summaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000/e1000_hw.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/e1000/e1000_hw.c')
-rw-r--r--drivers/net/e1000/e1000_hw.c1185
1 files changed, 540 insertions, 645 deletions
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c
index 10b8c8c2532..3655d902b0b 100644
--- a/drivers/net/e1000/e1000_hw.c
+++ b/drivers/net/e1000/e1000_hw.c
@@ -1,25 +1,24 @@
/*******************************************************************************
-
- Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 2 of the License, or (at your option)
- any later version.
-
- This program is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ Intel PRO/1000 Linux driver
+ Copyright(c) 1999 - 2006 Intel Corporation.
+
+ This program is free software; you can redistribute it and/or modify it
+ under the terms and conditions of the GNU General Public License,
+ version 2, as published by the Free Software Foundation.
+
+ This program is distributed in the hope it will be useful, but WITHOUT
+ ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
-
+
You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc., 59
- Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-
- The full GNU General Public License is included in this distribution in the
- file called LICENSE.
-
+ this program; if not, write to the Free Software Foundation, Inc.,
+ 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+ The full GNU General Public License is included in this distribution in
+ the file called "COPYING".
+
Contact Information:
Linux NICS <linux.nics@intel.com>
e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
@@ -34,6 +33,63 @@
#include "e1000_hw.h"
+static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
+static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
+static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
+static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
+static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
+static void e1000_release_software_semaphore(struct e1000_hw *hw);
+
+static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
+static int32_t e1000_check_downshift(struct e1000_hw *hw);
+static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity);
+static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
+static void e1000_clear_vfta(struct e1000_hw *hw);
+static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
+static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up);
+static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
+static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
+static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank);
+static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
+static int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length);
+static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
+static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
+static int32_t e1000_get_software_flag(struct e1000_hw *hw);
+static int32_t e1000_ich8_cycle_init(struct e1000_hw *hw);
+static int32_t e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout);
+static int32_t e1000_id_led_init(struct e1000_hw *hw);
+static int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
+static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
+static void e1000_init_rx_addrs(struct e1000_hw *hw);
+static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
+static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
+static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
+static int32_t e1000_mng_enable_host_if(struct e1000_hw *hw);
+static int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum);
+static int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr);
+static int32_t e1000_mng_write_commit(struct e1000_hw *hw);
+static int32_t e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+static int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
+static int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
+static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
+static int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
+static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
+static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t *data);
+static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
+static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
+static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data);
+static int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
+static int32_t e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t data);
+static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
+static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
+static void e1000_release_software_flag(struct e1000_hw *hw);
+static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
+static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
+static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
+static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
+static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
+static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
static int32_t e1000_set_phy_type(struct e1000_hw *hw);
static void e1000_phy_init_script(struct e1000_hw *hw);
static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
@@ -70,69 +126,10 @@ static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
-static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
-static int32_t e1000_check_downshift(struct e1000_hw *hw);
-static int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity);
-static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
-static void e1000_clear_vfta(struct e1000_hw *hw);
-static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
-static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw,
- boolean_t link_up);
-static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
-static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
-static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
-static int32_t e1000_get_cable_length(struct e1000_hw *hw,
- uint16_t *min_length,
- uint16_t *max_length);
-static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
-static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
-static int32_t e1000_id_led_init(struct e1000_hw * hw);
-static void e1000_init_rx_addrs(struct e1000_hw *hw);
-static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
-static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
-static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
-static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset,
- uint16_t words, uint16_t *data);
-static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
-static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
-static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
-
-static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
- uint32_t value);
-
-#define E1000_WRITE_REG_IO(a, reg, val) \
- e1000_write_reg_io((a), E1000_##reg, val)
static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
uint16_t duplex);
static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
-static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw,
- uint32_t segment);
-static int32_t e1000_get_software_flag(struct e1000_hw *hw);
-static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
-static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
-static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
-static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
- uint16_t words, uint16_t *data);
-static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index,
- uint8_t* data);
-static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index,
- uint16_t *data);
-static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
- uint16_t *data);
-static void e1000_release_software_flag(struct e1000_hw *hw);
-static void e1000_release_software_semaphore(struct e1000_hw *hw);
-static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw,
- uint32_t no_snoop);
-static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw,
- uint32_t index, uint8_t byte);
-static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset,
- uint16_t words, uint16_t *data);
-static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index,
- uint8_t data);
-static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr,
- uint16_t data);
-
/* IGP cable length table */
static const
uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
@@ -156,13 +153,12 @@ uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
104, 109, 114, 118, 121, 124};
-
/******************************************************************************
* Set the phy type member in the hw struct.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
-int32_t
+static int32_t
e1000_set_phy_type(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_set_phy_type");
@@ -208,7 +204,6 @@ e1000_set_phy_type(struct e1000_hw *hw)
return E1000_SUCCESS;
}
-
/******************************************************************************
* IGP phy init script - initializes the GbE PHY
*
@@ -390,6 +385,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
case E1000_DEV_ID_82571EB_FIBER:
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82571EB_QUAD_COPPER:
+ case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
hw->mac_type = e1000_82571;
