diff options
Diffstat (limited to 'drivers/net')
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 9663 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.h | 2891 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_main.c | 12 |
3 files changed, 6337 insertions, 6229 deletions
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 076db19f69f..6aba8830440 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c @@ -24,13 +24,12 @@ e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 -*******************************************************************************/ + */ /* e1000_hw.c * Shared functions for accessing and configuring the MAC */ - #include "e1000_hw.h" static s32 e1000_check_downshift(struct e1000_hw *hw); @@ -69,12 +68,11 @@ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); -static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, - u16 count); +static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count); static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, - u16 words, u16 *data); + u16 words, u16 *data); static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); @@ -83,7 +81,7 @@ static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, u16 phy_data); -static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr, +static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data); static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); static s32 e1000_acquire_eeprom(struct e1000_hw *hw); @@ -92,159 +90,164 @@ static void e1000_standby_eeprom(struct e1000_hw *hw); static s32 e1000_set_vco_speed(struct e1000_hw *hw); static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); static s32 e1000_set_phy_mode(struct e1000_hw *hw); -static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); -static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); +static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); +static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data); /* IGP cable length table */ static const -u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = - { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, - 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, - 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, - 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, - 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, - 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, - 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, - 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; +u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = { + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, + 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, + 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, + 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, + 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, + 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, + 100, + 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, + 110, 110, + 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, + 120, 120 +}; static DEFINE_SPINLOCK(e1000_eeprom_lock); -/****************************************************************************** - * Set the phy type member in the hw struct. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ +/** + * e1000_set_phy_type - Set the phy type member in the hw struct. + * @hw: Struct containing variables accessed by shared code + */ static s32 e1000_set_phy_type(struct e1000_hw *hw) { - DEBUGFUNC("e1000_set_phy_type"); - - if (hw->mac_type == e1000_undefined) - return -E1000_ERR_PHY_TYPE; - - switch (hw->phy_id) { - case M88E1000_E_PHY_ID: - case M88E1000_I_PHY_ID: - case M88E1011_I_PHY_ID: - case M88E1111_I_PHY_ID: - hw->phy_type = e1000_phy_m88; - break; - case IGP01E1000_I_PHY_ID: - if (hw->mac_type == e1000_82541 || - hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547 || - hw->mac_type == e1000_82547_rev_2) { - hw->phy_type = e1000_phy_igp; - break; - } - default: - /* Should never have loaded on this device */ - hw->phy_type = e1000_phy_undefined; - return -E1000_ERR_PHY_TYPE; - } - - return E1000_SUCCESS; -} - -/****************************************************************************** - * IGP phy init script - initializes the GbE PHY - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ -static void e1000_phy_init_script(struct e1000_hw *hw) -{ - u32 ret_val; - u16 phy_saved_data; - - DEBUGFUNC("e1000_phy_init_script"); - - if (hw->phy_init_script) { - msleep(20); - - /* Save off the current value of register 0x2F5B to be restored at - * the end of this routine. */ - ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - /* Disabled the PHY transmitter */ - e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - - msleep(20); - - e1000_write_phy_reg(hw,0x0000,0x0140); - - msleep(5); - - switch (hw->mac_type) { - case e1000_82541: - case e1000_82547: - e1000_write_phy_reg(hw, 0x1F95, 0x0001); - - e1000_write_phy_reg(hw, 0x1F71, 0xBD21); - - e1000_write_phy_reg(hw, 0x1F79, 0x0018); + DEBUGFUNC("e1000_set_phy_type"); - e1000_write_phy_reg(hw, 0x1F30, 0x1600); + if (hw->mac_type == e1000_undefined) + return -E1000_ERR_PHY_TYPE; - e1000_write_phy_reg(hw, 0x1F31, 0x0014); - - e1000_write_phy_reg(hw, 0x1F32, 0x161C); - - e1000_write_phy_reg(hw, 0x1F94, 0x0003); - - e1000_write_phy_reg(hw, 0x1F96, 0x003F); - - e1000_write_phy_reg(hw, 0x2010, 0x0008); - break; - - case e1000_82541_rev_2: - case e1000_82547_rev_2: - e1000_write_phy_reg(hw, 0x1F73, 0x0099); - break; - default: - break; - } - - e1000_write_phy_reg(hw, 0x0000, 0x3300); - - msleep(20); - - /* Now enable the transmitter */ - e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (hw->mac_type == e1000_82547) { - u16 fused, fine, coarse; - - /* Move to analog registers page */ - e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); - - if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { - e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); + switch (hw->phy_id) { + case M88E1000_E_PHY_ID: + case M88E1000_I_PHY_ID: + case M88E1011_I_PHY_ID: + case M88E1111_I_PHY_ID: + hw->phy_type = e1000_phy_m88; + break; + case IGP01E1000_I_PHY_ID: + if (hw->mac_type == e1000_82541 || + hw->mac_type == e1000_82541_rev_2 || + hw->mac_type == e1000_82547 || + hw->mac_type == e1000_82547_rev_2) { + hw->phy_type = e1000_phy_igp; + break; + } + default: + /* Should never have loaded on this device */ + hw->phy_type = e1000_phy_undefined; + return -E1000_ERR_PHY_TYPE; + } - fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; - coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; + return E1000_SUCCESS; +} - if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { - coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; - fine -= IGP01E1000_ANALOG_FUSE_FINE_1; - } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) - fine -= IGP01E1000_ANALOG_FUSE_FINE_10; +/** + * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY + * @hw: Struct containing variables accessed by shared code + */ +static void e1000_phy_init_script(struct e1000_hw *hw) +{ + u32 ret_val; + u16 phy_saved_data; + + DEBUGFUNC("e1000_phy_init_script"); + + if (hw->phy_init_script) { + msleep(20); + + /* Save off the current value of register 0x2F5B to be restored at + * the end of this routine. */ + ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + /* Disabled the PHY transmitter */ + e1000_write_phy_reg(hw, 0x2F5B, 0x0003); + msleep(20); + + e1000_write_phy_reg(hw, 0x0000, 0x0140); + msleep(5); + + switch (hw->mac_type) { + case e1000_82541: + case e1000_82547: + e1000_write_phy_reg(hw, 0x1F95, 0x0001); + e1000_write_phy_reg(hw, 0x1F71, 0xBD21); + e1000_write_phy_reg(hw, 0x1F79, 0x0018); + e1000_write_phy_reg(hw, 0x1F30, 0x1600); + e1000_write_phy_reg(hw, 0x1F31, 0x0014); + e1000_write_phy_reg(hw, 0x1F32, 0x161C); + e1000_write_phy_reg(hw, 0x1F94, 0x0003); + e1000_write_phy_reg(hw, 0x1F96, 0x003F); + e1000_write_phy_reg(hw, 0x2010, 0x0008); + break; - fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | - (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | - (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); + case e1000_82541_rev_2: + case e1000_82547_rev_2: + e1000_write_phy_reg(hw, 0x1F73, 0x0099); + break; + default: + break; + } - e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); - e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, - IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); - } - } - } + e1000_write_phy_reg(hw, 0x0000, 0x3300); + msleep(20); + + /* Now enable the transmitter */ + e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (hw->mac_type == e1000_82547) { + u16 fused, fine, coarse; + + /* Move to analog registers page */ + e1000_read_phy_reg(hw, + IGP01E1000_ANALOG_SPARE_FUSE_STATUS, + &fused); + + if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { + e1000_read_phy_reg(hw, + IGP01E1000_ANALOG_FUSE_STATUS, + &fused); + + fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; + coarse = + fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; + + if (coarse > + IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { + coarse -= + IGP01E1000_ANALOG_FUSE_COARSE_10; + fine -= IGP01E1000_ANALOG_FUSE_FINE_1; + } else if (coarse == + IGP01E1000_ANALOG_FUSE_COARSE_THRESH) + fine -= IGP01E1000_ANALOG_FUSE_FINE_10; + + fused = + (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | + (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | + (coarse & + IGP01E1000_ANALOG_FUSE_COARSE_MASK); + + e1000_write_phy_reg(hw, + IGP01E1000_ANALOG_FUSE_CONTROL, + fused); + e1000_write_phy_reg(hw, + IGP01E1000_ANALOG_FUSE_BYPASS, + IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); + } + } + } } -/****************************************************************************** - * Set the mac type member in the hw struct. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ +/** + * e1000_set_mac_type - Set the mac type member in the hw struct. + * @hw: Struct containing variables accessed by shared code + */ s32 e1000_set_mac_type(struct e1000_hw *hw) { DEBUGFUNC("e1000_set_mac_type"); @@ -348,1801 +351,1850 @@ s32 e1000_set_mac_type(struct e1000_hw *hw) return E1000_SUCCESS; } -/***************************************************************************** - * Set media type and TBI compatibility. - * - * hw - Struct containing variables accessed by shared code - * **************************************************************************/ +/** + * e1000_set_media_type - Set media type and TBI compatibility. + * @hw: Struct containing variables accessed by shared code + */ void e1000_set_media_type(struct e1000_hw *hw) { - u32 status; - - DEBUGFUNC("e1000_set_media_type"); - - if (hw->mac_type != e1000_82543) { - /* tbi_compatibility is only valid on 82543 */ - hw->tbi_compatibility_en = false; - } - - switch (hw->device_id) { - case E1000_DEV_ID_82545GM_SERDES: - case E1000_DEV_ID_82546GB_SERDES: - hw->media_type = e1000_media_type_internal_serdes; - break; - default: - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - hw->media_type = e1000_media_type_fiber; - break; - default: - status = er32(STATUS); - if (status & E1000_STATUS_TBIMODE) { - hw->media_type = e1000_media_type_fiber; - /* tbi_compatibility not valid on fiber */ - hw->tbi_compatibility_en = false; - } else { - hw->media_type = e1000_media_type_copper; - } - break; - } - } + u32 status; + + DEBUGFUNC("e1000_set_media_type"); + + if (hw->mac_type != e1000_82543) { + /* tbi_compatibility is only valid on 82543 */ + hw->tbi_compatibility_en = false; + } + + switch (hw->device_id) { + case E1000_DEV_ID_82545GM_SERDES: + case E1000_DEV_ID_82546GB_SERDES: + hw->media_type = e1000_media_type_internal_serdes; + break; + default: + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + hw->media_type = e1000_media_type_fiber; + break; + default: + status = er32(STATUS); + if (status & E1000_STATUS_TBIMODE) { + hw->media_type = e1000_media_type_fiber; + /* tbi_compatibility not valid on fiber */ + hw->tbi_compatibility_en = false; + } else { + hw->media_type = e1000_media_type_copper; + } + break; + } + } } -/****************************************************************************** - * Reset the transmit and receive units; mask and clear all interrupts. +/** + * e1000_reset_hw: reset the hardware completely + * @hw: Struct containing variables accessed by shared code * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ + * Reset the transmit and receive units; mask and clear all interrupts. + */ s32 e1000_reset_hw(struct e1000_hw *hw) { - u32 ctrl; - u32 ctrl_ext; - u32 icr; - u32 manc; - u32 led_ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_reset_hw"); - - /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ - if (hw->mac_type == e1000_82542_rev2_0) { - DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); - e1000_pci_clear_mwi(hw); - } - - /* Clear interrupt mask to stop board from generating interrupts */ - DEBUGOUT("Masking off all interrupts\n"); - ew32(IMC, 0xffffffff); - - /* Disable the Transmit and Receive units. Then delay to allow - * any pending transactions to complete before we hit the MAC with - * the global reset. - */ - ew32(RCTL, 0); - ew32(TCTL, E1000_TCTL_PSP); - E1000_WRITE_FLUSH(); - - /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ - hw->tbi_compatibility_on = false; - - /* Delay to allow any outstanding PCI transactions to complete before - * resetting the device - */ - msleep(10); - - ctrl = er32(CTRL); - - /* Must reset the PHY before resetting the MAC */ - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); - msleep(5); - } - - /* Issue a global reset to the MAC. This will reset the chip's - * transmit, receive, DMA, and link units. It will not effect - * the current PCI configuration. The global reset bit is self- - * clearing, and should clear within a microsecond. - */ - DEBUGOUT("Issuing a global reset to MAC\n"); - - switch (hw->mac_type) { - case e1000_82544: - case e1000_82540: - case e1000_82545: - case e1000_82546: - case e1000_82541: - case e1000_82541_rev_2: - /* These controllers can't ack the 64-bit write when issuing the - * reset, so use IO-mapping as a workaround to issue the reset */ - E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); - break; - case e1000_82545_rev_3: - case e1000_82546_rev_3: - /* Reset is performed on a shadow of the