summaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000e/lib.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/e1000e/lib.c')
-rw-r--r--drivers/net/e1000e/lib.c284
1 files changed, 163 insertions, 121 deletions
diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c
index a86c17548c1..a8b2c0de27c 100644
--- a/drivers/net/e1000e/lib.c
+++ b/drivers/net/e1000e/lib.c
@@ -51,10 +51,10 @@ enum e1000_mng_mode {
**/
s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
{
+ struct e1000_mac_info *mac = &hw->mac;
struct e1000_bus_info *bus = &hw->bus;
struct e1000_adapter *adapter = hw->adapter;
- u32 status;
- u16 pcie_link_status, pci_header_type, cap_offset;
+ u16 pcie_link_status, cap_offset;
cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
if (!cap_offset) {
@@ -68,20 +68,46 @@ s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
PCIE_LINK_WIDTH_SHIFT);
}
- pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
- &pci_header_type);
- if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
- status = er32(STATUS);
- bus->func = (status & E1000_STATUS_FUNC_MASK)
- >> E1000_STATUS_FUNC_SHIFT;
- } else {
- bus->func = 0;
- }
+ mac->ops.set_lan_id(hw);
return 0;
}
/**
+ * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
+ *
+ * @hw: pointer to the HW structure
+ *
+ * Determines the LAN function id by reading memory-mapped registers
+ * and swaps the port value if requested.
+ **/
+void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+ u32 reg;
+
+ /*
+ * The status register reports the correct function number
+ * for the device regardless of function swap state.
+ */
+ reg = er32(STATUS);
+ bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
+}
+
+/**
+ * e1000_set_lan_id_single_port - Set LAN id for a single port device
+ * @hw: pointer to the HW structure
+ *
+ * Sets the LAN function id to zero for a single port device.
+ **/
+void e1000_set_lan_id_single_port(struct e1000_hw *hw)
+{
+ struct e1000_bus_info *bus = &hw->bus;
+
+ bus->func = 0;
+}
+
+/**
* e1000_clear_vfta_generic - Clear VLAN filter table
* @hw: pointer to the HW structure
*
@@ -125,6 +151,7 @@ void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
{
u32 i;
+ u8 mac_addr[ETH_ALEN] = {0};
/* Setup the receive address */
e_dbg("Programming MAC Address into RAR[0]\n");
@@ -133,12 +160,70 @@ void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
/* Zero out the other (rar_entry_count - 1) receive addresses */
e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
- for (i = 1; i < rar_count; i++) {
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
- e1e_flush();
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
- e1e_flush();
+ for (i = 1; i < rar_count; i++)
+ e1000e_rar_set(hw, mac_addr, i);
+}
+
+/**
+ * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
+ * @hw: pointer to the HW structure
+ *
+ * Checks the nvm for an alternate MAC address. An alternate MAC address
+ * can be setup by pre-boot software and must be treated like a permanent
+ * address and must override the actual permanent MAC address. If an
+ * alternate MAC address is found it is programmed into RAR0, replacing
+ * the permanent address that was installed into RAR0 by the Si on reset.
+ * This function will return SUCCESS unless it encounters an error while
+ * reading the EEPROM.
+ **/
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
+{
+ u32 i;
+ s32 ret_val = 0;
+ u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+ u8 alt_mac_addr[ETH_ALEN];
+
+ ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
+ &nvm_alt_mac_addr_offset);
+ if (ret_val) {
+ e_dbg("NVM Read Error\n");
+ goto out;
+ }
+
+ if (nvm_alt_mac_addr_offset == 0xFFFF) {
+ /* There is no Alternate MAC Address */
+ goto out;
+ }
+
+ if (hw->bus.func == E1000_FUNC_1)
+ nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
+ for (i = 0; i < ETH_ALEN; i += 2) {
+ offset = nvm_alt_mac_addr_offset + (i >> 1);
+ ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
+ if (ret_val) {
+ e_dbg("NVM Read Error\n");
+ goto out;
+ }
+
+ alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+ alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+ }
+
+ /* if multicast bit is set, the alternate address will not be used */
+ if (alt_mac_addr[0] & 0x01) {
+ e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
+ goto out;
}
+
+ /*
+ * We have a valid alternate MAC address, and we want to treat it the
+ * same as the normal permanent MAC address stored by the HW into the
+ * RAR. Do this by mapping this address into RAR0.