break;
case E1000_DEV_ID_82572EI_COPPER:
@@ -413,6 +409,8 @@ e1000_set_mac_type(struct e1000_hw *hw)
case E1000_DEV_ID_ICH8_IGP_AMT:
case E1000_DEV_ID_ICH8_IGP_C:
case E1000_DEV_ID_ICH8_IFE:
+ case E1000_DEV_ID_ICH8_IFE_GT:
+ case E1000_DEV_ID_ICH8_IFE_G:
case E1000_DEV_ID_ICH8_IGP_M:
hw->mac_type = e1000_ich8lan;
break;
@@ -667,19 +665,12 @@ e1000_reset_hw(struct e1000_hw *hw)
E1000_WRITE_FLUSH(hw);
}
/* fall through */
- case e1000_82571:
- case e1000_82572:
- case e1000_ich8lan:
- case e1000_80003es2lan:
+ default:
+ /* Auto read done will delay 5ms or poll based on mac type */
ret_val = e1000_get_auto_rd_done(hw);
if (ret_val)
- /* We don't want to continue accessing MAC registers. */
return ret_val;
break;
- default:
- /* Wait for EEPROM reload (it happens automatically) */
- msleep(5);
- break;
}
/* Disable HW ARPs on ASF enabled adapters */
@@ -722,6 +713,123 @@ e1000_reset_hw(struct e1000_hw *hw)
}
/******************************************************************************
+ *
+ * Initialize a number of hardware-dependent bits
+ *
+ * hw: Struct containing variables accessed by shared code
+ *
+ * This function contains hardware limitation workarounds for PCI-E adapters
+ *
+ *****************************************************************************/
+static void
+e1000_initialize_hardware_bits(struct e1000_hw *hw)
+{
+ if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
+ /* Settings common to all PCI-express silicon */
+ uint32_t reg_ctrl, reg_ctrl_ext;
+ uint32_t reg_tarc0, reg_tarc1;
+ uint32_t reg_tctl;
+ uint32_t reg_txdctl, reg_txdctl1;
+
+ /* link autonegotiation/sync workarounds */
+ reg_tarc0 = E1000_READ_REG(hw, TARC0);
+ reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
+
+ /* Enable not-done TX descriptor counting */
+ reg_txdctl = E1000_READ_REG(hw, TXDCTL);
+ reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
+ reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
+ reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
+ E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
+
+ switch (hw->mac_type) {
+ case e1000_82571:
+ case e1000_82572:
+ /* Clear PHY TX compatible mode bits */
+ reg_tarc1 = E1000_READ_REG(hw, TARC1);
+ reg_tarc1 &= ~((1 << 30)|(1 << 29));
+
+ /* link autonegotiation/sync workarounds */
+ reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
+
+ /* TX ring control fixes */
+ reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
+
+ /* Multiple read bit is reversed polarity */
+ reg_tctl = E1000_READ_REG(hw, TCTL);
+ if (reg_tctl & E1000_TCTL_MULR)
+ reg_tarc1 &= ~(1 << 28);
+ else
+ reg_tarc1 |= (1 << 28);
+
+ E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ break;
+ case e1000_82573:
+ reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ reg_ctrl_ext &= ~(1 << 23);
+ reg_ctrl_ext |= (1 << 22);
+
+ /* TX byte count fix */
+ reg_ctrl = E1000_READ_REG(hw, CTRL);
+ reg_ctrl &= ~(1 << 29);
+
+ E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+ E1000_WRITE_REG(hw, CTRL, reg_ctrl);
+ break;
+ case e1000_80003es2lan:
+ /* improve small packet performace for fiber/serdes */
+ if ((hw->media_type == e1000_media_type_fiber) ||
+ (hw->media_type == e1000_media_type_internal_serdes)) {
+ reg_tarc0 &= ~(1 << 20);
+ }
+
+ /* Multiple read bit is reversed polarity */
+ reg_tctl = E1000_READ_REG(hw, TCTL);
+ reg_tarc1 = E1000_READ_REG(hw, TARC1);
+ if (reg_tctl & E1000_TCTL_MULR)
+ reg_tarc1 &= ~(1 << 28);
+ else
+ reg_tarc1 |= (1 << 28);
+
+ E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ break;
+ case e1000_ich8lan:
+ /* Reduce concurrent DMA requests to 3 from 4 */
+ if ((hw->revision_id < 3) ||
+ ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+ (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
+ reg_tarc0 |= ((1 << 29)|(1 << 28));
+
+ reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
+ reg_ctrl_ext |= (1 << 22);
+ E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
+
+ /* workaround TX hang with TSO=on */
+ reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
+
+ /* Multiple read bit is reversed polarity */
+ reg_tctl = E1000_READ_REG(hw, TCTL);
+ reg_tarc1 = E1000_READ_REG(hw, TARC1);
+ if (reg_tctl & E1000_TCTL_MULR)
+ reg_tarc1 &= ~(1 << 28);
+ else
+ reg_tarc1 |= (1 << 28);
+
+ /* workaround TX hang with TSO=on */
+ reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
+
+ E1000_WRITE_REG(hw, TARC1, reg_tarc1);
+ break;
+ default:
+ break;
+ }
+
+ E1000_WRITE_REG(hw, TARC0, reg_tarc0);
+ }
+}
+
+/******************************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
@@ -749,14 +857,13 @@ e1000_init_hw(struct e1000_hw *hw)
DEBUGFUNC("e1000_init_hw");
/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
- if (hw->mac_type == e1000_ich8lan) {
- reg_data = E1000_READ_REG(hw, TARC0);
- reg_data |= 0x30000000;
- E1000_WRITE_REG(hw, TARC0, reg_data);
-
- reg_data = E1000_READ_REG(hw, STATUS);
- reg_data &= ~0x80000000;
- E1000_WRITE_REG(hw, STATUS, reg_data);
+ if ((hw->mac_type == e1000_ich8lan) &&
+ ((hw->revision_id < 3) ||
+ ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
+ (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
+ reg_data = E1000_READ_REG(hw, STATUS);
+ reg_data &= ~0x80000000;
+ E1000_WRITE_REG(hw, STATUS, reg_data);
}
/* Initialize Identification LED */
@@ -769,6 +876,9 @@ e1000_init_hw(struct e1000_hw *hw)
/* Set the media type and TBI compatibility */
e1000_set_media_type(hw);
+ /* Must be called after e1000_set_media_type because media_type is used */
+ e1000_initialize_hardware_bits(hw);
+
/* Disabling VLAN filtering. */
DEBUGOUT("Initializing the IEEE VLAN\n");
/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
@@ -860,17 +970,6 @@ e1000_init_hw(struct e1000_hw *hw)
if (hw->mac_type > e1000_82544) {
ctrl = E1000_READ_REG(hw, TXDCTL);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- switch (hw->mac_type) {
- default:
- break;
- case e1000_82571:
- case e1000_82572:
- case e1000_82573:
- case e1000_ich8lan:
- case e1000_80003es2lan:
- ctrl |= E1000_TXDCTL_COUNT_DESC;
- break;
- }
E1000_WRITE_REG(hw, TXDCTL, ctrl);
}
@@ -908,8 +1007,6 @@ e1000_init_hw(struct e1000_hw *hw)
case e1000_ich8lan:
ctrl = E1000_READ_REG(hw, TXDCTL1);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
- if (hw->mac_type >= e1000_82571)
- ctrl |= E1000_TXDCTL_COUNT_DESC;
E1000_WRITE_REG(hw, TXDCTL1, ctrl);
break;
}
@@ -1018,11 +1115,11 @@ e1000_setup_link(struct e1000_hw *hw)
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
- if (hw->fc == e1000_fc_default) {
+ if (hw->fc == E1000_FC_DEFAULT) {
switch (hw->mac_type) {
case e1000_ich8lan:
case e1000_82573:
- hw->fc = e1000_fc_full;
+ hw->fc = E1000_FC_FULL;
break;
default:
ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
@@ -1032,12 +1129,12 @@ e1000_setup_link(struct e1000_hw *hw)
return -E1000_ERR_EEPROM;
}
if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
- hw->fc = e1000_fc_none;
+ hw->fc = E1000_FC_NONE;
else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
EEPROM_WORD0F_ASM_DIR)
- hw->fc = e1000_fc_tx_pause;
+ hw->fc = E1000_FC_TX_PAUSE;
else
- hw->fc = e1000_fc_full;
+ hw->fc = E1000_FC_FULL;
break;
}
}
@@ -1047,10 +1144,10 @@ e1000_setup_link(struct e1000_hw *hw)
* hub or switch with different Flow Control capabilities.
*/
if (hw->mac_type == e1000_82542_rev2_0)
- hw->fc &= (~e1000_fc_tx_pause);
+ hw->fc &= (~E1000_FC_TX_PAUSE);
if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
- hw->fc &= (~e1000_fc_rx_pause);
+ hw->fc &= (~E1000_FC_RX_PAUSE);
hw->original_fc = hw->fc;
@@ -1102,7 +1199,7 @@ e1000_setup_link(struct e1000_hw *hw)
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
- if (!(hw->fc & e1000_fc_tx_pause)) {
+ if (!(hw->fc & E1000_FC_TX_PAUSE)) {
E1000_WRITE_REG(hw, FCRTL, 0);
E1000_WRITE_REG(hw, FCRTH, 0);
} else {
@@ -1149,11 +1246,11 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
- /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
+ /* On adapters with a MAC newer than 82544, SWDP 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal. This applies to fiber media only.
- * If we're on serdes media, adjust the output amplitude to value set in
- * the EEPROM.
+ * If we're on serdes media, adjust the output amplitude to value
+ * set in the EEPROM.
*/
ctrl = E1000_READ_REG(hw, CTRL);
if (hw->media_type == e1000_media_type_fiber)
@@ -1189,11 +1286,11 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
* 3: Both Rx and TX flow control (symmetric) are enabled.
*/
switch (hw->fc) {
- case e1000_fc_none:
+ case E1000_FC_NONE:
/* Flow control is completely disabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break;
- case e1000_fc_rx_pause:
+ case E1000_FC_RX_PAUSE:
/* RX Flow control is enabled and TX Flow control is disabled by a
* software over-ride. Since there really isn't a way to advertise
* that we are capable of RX Pause ONLY, we will advertise that we
@@ -1202,13 +1299,13 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
- case e1000_fc_tx_pause:
+ case E1000_FC_TX_PAUSE:
/* TX Flow control is enabled, and RX Flow control is disabled, by a
* software over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break;
- case e1000_fc_full:
+ case E1000_FC_FULL:
/* Flow control (both RX and TX) is enabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
@@ -2124,13 +2221,13 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
* in the EEPROM is used.
