->base + bram_offset, buf, count); + return 0; +} + +#else + +int omap3_onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count); + +int omap3_onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, + int offset, size_t count); + +#endif + +#if defined(CONFIG_ARCH_OMAP2) || defined(MULTI_OMAP2) + +static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count) +{ + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + struct onenand_chip *this = mtd->priv; + dma_addr_t dma_src, dma_dst; + int bram_offset; + + bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; + /* DMA is not used. Revisit PM requirements before enabling it. */ + if (1 || (c->dma_channel < 0) || + ((void *) buffer >= (void *) high_memory) || (bram_offset & 3) || + (((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) { + memcpy(buffer, (__force void *)(this->base + bram_offset), + count); + return 0; + } + + dma_src = c->phys_base + bram_offset; + dma_dst = dma_map_single(&c->pdev->dev, buffer, count, + DMA_FROM_DEVICE); + if (dma_mapping_error(&c->pdev->dev, dma_dst)) { + dev_err(&c->pdev->dev, + "Couldn't DMA map a %d byte buffer\n", + count); + return -1; + } + + omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S32, + count / 4, 1, 0, 0, 0); + omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, + dma_src, 0, 0); + omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, + dma_dst, 0, 0); + + INIT_COMPLETION(c->dma_done); + omap_start_dma(c->dma_channel); + wait_for_completion(&c->dma_done); + + dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE); + + return 0; +} + +static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, + int offset, size_t count) +{ + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + struct onenand_chip *this = mtd->priv; + dma_addr_t dma_src, dma_dst; + int bram_offset; + + bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; + /* DMA is not used. Revisit PM requirements before enabling it. */ + if (1 || (c->dma_channel < 0) || + ((void *) buffer >= (void *) high_memory) || (bram_offset & 3) || + (((unsigned int) buffer) & 3) || (count < 1024) || (count & 3)) { + memcpy((__force void *)(this->base + bram_offset), buffer, + count); + return 0; + } + + dma_src = dma_map_single(&c->pdev->dev, (void *) buffer, count, + DMA_TO_DEVICE); + dma_dst = c->phys_base + bram_offset; + if (dma_mapping_error(&c->pdev->dev, dma_dst)) { + dev_err(&c->pdev->dev, + "Couldn't DMA map a %d byte buffer\n", + count); + return -1; + } + + omap_set_dma_transfer_params(c->dma_channel, OMAP_DMA_DATA_TYPE_S16, + count / 2, 1, 0, 0, 0); + omap_set_dma_src_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, + dma_src, 0, 0); + omap_set_dma_dest_params(c->dma_channel, 0, OMAP_DMA_AMODE_POST_INC, + dma_dst, 0, 0); + + INIT_COMPLETION(c->dma_done); + omap_start_dma(c->dma_channel); + wait_for_completion(&c->dma_done); + + dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_TO_DEVICE); + + return 0; +} + +#else + +int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count); + +int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, + int offset, size_t count); + +#endif + +static struct platform_driver omap2_onenand_driver; + +static int __adjust_timing(struct device *dev, void *data) +{ + int ret = 0; + struct omap2_onenand *c; + + c = dev_get_drvdata(dev); + + BUG_ON(c->setup == NULL); + + /* DMA is not in use so this is all that is needed */ + /* Revisit for OMAP3! */ + ret = c->setup(c->onenand.base, c->freq); + + return