+ */
+ e1000e_rar_set(hw, alt_mac_addr, 0);
+
+out:
+ return ret_val;
}
/**
@@ -164,10 +249,19 @@ void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
- rar_high |= E1000_RAH_AV;
+ /* If MAC address zero, no need to set the AV bit */
+ if (rar_low || rar_high)
+ rar_high |= E1000_RAH_AV;
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
+ /*
+ * Some bridges will combine consecutive 32-bit writes into
+ * a single burst write, which will malfunction on some parts.
+ * The flushes avoid this.
+ */
+ ew32(RAL(index), rar_low);
+ e1e_flush();
+ ew32(RAH(index), rar_high);
+ e1e_flush();
}
/**
@@ -246,62 +340,34 @@ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
- * @rar_used_count: the first RAR register free to program
- * @rar_count: total number of supported Receive Address Registers
*
- * Updates the Receive Address Registers and Multicast Table Array.
+ * Updates entire Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
- * The parameter rar_count will usually be hw->mac.rar_entry_count
- * unless there are workarounds that change this.
**/
void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
- u8 *mc_addr_list, u32 mc_addr_count,
- u32 rar_used_count, u32 rar_count)
+ u8 *mc_addr_list, u32 mc_addr_count)
{
- u32 i;
- u32 *mcarray = kzalloc(hw->mac.mta_reg_count * sizeof(u32), GFP_ATOMIC);
+ u32 hash_value, hash_bit, hash_reg;
+ int i;
- if (!mcarray) {
- printk(KERN_ERR "multicast array memory allocation failed\n");
- return;
- }
-
- /*
- * Load the first set of multicast addresses into the exact
- * filters (RAR). If there are not enough to fill the RAR
- * array, clear the filters.
- */
- for (i = rar_used_count; i < rar_count; i++) {
- if (mc_addr_count) {
- e1000e_rar_set(hw, mc_addr_list, i);
- mc_addr_count--;
- mc_addr_list += ETH_ALEN;
- } else {
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
- e1e_flush();
- E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
- e1e_flush();
- }
- }
+ /* clear mta_shadow */
+ memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
- /* Load any remaining multicast addresses into the hash table. */
- for (; mc_addr_count > 0; mc_addr_count--) {
- u32 hash_value, hash_reg, hash_bit, mta;
+ /* update mta_shadow from mc_addr_list */
+ for (i = 0; (u32) i < mc_addr_count; i++) {
hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
- e_dbg("Hash value = 0x%03X\n", hash_value);
+
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
- mta = (1 << hash_bit);
- mcarray[hash_reg] |= mta;
- mc_addr_list += ETH_ALEN;
- }
- /* write the hash table completely */
- for (i = 0; i < hw->mac.mta_reg_count; i++)
- E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, mcarray[i]);
+ hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
+ mc_addr_list += (ETH_ALEN);
+ }
+ /* replace the entire MTA table */
+ for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
+ E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
e1e_flush();
- kfree(mcarray);
}
/**
@@ -581,7 +647,7 @@ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
if (!(rxcw & E1000_RXCW_IV)) {
mac->serdes_has_link = true;
e_dbg("SERDES: Link up - autoneg "
- "completed sucessfully.\n");
+ "completed successfully.\n");
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - invalid"
@@ -1609,6 +1675,11 @@ void e1000e_reset_adaptive(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
+ if (!mac->adaptive_ifs) {
+ e_dbg("Not in Adaptive IFS mode!\n");
+ goto out;
+ }
+
mac->current_ifs_val = 0;
mac->ifs_min_val = IFS_MIN;
mac->ifs_max_val = IFS_MAX;
@@ -1617,6 +1688,8 @@ void e1000e_reset_adaptive(struct e1000_hw *hw)
mac->in_ifs_mode = false;
ew32(AIT, 0);
+out:
+ return;
}
/**
@@ -1630,6 +1703,11 @@ void e1000e_update_adaptive(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
+ if (!mac->adaptive_ifs) {
+ e_dbg("Not in Adaptive IFS mode!\n");
+ goto out;
+ }
+
if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
if (mac->tx_packet_delta > MIN_NUM_XMITS) {
mac->in_ifs_mode = true;
@@ -1650,6 +1728,8 @@ void e1000e_update_adaptive(struct e1000_hw *hw)
ew32(AIT, 0);
}
}
+out:
+ return;
}
/**
@@ -2052,67 +2132,27 @@ s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
}
/**
- * e1000e_read_mac_addr - Read device MAC address
+ * e1000_read_mac_addr_generic - Read device MAC address
* @hw: pointer to the HW structure
*
* Reads the device MAC address from the EEPROM and stores the value.