*/
switch (hw->fc) {
- case e1000_fc_none: /* 0 */
+ case E1000_FC_NONE: /* 0 */
/* Flow control (RX & TX) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
- case e1000_fc_rx_pause: /* 1 */
+ case E1000_FC_RX_PAUSE: /* 1 */
/* RX Flow control is enabled, and TX Flow control is
* disabled, by a software over-ride.
*/
@@ -2142,14 +2239,14 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw)
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
- case e1000_fc_tx_pause: /* 2 */
+ case E1000_FC_TX_PAUSE: /* 2 */
/* TX Flow control is enabled, and RX Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
- case e1000_fc_full: /* 3 */
+ case E1000_FC_FULL: /* 3 */
/* Flow control (both RX and TX) is enabled by a software
* over-ride.
*/
@@ -2193,7 +2290,7 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
DEBUGFUNC("e1000_phy_force_speed_duplex");
/* Turn off Flow control if we are forcing speed and duplex. */
- hw->fc = e1000_fc_none;
+ hw->fc = E1000_FC_NONE;
DEBUGOUT1("hw->fc = %d\n", hw->fc);
@@ -2273,6 +2370,7 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
/* Need to reset the PHY or these changes will be ignored */
mii_ctrl_reg |= MII_CR_RESET;
+
/* Disable MDI-X support for 10/100 */
} else if (hw->phy_type == e1000_phy_ife) {
ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
@@ -2285,6 +2383,7 @@ e1000_phy_force_speed_duplex(struct e1000_hw *hw)
ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
if (ret_val)
return ret_val;
+
} else {
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed or duplex are forced.
@@ -2547,18 +2646,18 @@ e1000_force_mac_fc(struct e1000_hw *hw)
*/
switch (hw->fc) {
- case e1000_fc_none:
+ case E1000_FC_NONE:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
- case e1000_fc_rx_pause:
+ case E1000_FC_RX_PAUSE:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
- case e1000_fc_tx_pause:
+ case E1000_FC_TX_PAUSE:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
- case e1000_fc_full:
+ case E1000_FC_FULL:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
@@ -2657,14 +2756,14 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
- * 0 | 0 | DC | DC | e1000_fc_none
- * 0 | 1 | 0 | DC | e1000_fc_none
- * 0 | 1 | 1 | 0 | e1000_fc_none
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
- * 1 | 0 | 0 | DC | e1000_fc_none
- * 1 | DC | 1 | DC | e1000_fc_full
- * 1 | 1 | 0 | 0 | e1000_fc_none
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ * 0 | 0 | DC | DC | E1000_FC_NONE
+ * 0 | 1 | 0 | DC | E1000_FC_NONE
+ * 0 | 1 | 1 | 0 | E1000_FC_NONE
+ * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
+ * 1 | 0 | 0 | DC | E1000_FC_NONE
+ * 1 | DC | 1 | DC | E1000_FC_FULL
+ * 1 | 1 | 0 | 0 | E1000_FC_NONE
+ * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
*
*/
/* Are both PAUSE bits set to 1? If so, this implies
@@ -2676,7 +2775,7 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
- * 1 | DC | 1 | DC | e1000_fc_full
+ * 1 | DC | 1 | DC | E1000_FC_FULL
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
@@ -2687,11 +2786,11 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
- if (hw->original_fc == e1000_fc_full) {
- hw->fc = e1000_fc_full;
+ if (hw->original_fc == E1000_FC_FULL) {
+ hw->fc = E1000_FC_FULL;
DEBUGOUT("Flow Control = FULL.\n");
} else {
- hw->fc = e1000_fc_rx_pause;
+ hw->fc = E1000_FC_RX_PAUSE;
DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
}
}
@@ -2700,14 +2799,14 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
+ * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
*
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = e1000_fc_tx_pause;
+ hw->fc = E1000_FC_TX_PAUSE;
DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
}
/* For transmitting PAUSE frames ONLY.
@@ -2715,14 +2814,14 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
+ * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
*
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
- hw->fc = e1000_fc_rx_pause;
+ hw->fc = E1000_FC_RX_PAUSE;
DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
}
/* Per the IEEE spec, at this point flow control should be
@@ -2745,13 +2844,13 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
- else if ((hw->original_fc == e1000_fc_none ||
- hw->original_fc == e1000_fc_tx_pause) ||
+ else if ((hw->original_fc == E1000_FC_NONE ||
+ hw->original_fc == E1000_FC_TX_PAUSE) ||
hw->fc_strict_ieee) {
- hw->fc = e1000_fc_none;
+ hw->fc = E1000_FC_NONE;
DEBUGOUT("Flow Control = NONE.\n");
} else {
- hw->fc = e1000_fc_rx_pause;
+ hw->fc = E1000_FC_RX_PAUSE;
DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
}
@@ -2766,7 +2865,7 @@ e1000_config_fc_after_link_up(struct e1000_hw *hw)
}
if (duplex == HALF_DUPLEX)
- hw->fc = e1000_fc_none;
+ hw->fc = E1000_FC_NONE;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
@@ -3417,9 +3516,8 @@ e1000_read_phy_reg(struct e1000_hw *hw,
return ret_val;
}
-int32_t
-e1000_read_phy_reg_ex(struct e1000_hw *hw,
- uint32_t reg_addr,
+static int32_t
+e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t *phy_data)
{
uint32_t i;
@@ -3499,8 +3597,7 @@ e1000_read_phy_reg_ex(struct e1000_hw *hw,
* data - data to write to the PHY
******************************************************************************/
int32_t
-e1000_write_phy_reg(struct e1000_hw *hw,
- uint32_t reg_addr,
+e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
uint16_t phy_data)
{
uint32_t ret_val;
@@ -3557,10 +3654,9 @@ e1000_write_phy_reg(struct e1000_hw *hw,
return ret_val;
}
-int32_t
-e1000_write_phy_reg_ex(struct e1000_hw *hw,
- uint32_t reg_addr,
- uint16_t phy_data)
+static int32_t
+e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
+ uint16_t phy_data)
{
uint32_t i;
uint32_t mdic = 0;
@@ -3711,7 +3807,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
swfw = E1000_SWFW_PHY0_SM;
}
if (e1000_swfw_sync_acquire(hw, swfw)) {
- e1000_release_software_semaphore(hw);
+ DEBUGOUT("Unable to acquire swfw sync\n");
return -E1000_ERR_SWFW_SYNC;
}
/* Read the device control register and assert the E1000_CTRL_PHY_RST
@@ -3734,6 +3830,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
if (hw->mac_type >= e1000_82571)
mdelay(10);
+
e1000_swfw_sync_release(hw, swfw);
} else {
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
@@ -3776,7 +3873,7 @@ e1000_phy_hw_reset(struct e1000_hw *hw)
*
* hw - Struct containing variables accessed by shared code
*
-* Sets bit 15 of the MII Control regiser
+* Sets bit 15 of the MII Control register
******************************************************************************/
int32_t
e1000_phy_reset(struct e1000_hw *hw)
@@ -3792,15 +3889,14 @@ e1000_phy_reset(struct e1000_hw *hw)
if (ret_val)
return E1000_SUCCESS;
- switch (hw->mac_type) {
- case e1000_82541_rev_2:
- case e1000_82571:
- case e1000_82572:
- case e1000_ich8lan:
+ switch (hw->phy_type) {
+ case e1000_phy_igp:
+ case e1000_phy_igp_2:
+ case e1000_phy_igp_3:
+ case e1000_phy_ife:
ret_val = e1000_phy_hw_reset(hw);
if (ret_val)
return ret_val;
-
break;
default:
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
@@ -3849,14 +3945,15 @@ e1000_phy_powerdown_workaround(struct e1000_hw *hw)
E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
- /* Write VR power-down enable */
+ /* Write VR power-down enable - bits 9:8 should be 10b */
e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
- e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
- IGP3_VR_CTRL_MODE_SHUT);
+ phy_data |= (1 << 9);
+ phy_data &= ~(1 << 8);
+ e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data);
/* Read it back and test */
e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
- if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