ret; +} + +int omap2_onenand_rephase(void) +{ + return driver_for_each_device(&omap2_onenand_driver.driver, NULL, + NULL, __adjust_timing); +} + +static void __devexit omap2_onenand_shutdown(struct platform_device *pdev) +{ + struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); + + /* With certain content in the buffer RAM, the OMAP boot ROM code + * can recognize the flash chip incorrectly. Zero it out before + * soft reset. + */ + memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE); +} + +static int __devinit omap2_onenand_probe(struct platform_device *pdev) +{ + struct omap_onenand_platform_data *pdata; + struct omap2_onenand *c; + int r; + + pdata = pdev->dev.platform_data; + if (pdata == NULL) { + dev_err(&pdev->dev, "platform data missing\n"); + return -ENODEV; + } + + c = kzalloc(sizeof(struct omap2_onenand), GFP_KERNEL); + if (!c) + return -ENOMEM; + + init_completion(&c->irq_done); + init_completion(&c->dma_done); + c->gpmc_cs = pdata->cs; + c->gpio_irq = pdata->gpio_irq; + c->dma_channel = pdata->dma_channel; + if (c->dma_channel < 0) { + /* if -1, don't use DMA */ + c->gpio_irq = 0; + } + + r = gpmc_cs_request(c->gpmc_cs, ONENAND_IO_SIZE, &c->phys_base); + if (r < 0) { + dev_err(&pdev->dev, "Cannot request GPMC CS\n"); + goto err_kfree; + } + + if (request_mem_region(c->phys_base, ONENAND_IO_SIZE, + pdev->dev.driver->name) == NULL) { + dev_err(&pdev->dev, "Cannot reserve memory region at 0x%08lx, " + "size: 0x%x\n", c->phys_base, ONENAND_IO_SIZE); + r = -EBUSY; + goto err_free_cs; + } + c->onenand.base = ioremap(c->phys_base, ONENAND_IO_SIZE); + if (c->onenand.base == NULL) { + r = -ENOMEM; + goto err_release_mem_region; + } + + if (pdata->onenand_setup != NULL) { + r = pdata->onenand_setup(c->onenand.base, c->freq); + if (r < 0) { + dev_err(&pdev->dev, "Onenand platform setup failed: " + "%d\n", r); + goto err_iounmap; + } + c->setup = pdata->onenand_setup; + } + + if (c->gpio_irq) { + if ((r = omap_request_gpio(c->gpio_irq)) < 0) { + dev_err(&pdev->dev, "Failed to request GPIO%d for " + "OneNAND\n", c->gpio_irq); + goto err_iounmap; + } + omap_set_gpio_direction(c->gpio_irq, 1); + + if ((r = request_irq(OMAP_GPIO_IRQ(c->gpio_irq), + omap2_onenand_interrupt, IRQF_TRIGGER_RISING, + pdev->dev.driver->name, c)) < 0) + goto err_release_gpio; + } + + if (c->dma_channel >= 0) { + r = omap_request_dma(0, pdev->dev.driver->name, + omap2_onenand_dma_cb, (void *) c, + &c->dma_channel); + if (r == 0) { + omap_set_dma_write_mode(c->dma_channel, + OMAP_DMA_WRITE_NON_POSTED); + omap_set_dma_src_data_pack(c->dma_channel, 1); + omap_set_dma_src_burst_mode(c->dma_channel, + OMAP_DMA_DATA_BURST_8); + omap_set_dma_dest_data_pack(c->dma_channel, 1); + omap_set_dma_dest_burst_mode(c->dma_channel, + OMAP_DMA_DATA_BURST_8); + } else { + dev_info(&pdev->dev, + "failed to allocate DMA for OneNAND, " + "using PIO instead\n"); + c->dma_channel = -1; + } + } + + dev_info(&pdev->dev, "initializing on CS%d, phys base 0x%08lx, virtual " + "base %p\n", c->gpmc_cs, c->phys_base, + c->onenand.base); + + c->pdev = pdev; + c->mtd.name = pdev->dev.bus_id; + c->mtd.priv = &c->onenand; + c->mtd.owner = THIS_MODULE; + + if (c->dma_channel >= 0) { + struct onenand_chip *this = &c->onenand; + + this->wait = omap2_onenand_wait; + if (cpu_is_omap34xx()) { + this->read_bufferram = omap3_onenand_read_bufferram; + this->write_bufferram = omap3_onenand_write_bufferram; + } else { + this->read_bufferram = omap2_onenand_read_bufferram; + this->write_bufferram = omap2_onenand_write_bufferram; + } + } + + if ((r = onenand_scan(&c->mtd, 1)) < 0) + goto err_release_dma; + + switch ((c->onenand.version_id >> 4) & 0xf) { + case 0: + c->freq = 40; + break; + case 1: + c->freq = 54; + break; + case 2: + c->freq = 66; + break; + case 3: + c->freq = 83; + break; + } + +#ifdef CONFIG_MTD_PARTITIONS + if (pdata->parts != NULL) + r = add_mtd_partitions(&c->mtd, pdata->parts, + pdata->nr_parts); + else +#endif + r = add_mtd_device(&c->mtd); + if (r < 0) + goto err_release_onenand; + + platform_set_drvdata(pdev, c); + + return 0; + +err_release_onenand: + onenand_release(&c->mtd); +err_release_dma: + if (c->dma_channel != -1) + omap_free_dma(c->dma_channel); + if (c->gpio_irq) + free_irq(OMAP_GPIO_IRQ(c->gpio_irq), c); +err_release_gpio: + if (c->gpio_irq) + omap_free_gpio(c->gpio_irq); +err_iounmap: + iounmap(c->onenand.base); +err_release_mem_region: + release_mem_region(c->phys_base, ONENAND_IO_SIZE); +err_free_cs: + gpmc_cs_free(c->gpmc_cs); +err_kfree: + kfree(c); + + return r; +} + +static int __devexit omap2_onenand_remove(struct platform_device *pdev) +{ + struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); + + BUG_ON(c == NULL); + +#ifdef CONFIG_MTD_PARTITIONS + if (c->parts) + del_mtd_partitions(&c->mtd); + else + del_mtd_device(&c->mtd); +#else + del_mtd_device(&c->mtd); +#endif + + onenand_release(&c->mtd); + if (c->dma_channel != -1) + omap_free_dma(c->dma_channel); + omap2_onenand_shutdown(pdev); + platform_set_drvdata(pdev, NULL); + if (c->gpio_irq) { + free_irq(OMAP_GPIO_IRQ(c->gpio_irq), c); + omap_free_gpio(c->gpio_irq); + } + iounmap(c->onenand.base); + release_mem_region(c->phys_base, ONENAND_IO_SIZE); + kfree(c); + + return 0; +} + +static struct platform_driver omap2_onenand_driver = { + .probe = omap2_onenand_probe, + .remove = omap2_onenand_remove, + .shutdown = omap2_onenand_shutdown, + .driver = { + .name = DRIVER_NAME, + .owner = THIS_MODULE, + }, +}; + +static int __init omap2_onenand_init(void) +{ + printk(KERN_INFO "OneNAND driver initializing\n"); + return platform_driver_register(&omap2_onenand_driver); +} + +static void __exit omap2_onenand_exit(void) +{ + platform_driver_unregister(&omap2_onenand_driver); +} + +module_init(omap2_onenand_init); +module_exit(omap2_onenand_exit); + +MODULE_ALIAS(DRIVER_NAME); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>"); +MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3"); diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c index 926cf3a4135..90ed319f26e 100644 --- a/drivers/mtd/onenand/onenand_base.c +++ b/drivers/mtd/onenand/onenand_base.c @@ -1794,7 +1794,7 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) return -EINVAL; } - instr->fail_addr = 0xffffffff; + instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; /* Grab the lock and see if the device is available */ onenand_get_device(mtd, FL_ERASING); diff --git a/drivers/mtd/ssfdc.c b/drivers/mtd/ssfdc.c index a5f3d60047d..33a5d6ed6f1 100644 --- a/drivers/mtd/ssfdc.c +++ b/drivers/mtd/ssfdc.c @@ -321,8 +321,7 @@ static void ssfdcr_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) DEBUG(MTD_DEBUG_LEVEL1, "SSFDC_RO: cis_block=%d,erase_size=%d,map_len=%d,n_zones=%d\n", ssfdc->cis_block, ssfdc->erase_size, ssfdc->map_len, - (ssfdc->map_len + MAX_PHYS_BLK_PER_ZONE - 1) / - MAX_PHYS_BLK_PER_ZONE); + DIV_ROUND_UP(ssfdc->map_len, MAX_PHYS_BLK_PER_ZONE)); /* Set geometry */ ssfdc->heads = 16; |