* Since devices with two ports use the same EEPROM, we increment the
* last bit in the MAC address for the second port.
**/
-s32 e1000e_read_mac_addr(struct e1000_hw *hw)
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
{
- s32 ret_val;
- u16 offset, nvm_data, i;
- u16 mac_addr_offset = 0;
-
- if (hw->mac.type == e1000_82571) {
- /* Check for an alternate MAC address. An alternate MAC
- * address can be setup by pre-boot software and must be
- * treated like a permanent address and must override the
- * actual permanent MAC address.*/
- ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
- &mac_addr_offset);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- if (mac_addr_offset == 0xFFFF)
- mac_addr_offset = 0;
-
- if (mac_addr_offset) {
- if (hw->bus.func == E1000_FUNC_1)
- mac_addr_offset += ETH_ALEN/sizeof(u16);
-
- /* make sure we have a valid mac address here
- * before using it */
- ret_val = e1000_read_nvm(hw, mac_addr_offset, 1,
- &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- if (nvm_data & 0x0001)
- mac_addr_offset = 0;
- }
+ u32 rar_high;
+ u32 rar_low;
+ u16 i;
- if (mac_addr_offset)
- hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
- }
+ rar_high = er32(RAH(0));
+ rar_low = er32(RAL(0));
- for (i = 0; i < ETH_ALEN; i += 2) {
- offset = mac_addr_offset + (i >> 1);
- ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
- if (ret_val) {
- e_dbg("NVM Read Error\n");
- return ret_val;
- }
- hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
- hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
- }
+ for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
+ hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
- /* Flip last bit of mac address if we're on second port */
- if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1)
- hw->mac.perm_addr[5] ^= 1;
+ for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
+ hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
for (i = 0; i < ETH_ALEN; i++)
hw->mac.addr[i] = hw->mac.perm_addr[i];
@@ -2287,10 +2327,12 @@ bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
s32 ret_val, hdr_csum, csum;
u8 i, len;
+ hw->mac.tx_pkt_filtering = true;
+
/* No manageability, no filtering */
if (!e1000e_check_mng_mode(hw)) {
hw->mac.tx_pkt_filtering = false;
- return 0;
+ goto out;
}
/*
@@ -2298,9 +2340,9 @@ bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
* reason, disable filtering.
*/
ret_val = e1000_mng_enable_host_if(hw);
- if (ret_val != 0) {
+ if (ret_val) {
hw->mac.tx_pkt_filtering = false;
- return ret_val;
+ goto out;
}
/* Read in the header. Length and offset are in dwords. */
@@ -2319,17 +2361,17 @@ bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
*/
if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
hw->mac.tx_pkt_filtering = true;
- return 1;
+ goto out;
}
/* Cookie area is valid, make the final check for filtering. */
if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
hw->mac.tx_pkt_filtering = false;
- return 0;
+ goto out;
}
- hw->mac.tx_pkt_filtering = true;
- return 1;
+out:
+ return hw->mac.tx_pkt_filtering;
}
/**