+ if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry)
break;
/* Issue PHY reset and repeat at most one more time */
@@ -3936,7 +4033,7 @@ e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
-int32_t
+static int32_t
e1000_detect_gig_phy(struct e1000_hw *hw)
{
int32_t phy_init_status, ret_val;
@@ -3945,6 +4042,9 @@ e1000_detect_gig_phy(struct e1000_hw *hw)
DEBUGFUNC("e1000_detect_gig_phy");
+ if (hw->phy_id != 0)
+ return E1000_SUCCESS;
+
/* The 82571 firmware may still be configuring the PHY. In this
* case, we cannot access the PHY until the configuration is done. So
* we explicitly set the PHY values. */
@@ -4061,7 +4161,8 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
int32_t ret_val;
- uint16_t phy_data, polarity, min_length, max_length, average;
+ uint16_t phy_data, min_length, max_length, average;
+ e1000_rev_polarity polarity;
DEBUGFUNC("e1000_phy_igp_get_info");
@@ -4086,8 +4187,8 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
if (ret_val)
return ret_val;
- phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
- IGP01E1000_PSSR_MDIX_SHIFT;
+ phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
+ IGP01E1000_PSSR_MDIX_SHIFT);
if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
@@ -4096,10 +4197,12 @@ e1000_phy_igp_get_info(struct e1000_hw *hw,
if (ret_val)
return ret_val;
- phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT;
- phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT;
+ phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+ SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+ phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+ SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
/* Get cable length */
ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
@@ -4135,7 +4238,8 @@ e1000_phy_ife_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
int32_t ret_val;
- uint16_t phy_data, polarity;
+ uint16_t phy_data;
+ e1000_rev_polarity polarity;
DEBUGFUNC("e1000_phy_ife_get_info");
@@ -4146,8 +4250,9 @@ e1000_phy_ife_get_info(struct e1000_hw *hw,
if (ret_val)
return ret_val;
phy_info->polarity_correction =
- (phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
- IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT;
+ ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
+ IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
+ e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
ret_val = e1000_check_polarity(hw, &polarity);
@@ -4155,8 +4260,9 @@ e1000_phy_ife_get_info(struct e1000_hw *hw,
return ret_val;
} else {
/* Polarity is forced. */
- polarity = (phy_data & IFE_PSC_FORCE_POLARITY) >>
- IFE_PSC_FORCE_POLARITY_SHIFT;
+ polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
+ IFE_PSC_FORCE_POLARITY_SHIFT) ?
+ e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
}
phy_info->cable_polarity = polarity;
@@ -4164,9 +4270,9 @@ e1000_phy_ife_get_info(struct e1000_hw *hw,
if (ret_val)
return ret_val;
- phy_info->mdix_mode =
- (phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
- IFE_PMC_MDIX_MODE_SHIFT;
+ phy_info->mdix_mode = (e1000_auto_x_mode)
+ ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
+ IFE_PMC_MDIX_MODE_SHIFT);
return E1000_SUCCESS;
}
@@ -4182,7 +4288,8 @@ e1000_phy_m88_get_info(struct e1000_hw *hw,
struct e1000_phy_info *phy_info)
{
int32_t ret_val;
- uint16_t phy_data, polarity;
+ uint16_t phy_data;
+ e1000_rev_polarity polarity;
DEBUGFUNC("e1000_phy_m88_get_info");
@@ -4195,11 +4302,14 @@ e1000_phy_m88_get_info(struct e1000_hw *hw,
return ret_val;
phy_info->extended_10bt_distance =
- (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
- M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
+ ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
+ M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
+ e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
+
phy_info->polarity_correction =
- (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
- M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
+ ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
+ M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
+ e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
/* Check polarity status */
ret_val = e1000_check_polarity(hw, &polarity);
@@ -4211,15 +4321,15 @@ e1000_phy_m88_get_info(struct e1000_hw *hw,
if (ret_val)
return ret_val;
- phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
- M88E1000_PSSR_MDIX_SHIFT;
+ phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
+ M88E1000_PSSR_MDIX_SHIFT);
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
/* Cable Length Estimation and Local/Remote Receiver Information
* are only valid at 1000 Mbps.
*/
if (hw->phy_type != e1000_phy_gg82563) {
- phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+ phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT);
} else {
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
@@ -4227,18 +4337,20 @@ e1000_phy_m88_get_info(struct e1000_hw *hw,
if (ret_val)
return ret_val;
- phy_info->cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
+ phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
}
ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
if (ret_val)
return ret_val;
- phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
- SR_1000T_LOCAL_RX_STATUS_SHIFT;
+ phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
+ SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
+ phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
+ SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
+ e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
- phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
- SR_1000T_REMOTE_RX_STATUS_SHIFT;
}
return E1000_SUCCESS;
@@ -4441,9 +4553,9 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
eeprom->use_eewr = FALSE;
break;
case e1000_ich8lan:
- {
+ {
int32_t i = 0;
- uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
+ uint32_t flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG);
eeprom->type = e1000_eeprom_ich8;
eeprom->use_eerd = FALSE;
@@ -4459,16 +4571,18 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
}
}
- hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
- ICH8_FLASH_SECTOR_SIZE;
+ hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) *
+ ICH_FLASH_SECTOR_SIZE;
+
+ hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1;
+ hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK);
+
+ hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE;
- hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
- hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
- hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
hw->flash_bank_size /= 2 * sizeof(uint16_t);
break;
- }
+ }
default:
break;
}
@@ -4800,7 +4914,7 @@ e1000_release_eeprom(struct e1000_hw *hw)
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
-int32_t
+static int32_t
e1000_spi_eeprom_ready(struct e1000_hw *hw)
{
uint16_t retry_count = 0;
@@ -4854,44 +4968,43 @@ e1000_read_eeprom(struct e1000_hw *hw,
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t i = 0;
- int32_t ret_val;
DEBUGFUNC("e1000_read_eeprom");
+ /* If eeprom is not yet detected, do so now */
+ if (eeprom->word_size == 0)
+ e1000_init_eeprom_params(hw);
+
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
(words == 0)) {
- DEBUGOUT("\"words\" parameter out of bounds\n");
+ DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
return -E1000_ERR_EEPROM;
}
- /* FLASH reads without acquiring the semaphore are safe */
+ /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
+ * directly. In this case, we need to acquire the EEPROM so that
+ * FW or other port software does not interrupt.
+ */
if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
hw->eeprom.use_eerd == FALSE) {
- switch (hw->mac_type) {
- case e1000_80003es2lan:
- break;
- default:
- /* Prepare the EEPROM for reading */
- if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
- return -E1000_ERR_EEPROM;
- break;
- }
+ /* Prepare the EEPROM for bit-bang reading */
+ if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
+ return -E1000_ERR_EEPROM;
}
- if (eeprom->use_eerd == TRUE) {
- ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
- if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
- (hw->mac_type != e1000_82573))
- e1000_release_eeprom(hw);
- return ret_val;
- }
+ /* Eerd register EEPROM access requires no eeprom aquire/release */
+ if (eeprom->use_eerd == TRUE)
+ return e1000_read_eeprom_eerd(hw, offset, words, data);
+ /* ICH EEPROM access is done via the ICH flash controller */
if (eeprom->type == e1000_eeprom_ich8)
return e1000_read_eeprom_ich8(hw, offset, words, data);
+ /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
+ * acquired the EEPROM at this point, so any returns should relase it */
if (eeprom->type == e1000_eeprom_spi) {
uint16_t word_in;
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
@@ -5206,6 +5319,10 @@ e1000_write_eeprom(struct e1000_hw *hw,
DEBUGFUNC("e1000_write_eeprom");
+ /* If eeprom is not yet detected, do so now */
+ if (eeprom->word_size == 0)
+ e1000_init_eeprom_params(hw);
+
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
@@ -5248,7 +5365,7 @@ e1000_write_eeprom(struct e1000_hw *hw,
* data - pointer to array of 8 bit words to be written to the EEPROM
*
*****************************************************************************/
-int32_t
+static int32_t
e1000_write_eeprom_spi(struct e1000_hw *hw,
uint16_t offset,
uint16_t words,
@@ -5314,7 +5431,7 @@ e1000_write_eeprom_spi(struct e1000_hw *hw,
* data - pointer to array of 16 bit words to be written to the EEPROM
*
*****************************************************************************/
-int32_t
+static int32_t
e1000_write_eeprom_microwire(struct e1000_hw *hw,
uint16_t offset,
uint16_t words,
@@ -5411,10 +5528,8 @@ e1000_commit_shadow_ram(struct e1000_hw *hw)
int32_t error = E1000_SUCCESS;
uint32_t old_bank_offset = 0;
uint32_t new_bank_offset = 0;
- uint32_t sector_retries = 0;
uint8_t low_byte = 0;
uint8_t high_byte = 0;
- uint8_t temp_byte = 0;
boolean_t sector_write_failed = FALSE;
if (hw->mac_type == e1000_82573) {
@@ -5467,90 +5582,95 @@ e1000_commit_shadow_ram(struct e1000_hw *hw)
e1000_erase_ich8_4k_segment(hw, 0);
}
- do {
- sector_write_failed = FALSE;
- /* Loop for every byte in the shadow RAM,
- * which is in units of words. */
- for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
- /* Determine whether to write the value stored
- * in the other NVM bank or a modified value stored
- * in the shadow RAM */
- if (hw->eeprom_shadow_ram[i].modified == TRUE) {
- low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
- e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
- &temp_byte);
- udelay(100);
- error = e1000_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset,
- low_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
+ sector_write_failed = FALSE;
+ /* Loop for every byte in the shadow RAM,
+ * which is in units of words. */
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ /* Determine whether to write the value stored
+ * in the other NVM bank or a modified value stored
+ * in the shadow RAM */
+ if (hw->eeprom_shadow_ram[i].modified == TRUE) {
+ low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
+ udelay(100);
+ error = e1000_verify_write_ich8_byte(hw,
+ (i << 1) + new_bank_offset, low_byte);
+
+ if (error != E1000_SUCCESS)
+ sector_write_failed = TRUE;
+ else {
high_byte =
(uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
- e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
- &temp_byte);
udelay(100);
- } else {
- e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
- &low_byte);
- udelay(100);
- error = e1000_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset, low_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
+ }
+ } else {
+ e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
+ &low_byte);
+ udelay(100);
+ error = e1000_verify_write_ich8_byte(hw,
+ (i << 1) + new_bank_offset, low_byte);
+
+ if (error != E1000_SUCCESS)
+ sector_write_failed = TRUE;
+ else {
e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
&high_byte);
+ udelay(100);
}
+ }
+ /* If the write of the low byte was successful, go ahread and
+ * write the high byte while checking to make sure that if it
+ * is the signature byte, then it is handled properly */
+ if (sector_write_failed == FALSE) {
/* If the word is 0x13, then make sure the signature bits
* (15:14) are 11b until the commit has completed.
* This will allow us to write 10b which indicates the
* signature is valid. We want to do this after the write
* has completed so that we don't mark the segment valid
* while the write is still in progress */
- if (i == E1000_ICH8_NVM_SIG_WORD)
- high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
+ if (i == E1000_ICH_NVM_SIG_WORD)
+ high_byte = E1000_ICH_NVM_SIG_MASK | high_byte;
error = e1000_verify_write_ich8_byte(hw,
- (i << 1) + new_bank_offset + 1, high_byte);
+ (i << 1) + new_bank_offset + 1, high_byte);
if (error != E1000_SUCCESS)
sector_write_failed = TRUE;
- if (sector_write_failed == FALSE) {
- /* Clear the now not used entry in the cache */
- hw->eeprom_shadow_ram[i].modified = FALSE;
- hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
- }
+ } else {
+ /* If the write failed then break from the loop and
+ * return an error */
+ break;
}
+ }
- /* Don't bother writing the segment valid bits if sector
- * programming failed. */
- if (sector_write_failed == FALSE) {
- /* Finally validate the new segment by setting bit 15:14
- * to 10b in word 0x13 , this can be done without an
- * erase as well since these bits are 11 to start with
- * and we need to change bit 14 to 0b */
- e1000_read_ich8_byte(hw,
- E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
- &high_byte);
- high_byte &= 0xBF;
+ /* Don't bother writing the segment valid bits if sector
+ * programming failed. */
+ if (sector_write_failed == FALSE) {
+ /* Finally validate the new segment by setting bit 15:14
+ * to 10b in word 0x13 , this can be done without an
+ * erase as well since these bits are 11 to start with
+ * and we need to change bit 14 to 0b */
+ e1000_read_ich8_byte(hw,
+ E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
+ &high_byte);
+ high_byte &= 0xBF;
+ error = e1000_verify_write_ich8_byte(hw,
+ E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
+ /* And invalidate the previously valid segment by setting
+ * its signature word (0x13) high_byte to 0b. This can be
+ * done without an erase because flash erase sets all bits
+ * to 1's. We can write 1's to 0's without an erase */
+ if (error == E1000_SUCCESS) {
error = e1000_verify_write_ich8_byte(hw,
- E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
- high_byte);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
+ E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
+ }
- /* And invalidate the previously valid segment by setting
- * its signature word (0x13) high_byte to 0b. This can be
- * done without an erase because flash erase sets all bits
- * to 1's. We can write 1's to 0's without an erase */
- error = e1000_verify_write_ich8_byte(hw,
- E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset,
- 0);
- if (error != E1000_SUCCESS)
- sector_write_failed = TRUE;
+ /* Clear the now not used entry in the cache */
+ for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
+ hw->eeprom_shadow_ram[i].modified = FALSE;
+ hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
}
- } while (++sector_retries < 10 && sector_write_failed == TRUE);
+ }
}
return error;
@@ -5640,99 +5760,6 @@ e1000_init_rx_addrs(struct e1000_hw *hw)
}
/******************************************************************************
- * Updates the MAC's list of multicast addresses.
- *
- * hw - Struct containing variables accessed by shared code
- * mc_addr_list - the list of new multicast addresses
- * mc_addr_count - number of addresses
- * pad - number of bytes between addresses in the list
- * rar_used_count - offset where to start adding mc addresses into the RAR's
- *
- * The given list replaces any existing list. Clears the last 15 receive
- * address registers and the multicast table. Uses receive address registers
- * for the first 15 multicast addresses, and hashes the rest into the
- * multicast table.
- *****************************************************************************/
-#if 0
-void
-e1000_mc_addr_list_update(struct e1000_hw *hw,
- uint8_t *mc_addr_list,
- uint32_t mc_addr_count,
- uint32_t pad,
- uint32_t rar_used_count)
-{
- uint32_t hash_value;
- uint32_t i;
- uint32_t num_rar_entry;
- uint32_t num_mta_entry;
-
- DEBUGFUNC("e1000_mc_addr_list_update");
-
- /* Set the new number of MC addresses that we are being requested to use. */
- hw->num_mc_addrs = mc_addr_count;
-
- /* Clear RAR[1-15] */
- DEBUGOUT(" Clearing RAR[1-15]\n");
- num_rar_entry = E1000_RAR_ENTRIES;
- if (hw->mac_type == e1000_ich8lan)
- num_rar_entry = E1000_RAR_ENTRIES_ICH8LAN;
- /* Reserve a spot for the Locally Administered Address to work around
- * an 82571 issue in which a reset on one port will reload the MAC on
- * the other port. */
- if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
- num_rar_entry -= 1;
-
- for (i = rar_used_count; i < num_rar_entry; i++) {
- E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
- E1000_WRITE_FLUSH(hw);
- E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
- E1000_WRITE_FLUSH(hw);
- }
-
- /* Clear the MTA */
- DEBUGOUT(" Clearing MTA\n");
- num_mta_entry = E1000_NUM_MTA_REGISTERS;
- if (hw->mac_type == e1000_ich8lan)
- num_mta_entry = E1000_NUM_MTA_REGISTERS_ICH8LAN;
- for (i = 0; i < num_mta_entry; i++) {
- E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
- E1000_WRITE_FLUSH(hw);
- }
-
- /* Add the new addresses */
- for (i = 0; i < mc_addr_count; i++) {
- DEBUGOUT(" Adding the multicast addresses:\n");
- DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
- mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
-
- hash_value = e1000_hash_mc_addr(hw,
- mc_addr_list +
- (i * (ETH_LENGTH_OF_ADDRESS + pad)));
-
- DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
-
- /* Place this multicast address in the RAR if there is room, *
- * else put it in the MTA
- */
- if (rar_used_count < num_rar_entry) {
- e1000_rar_set(hw,
- mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
- rar_used_count);
- rar_used_count++;
- } else {
- e1000_mta_set(hw, hash_value);
- }
- }
- DEBUGOUT("MC Update Complete\n");
-}
-#endif /* 0 */
-
-/******************************************************************************
* Hashes an address to determine its location in the multicast table
*
* hw - Struct containing variables accessed by shared code
@@ -5822,6 +5849,7 @@ e1000_mta_set(struct e1000_hw *hw,
hash_reg = (hash_value >> 5) & 0x7F;
if (hw->mac_type == e1000_ich8lan)
hash_reg &= 0x1F;
+
hash_bit = hash_value & 0x1F;
mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
@@ -6007,6 +6035,7 @@ e1000_id_led_init(struct e1000_hw * hw)
else
eeprom_data = ID_LED_DEFAULT;
}
+
for (i = 0; i < 4; i++) {
temp = (eeprom_data >> (i << 2)) & led_mask;
switch (temp) {
@@ -6290,7 +6319,7 @@ e1000_led_off(struct e1000_hw *hw)
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
-void
+static void
e1000_clear_hw_cntrs(struct e1000_hw *hw)
{
volatile uint32_t temp;
@@ -6539,6 +6568,8 @@ e1000_tbi_adjust_stats(struct e1000_hw *hw,
void
e1000_get_bus_info(struct e1000_hw *hw)
{
+ int32_t ret_val;
+ uint16_t pci_ex_link_status;
uint32_t status;
switch (hw->mac_type) {
@@ -6548,18 +6579,25 @@ e1000_get_bus_info(struct e1000_hw *hw)
hw->bus_speed = e1000_bus_speed_unknown;
hw->bus_width = e1000_bus_width_unknown;
break;
+ case e1000_82571:
case e1000_82572:
case e1000_82573:
+ case e1000_80003es2lan:
hw->bus_type = e1000_bus_type_pci_express;
hw->bus_speed = e1000_bus_speed_2500;
- hw->bus_width = e1000_bus_width_pciex_1;
+ ret_val = e1000_read_pcie_cap_reg(hw,
+ PCI_EX_LINK_STATUS,
+ &pci_ex_link_status);
+ if (ret_val)
+ hw->bus_width = e1000_bus_width_unknown;
+ else
+ hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
+ PCI_EX_LINK_WIDTH_SHIFT;
break;
- case e1000_82571:
case e1000_ich8lan:
- case e1000_80003es2lan:
hw->bus_type = e1000_bus_type_pci_express;
hw->bus_speed = e1000_bus_speed_2500;
- hw->bus_width = e1000_bus_width_pciex_4;
+ hw->bus_width = e1000_bus_width_pciex_1;
break;
default:
status = E1000_READ_REG(hw, STATUS);
@@ -6593,25 +6631,6 @@ e1000_get_bus_info(struct e1000_hw *hw)
break;
}
}
-/******************************************************************************
- * Reads a value from one of the devices registers using port I/O (as opposed
- * memory mapped I/O). Only 82544 and newer devices support port I/O.
- *
- * hw - Struct containing variables accessed by shared code
- * offset - offset to read from
- *****************************************************************************/
-#if 0
-uint32_t
-e1000_read_reg_io(struct e1000_hw *hw,
- uint32_t offset)
-{
- unsigned long io_addr = hw->io_base;
- unsigned long io_data = hw->io_base + 4;
-
- e1000_io_write(hw, io_addr, offset);
- return e1000_io_read(hw, io_data);
-}
-#endif /* 0 */
/******************************************************************************
* Writes a value to one of the devices registers using port I/O (as opposed to
@@ -6633,7 +6652,6 @@ e1000_write_reg_io(struct e1000_hw *hw,
e1000_io_write(hw, io_data, value);
}
-
/******************************************************************************
* Estimates the cable length.
*
@@ -6842,7 +6860,7 @@ e1000_get_cable_length(struct e1000_hw *hw,
*****************************************************************************/
static int32_t
e1000_check_polarity(struct e1000_hw *hw,
- uint16_t *polarity)
+ e1000_rev_polarity *polarity)
{
int32_t ret_val;
uint16_t phy_data;
@@ -6856,8 +6874,10 @@ e1000_check_polarity(struct e1000_hw *hw,
&phy_data);
if (ret_val)
return ret_val;
- *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
- M88E1000_PSSR_REV_POLARITY_SHIFT;
+ *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
+ M88E1000_PSSR_REV_POLARITY_SHIFT) ?
+ e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
+
} else if (hw->phy_type == e1000_phy_igp ||
hw->phy_type == e1000_phy_igp_3 ||
hw->phy_type == e1000_phy_igp_2) {
@@ -6879,19 +6899,22 @@ e1000_check_polarity(struct e1000_hw *hw,
return ret_val;
/* Check the polarity bits */
- *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
+ *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
+ e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
} else {
/* For 10 Mbps, read the polarity bit in the status register. (for
* 100 Mbps this bit is always 0) */
- *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
+ *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
+ e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
}
} else if (hw->phy_type == e1000_phy_ife) {
ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
&phy_data);
if (ret_val)
return ret_val;
- *polarity = (phy_data & IFE_PESC_POLARITY_REVERSED) >>
- IFE_PESC_POLARITY_REVERSED_SHIFT;
+ *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
+ IFE_PESC_POLARITY_REVERSED_SHIFT) ?
+ e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
}
return E1000_SUCCESS;
}
@@ -7259,7 +7282,7 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw,
} else if (hw->smart_speed == e1000_smart_speed_off) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
- if (ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
@@ -7369,7 +7392,7 @@ e1000_set_d0_lplu_state(struct e1000_hw *hw,
} else if (hw->smart_speed == e1000_smart_speed_off) {
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&phy_data);
- if (ret_val)
+ if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
@@ -7475,7 +7498,7 @@ e1000_set_vco_speed(struct e1000_hw *hw)
*
* returns: - E1000_SUCCESS .
****************************************************************************/
-int32_t
+static int32_t
e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
{
uint8_t i;
@@ -7686,7 +7709,7 @@ e1000_check_mng_mode(struct e1000_hw *hw)
****************************************************************************/
int32_t
e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
- uint16_t length)
+ uint16_t length)
{
int32_t ret_val;
struct e1000_host_mng_command_header hdr;
@@ -7716,7 +7739,7 @@ e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
*
* returns - checksum of buffer contents.
****************************************************************************/
-uint8_t
+static uint8_t
e1000_calculate_mng_checksum(char *buffer, uint32_t length)
{
uint8_t sum = 0;
@@ -7914,32 +7937,6 @@ e1000_set_pci_express_master_disable(struct e1000_hw *hw)
E1000_WRITE_REG(hw, CTRL, ctrl);
}
-/***************************************************************************
- *
- * Enables PCI-Express master access.
- *
- * hw: Struct containing variables accessed by shared code
- *
- * returns: - none.
- *
- ***************************************************************************/
-#if 0
-void
-e1000_enable_pciex_master(struct e1000_hw *hw)
-{
- uint32_t ctrl;
-
- DEBUGFUNC("e1000_enable_pciex_master");
-
- if (hw->bus_type != e1000_bus_type_pci_express)
- return;
-
- ctrl = E1000_READ_REG(hw, CTRL);
- ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
- E1000_WRITE_REG(hw, CTRL, ctrl);
-}
-#endif /* 0 */
-
/*******************************************************************************
*
* Disables PCI-Express master access and verifies there are no pending requests
@@ -8063,7 +8060,6 @@ e1000_get_phy_cfg_done(struct e1000_hw *hw)
msleep(1);
timeout--;
}
-
if (!timeout) {
DEBUGOUT("MNG configuration cycle has not completed.\n");
return -E1000_ERR_RESET;
@@ -8172,8 +8168,9 @@ e1000_get_software_semaphore(struct e1000_hw *hw)
DEBUGFUNC("e1000_get_software_semaphore");
- if (hw->mac_type != e1000_80003es2lan)
+ if (hw->mac_type != e1000_80003es2lan) {
return E1000_SUCCESS;
+ }
while (timeout) {
swsm = E1000_READ_REG(hw, SWSM);
@@ -8206,8 +8203,9 @@ e1000_release_software_semaphore(struct e1000_hw *hw)
DEBUGFUNC("e1000_release_software_semaphore");
- if (hw->mac_type != e1000_80003es2lan)
+ if (hw->mac_type != e1000_80003es2lan) {
return;
+ }
swsm = E1000_READ_REG(hw, SWSM);
/* Release the SW semaphores.*/
@@ -8241,7 +8239,7 @@ e1000_check_phy_reset_block(struct e1000_hw *hw)
if (hw->mac_type > e1000_82547_rev_2)
manc = E1000_READ_REG(hw, MANC);
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
- E1000_BLK_PHY_RESET : E1000_SUCCESS;
+ E1000_BLK_PHY_RESET : E1000_SUCCESS;
}
static uint8_t
@@ -8377,66 +8375,6 @@ e1000_release_software_flag(struct e1000_hw *hw)
return;
}
-/***************************************************************************
- *
- * Disable dynamic power down mode in ife PHY.
- * It can be used to workaround band-gap problem.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-#if 0
-int32_t
-e1000_ife_disable_dynamic_power_down(struct e1000_hw *hw)
-{
- uint16_t phy_data;
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_ife_disable_dynamic_power_down");
-
- if (hw->phy_type == e1000_phy_ife) {
- ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
- ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
- }
-
- return ret_val;
-}
-#endif /* 0 */
-
-/***************************************************************************
- *
- * Enable dynamic power down mode in ife PHY.
- * It can be used to workaround band-gap problem.
- *
- * hw: Struct containing variables accessed by shared code
- *
- ***************************************************************************/
-#if 0
-int32_t
-e1000_ife_enable_dynamic_power_down(struct e1000_hw *hw)
-{
- uint16_t phy_data;
- int32_t ret_val = E1000_SUCCESS;
-
- DEBUGFUNC("e1000_ife_enable_dynamic_power_down");
-
- if (hw->phy_type == e1000_phy_ife) {
- ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data &= ~IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN;
- ret_val = e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, phy_data);
- }
-
- return ret_val;
-}
-#endif /* 0 */
-
/******************************************************************************
* Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
* register.
@@ -8558,7 +8496,7 @@ e1000_ich8_cycle_init(struct e1000_hw *hw)
DEBUGFUNC("e1000_ich8_cycle_init");
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
/* May be check the Flash Des Valid bit in Hw status */
if (hsfsts.hsf_status.fldesvalid == 0) {
@@ -8571,7 +8509,7 @@ e1000_ich8_cycle_init(struct e1000_hw *hw)
hsfsts.hsf_status.flcerr = 1;
hsfsts.hsf_status.dael = 1;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
/* Either we should have a hardware SPI cycle in progress bit to check
* against, in order to start a new cycle or FDONE bit should be changed
@@ -8586,13 +8524,13 @@ e1000_ich8_cycle_init(struct e1000_hw *hw)
/* There is no cycle running at present, so we can start a cycle */
/* Begin by setting Flash Cycle Done. */
hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
error = E1000_SUCCESS;
} else {
/* otherwise poll for sometime so the current cycle has a chance
* to end before giving up. */
- for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) {
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcinprog == 0) {
error = E1000_SUCCESS;
break;
@@ -8603,7 +8541,7 @@ e1000_ich8_cycle_init(struct e1000_hw *hw)
/* Successful in waiting for previous cycle to timeout,
* now set the Flash Cycle Done. */
hsfsts.hsf_status.flcdone = 1;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
} else {
DEBUGOUT("Flash controller busy, cannot get access");
}
@@ -8625,13 +8563,13 @@ e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
uint32_t i = 0;
/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
+ hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcgo = 1;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
/* wait till FDONE bit is set to 1 */
do {
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcdone == 1)
break;
udelay(1);
@@ -8665,10 +8603,10 @@ e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
DEBUGFUNC("e1000_read_ich8_data");
if (size < 1 || size > 2 || data == 0x0 ||
- index > ICH8_FLASH_LINEAR_ADDR_MASK)
+ index > ICH_FLASH_LINEAR_ADDR_MASK)
return error;
- flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
+ flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
hw->flash_base_addr;
do {
@@ -8678,25 +8616,25 @@ e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
if (error != E1000_SUCCESS)
break;
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
+ hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size - 1;
- hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
/* Write the last 24 bits of index into Flash Linear address field in
* Flash Address */
/* TODO: TBD maybe check the index against the size of flash */
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
+ E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
- error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
+ error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
/* Check if FCERR is set to 1, if set to 1, clear it and try the whole
* sequence a few more times, else read in (shift in) the Flash Data0,
* the order is least significant byte first msb to lsb */
if (error == E1000_SUCCESS) {
- flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
+ flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0);
if (size == 1) {
*data = (uint8_t)(flash_data & 0x000000FF);
} else if (size == 2) {
@@ -8706,9 +8644,9 @@ e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
} else {
/* If we've gotten here, then things are probably completely hosed,
* but if the error condition is detected, it won't hurt to give
- * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
+ * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) {
/* Repeat for some time before giving up. */
continue;
@@ -8717,7 +8655,7 @@ e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
break;
}
}
- } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
+ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
return error;
}
@@ -8744,10 +8682,10 @@ e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
DEBUGFUNC("e1000_write_ich8_data");
if (size < 1 || size > 2 || data > size * 0xff ||
- index > ICH8_FLASH_LINEAR_ADDR_MASK)
+ index > ICH_FLASH_LINEAR_ADDR_MASK)
return error;
- flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
+ flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) +
hw->flash_base_addr;
do {
@@ -8757,34 +8695,34 @@ e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
if (error != E1000_SUCCESS)
break;
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
+ hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size -1;
- hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
/* Write the last 24 bits of index into Flash Linear address field in
* Flash Address */
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
+ E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
if (size == 1)
flash_data = (uint32_t)data & 0x00FF;
else
flash_data = (uint32_t)data;
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
+ E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
/* check if FCERR is set to 1 , if set to 1, clear it and try the whole
* sequence a few more times else done */
- error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
+ error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT);
if (error == E1000_SUCCESS) {
break;
} else {
/* If we're here, then things are most likely completely hosed,
* but if the error condition is detected, it won't hurt to give
- * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
+ * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) {
/* Repeat for some time before giving up. */
continue;
@@ -8793,7 +8731,7 @@ e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
break;
}
}
- } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
+ } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
return error;
}
@@ -8832,20 +8770,22 @@ static int32_t
e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
{
int32_t error = E1000_SUCCESS;
- int32_t program_retries;
- uint8_t temp_byte;
+ int32_t program_retries = 0;
- e1000_write_ich8_byte(hw, index, byte);
- udelay(100);
+ DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
- for (program_retries = 0; program_retries < 100; program_retries++) {
- e1000_read_ich8_byte(hw, index, &temp_byte);
- if (temp_byte == byte)
- break;
- udelay(10);
- e1000_write_ich8_byte(hw, index, byte);
- udelay(100);
+ error = e1000_write_ich8_byte(hw, index, byte);
+
+ if (error != E1000_SUCCESS) {
+ for (program_retries = 0; program_retries < 100; program_retries++) {
+ DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
+ error = e1000_write_ich8_byte(hw, index, byte);
+ udelay(100);
+ if (error == E1000_SUCCESS)
+ break;
+ }
}
+
if (program_retries == 100)
error = E1000_ERR_EEPROM;
@@ -8886,63 +8826,51 @@ e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
}
/******************************************************************************
- * Writes a word to the NVM using the ICH8 flash access registers.
+ * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
+ * based.
*
* hw - pointer to e1000_hw structure
- * index - The starting byte index of the word to read.
- * data - The word to write to the NVM.
- *****************************************************************************/
-#if 0
-int32_t
-e1000_write_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t data)
-{
- int32_t status = E1000_SUCCESS;
- status = e1000_write_ich8_data(hw, index, 2, data);
- return status;
-}
-#endif /* 0 */
-
-/******************************************************************************
- * Erases the bank specified. Each bank is a 4k block. Segments are 0 based.
- * segment N is 4096 * N + flash_reg_addr.
+ * bank - 0 for first bank, 1 for second bank
*
- * hw - pointer to e1000_hw structure
- * segment - 0 for first segment, 1 for second segment, etc.
+ * Note that this function may actually erase as much as 8 or 64 KBytes. The
+ * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
+ * bank size may be 4, 8 or 64 KBytes
*****************************************************************************/
-static int32_t
-e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
+int32_t
+e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
uint32_t flash_linear_address;
int32_t count = 0;
int32_t error = E1000_ERR_EEPROM;
- int32_t iteration, seg_size;
- int32_t sector_size;
+ int32_t iteration;
+ int32_t sub_sector_size = 0;
+ int32_t bank_size;
int32_t j = 0;
int32_t error_flag = 0;
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
/* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
/* 00: The Hw sector is 256 bytes, hence we need to erase 16
* consecutive sectors. The start index for the nth Hw sector can be
- * calculated as = segment * 4096 + n * 256
+ * calculated as bank * 4096 + n * 256
* 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
* The start index for the nth Hw sector can be calculated
- * as = segment * 4096
- * 10: Error condition
- * 11: The Hw sector size is much bigger than the size asked to
- * erase...error condition */
+ * as bank * 4096
+ * 10: The HW sector is 8K bytes
+ * 11: The Hw sector size is 64K bytes */
if (hsfsts.hsf_status.berasesz == 0x0) {
/* Hw sector size 256 */
- sector_size = seg_size = ICH8_FLASH_SEG_SIZE_256;
- iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
+ sub_sector_size = ICH_FLASH_SEG_SIZE_256;
+ bank_size = ICH_FLASH_SECTOR_SIZE;
+ iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256;
} else if (hsfsts.hsf_status.berasesz == 0x1) {
- sector_size = seg_size = ICH8_FLASH_SEG_SIZE_4K;
+ bank_size = ICH_FLASH_SEG_SIZE_4K;
iteration = 1;
} else if (hsfsts.hsf_status.berasesz == 0x3) {
- sector_size = seg_size = ICH8_FLASH_SEG_SIZE_64K;
+ bank_size = ICH_FLASH_SEG_SIZE_64K;
iteration = 1;
} else {
return error;
@@ -8960,28 +8888,27 @@ e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
/* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
* Control */
- hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
- hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
- E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
+ hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
+ hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
+ E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
/* Write the last 24 bits of an index within the block into Flash
* Linear address field in Flash Address. This probably needs to
- * be calculated here based off the on-chip segment size and the
- * software segment size assumed (4K) */
- /* TBD */
- flash_linear_address = segment * sector_size + j * seg_size;
- flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
+ * be calculated here based off the on-chip erase sector size and
+ * the software bank size (4, 8 or 64 KBytes) */
+ flash_linear_address = bank * bank_size + j * sub_sector_size;
flash_linear_address += hw->flash_base_addr;
+ flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK;
- E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
+ E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address);
- error = e1000_ich8_flash_cycle(hw, 1000000);
+ error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT);
/* Check if FCERR is set to 1. If 1, clear it and try the whole
* sequence a few more times else Done */
if (error == E1000_SUCCESS) {
break;
} else {
- hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
+ hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) {
/* repeat for some time before giving up */
continue;
@@ -8990,7 +8917,7 @@ e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
break;
}
}
- } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
+ } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
if (error_flag == 1)
break;
}
@@ -8999,44 +8926,6 @@ e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t segment)
return error;
}
-/******************************************************************************
- *
- * Reverse duplex setting without breaking the link.
- *
- * hw: Struct containing variables accessed by shared code
- *
- *****************************************************************************/
-#if 0
-int32_t
-e1000_duplex_reversal(struct e1000_hw *hw)
-{
- int32_t ret_val;
- uint16_t phy_data;
-
- if (hw->phy_type != e1000_phy_igp_3)
- return E1000_SUCCESS;
-
- ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data ^= MII_CR_FULL_DUPLEX;
-
- ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
- if (ret_val)
- return ret_val;
-
- ret_val = e1000_read_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, &phy_data);
- if (ret_val)
- return ret_val;
-
- phy_data |= IGP3_PHY_MISC_DUPLEX_MANUAL_SET;
- ret_val = e1000_write_phy_reg(hw, IGP3E1000_PHY_MISC_CTRL, phy_data);
-
- return ret_val;
-}
-#endif /* 0 */
-
static int32_t
e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
uint32_t cnf_base_addr, uint32_t cnf_size)
@@ -9071,6 +8960,14 @@ e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
}
+/******************************************************************************
+ * This function initializes the PHY from the NVM on ICH8 platforms. This
+ * is needed due to an issue where the NVM configuration is not properly
+ * autoloaded after power transitions. Therefore, after each PHY reset, we
+ * will load the configuration data out of the NVM manually.
+ *
+ * hw: Struct containing variables accessed by shared code
+ *****************************************************************************/
static int32_t
e1000_init_lcd_from_nvm(struct e1000_hw *hw)
{
@@ -9121,5 +9018,3 @@ e1000_init_lcd_from_nvm(struct e1000_hw *hw)
return E1000_SUCCESS;
}
-
-