control register */ - ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); - break; - default: - ew32(CTRL, (ctrl | E1000_CTRL_RST)); - break; - } - - /* After MAC reset, force reload of EEPROM to restore power-on settings to - * device. Later controllers reload the EEPROM automatically, so just wait - * for reload to complete. - */ - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - /* Wait for reset to complete */ - udelay(10); - ctrl_ext = er32(CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_EE_RST; - ew32(CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(); - /* Wait for EEPROM reload */ - msleep(2); - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - /* Wait for EEPROM reload */ - msleep(20); - break; - default: - /* Auto read done will delay 5ms or poll based on mac type */ - ret_val = e1000_get_auto_rd_done(hw); - if (ret_val) - return ret_val; - break; - } - - /* Disable HW ARPs on ASF enabled adapters */ - if (hw->mac_type >= e1000_82540) { - manc = er32(MANC); - manc &= ~(E1000_MANC_ARP_EN); - ew32(MANC, manc); - } - - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - e1000_phy_init_script(hw); - - /* Configure activity LED after PHY reset */ - led_ctrl = er32(LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - ew32(LEDCTL, led_ctrl); - } - - /* Clear interrupt mask to stop board from generating interrupts */ - DEBUGOUT("Masking off all interrupts\n"); - ew32(IMC, 0xffffffff); - - /* Clear any pending interrupt events. */ - icr = er32(ICR); - - /* If MWI was previously enabled, reenable it. */ - if (hw->mac_type == e1000_82542_rev2_0) { - if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) - e1000_pci_set_mwi(hw); - } - - return E1000_SUCCESS; + u32 ctrl; + u32 ctrl_ext; + u32 icr; + u32 manc; + u32 led_ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_reset_hw"); + + /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ + if (hw->mac_type == e1000_82542_rev2_0) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + e1000_pci_clear_mwi(hw); + } + + /* Clear interrupt mask to stop board from generating interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + ew32(IMC, 0xffffffff); + + /* Disable the Transmit and Receive units. Then delay to allow + * any pending transactions to complete before we hit the MAC with + * the global reset. + */ + ew32(RCTL, 0); + ew32(TCTL, E1000_TCTL_PSP); + E1000_WRITE_FLUSH(); + + /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ + hw->tbi_compatibility_on = false; + + /* Delay to allow any outstanding PCI transactions to complete before + * resetting the device + */ + msleep(10); + + ctrl = er32(CTRL); + + /* Must reset the PHY before resetting the MAC */ + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); + msleep(5); + } + + /* Issue a global reset to the MAC. This will reset the chip's + * transmit, receive, DMA, and link units. It will not effect + * the current PCI configuration. The global reset bit is self- + * clearing, and should clear within a microsecond. + */ + DEBUGOUT("Issuing a global reset to MAC\n"); + + switch (hw->mac_type) { + case e1000_82544: + case e1000_82540: + case e1000_82545: + case e1000_82546: + case e1000_82541: + case e1000_82541_rev_2: + /* These controllers can't ack the 64-bit write when issuing the + * reset, so use IO-mapping as a workaround to issue the reset */ + E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); + break; + case e1000_82545_rev_3: + case e1000_82546_rev_3: + /* Reset is performed on a shadow of the control register */ + ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); + break; + default: + ew32(CTRL, (ctrl | E1000_CTRL_RST)); + break; + } + + /* After MAC reset, force reload of EEPROM to restore power-on settings to + * device. Later controllers reload the EEPROM automatically, so just wait + * for reload to complete. + */ + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + /* Wait for reset to complete */ + udelay(10); + ctrl_ext = er32(CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + ew32(CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(); + /* Wait for EEPROM reload */ + msleep(2); + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + /* Wait for EEPROM reload */ + msleep(20); + break; + default: + /* Auto read done will delay 5ms or poll based on mac type */ + ret_val = e1000_get_auto_rd_done(hw); + if (ret_val) + return ret_val; + break; + } + + /* Disable HW ARPs on ASF enabled adapters */ + if (hw->mac_type >= e1000_82540) { + manc = er32(MANC); + manc &= ~(E1000_MANC_ARP_EN); + ew32(MANC, manc); + } + + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + e1000_phy_init_script(hw); + + /* Configure activity LED after PHY reset */ + led_ctrl = er32(LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + ew32(LEDCTL, led_ctrl); + } + + /* Clear interrupt mask to stop board from generating interrupts */ + DEBUGOUT("Masking off all interrupts\n"); + ew32(IMC, 0xffffffff); + + /* Clear any pending interrupt events. */ + icr = er32(ICR); + + /* If MWI was previously enabled, reenable it. */ + if (hw->mac_type == e1000_82542_rev2_0) { + if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + return E1000_SUCCESS; } -/****************************************************************************** - * Performs basic configuration of the adapter. - * - * hw - Struct containing variables accessed by shared code +/** + * e1000_init_hw: Performs basic configuration of the adapter. + * @hw: Struct containing variables accessed by shared code * * Assumes that the controller has previously been reset and is in a * post-reset uninitialized state. Initializes the receive address registers, * multicast table, and VLAN filter table. Calls routines to setup link * configuration and flow control settings. Clears all on-chip counters. Leaves * the transmit and receive units disabled and uninitialized. - *****************************************************************************/ + */ s32 e1000_init_hw(struct e1000_hw *hw) { - u32 ctrl; - u32 i; - s32 ret_val; - u32 mta_size; - u32 ctrl_ext; - - DEBUGFUNC("e1000_init_hw"); - - /* Initialize Identification LED */ - ret_val = e1000_id_led_init(hw); - if (ret_val) { - DEBUGOUT("Error Initializing Identification LED\n"); - return ret_val; - } - - /* Set the media type and TBI compatibility */ - e1000_set_media_type(hw); - - /* Disabling VLAN filtering. */ - DEBUGOUT("Initializing the IEEE VLAN\n"); - if (hw->mac_type < e1000_82545_rev_3) - ew32(VET, 0); - e1000_clear_vfta(hw); - - /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ - if (hw->mac_type == e1000_82542_rev2_0) { - DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); - e1000_pci_clear_mwi(hw); - ew32(RCTL, E1000_RCTL_RST); - E1000_WRITE_FLUSH(); - msleep(5); - } - - /* Setup the receive address. This involves initializing all of the Receive - * Address Registers (RARs 0 - 15). - */ - e1000_init_rx_addrs(hw); - - /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ - if (hw->mac_type == e1000_82542_rev2_0) { - ew32(RCTL, 0); - E1000_WRITE_FLUSH(); - msleep(1); - if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) - e1000_pci_set_mwi(hw); - } - - /* Zero out the Multicast HASH table */ - DEBUGOUT("Zeroing the MTA\n"); - mta_size = E1000_MC_TBL_SIZE; - for (i = 0; i < mta_size; i++) { - E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); - /* use write flush to prevent Memory Write Block (MWB) from - * occuring when accessing our register space */ - E1000_WRITE_FLUSH(); - } - - /* Set the PCI priority bit correctly in the CTRL register. This - * determines if the adapter gives priority to receives, or if it - * gives equal priority to transmits and receives. Valid only on - * 82542 and 82543 silicon. - */ - if (hw->dma_fairness && hw->mac_type <= e1000_82543) { - ctrl = er32(CTRL); - ew32(CTRL, ctrl | E1000_CTRL_PRIOR); - } - - switch (hw->mac_type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - break; - default: - /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ - if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048) - e1000_pcix_set_mmrbc(hw, 2048); - break; - } - - /* Call a subroutine to configure the link and setup flow control. */ - ret_val = e1000_setup_link(hw); - - /* Set the transmit descriptor write-back policy */ - if (hw->mac_type > e1000_82544) { - ctrl = er32(TXDCTL); - ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; - ew32(TXDCTL, ctrl); - } - - /* Clear all of the statistics registers (clear on read). It is - * important that we do this after we have tried to establish link - * because the symbol error count will increment wildly if there - * is no link. - */ - e1000_clear_hw_cntrs(hw); - - if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || - hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { - ctrl_ext = er32(CTRL_EXT); - /* Relaxed ordering must be disabled to avoid a parity - * error crash in a PCI slot. */ - ctrl_ext |= E1000_CTRL_EXT_RO_DIS; - ew32(CTRL_EXT, ctrl_ext); - } - - return ret_val; + u32 ctrl; + u32 i; + s32 ret_val; + u32 mta_size; + u32 ctrl_ext; + + DEBUGFUNC("e1000_init_hw"); + + /* Initialize Identification LED */ + ret_val = e1000_id_led_init(hw); + if (ret_val) { + DEBUGOUT("Error Initializing Identification LED\n"); + return ret_val; + } + + /* Set the media type and TBI compatibility */ + e1000_set_media_type(hw); + + /* Disabling VLAN filtering. */ + DEBUGOUT("Initializing the IEEE VLAN\n"); + if (hw->mac_type < e1000_82545_rev_3) + ew32(VET, 0); + e1000_clear_vfta(hw); + + /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ + if (hw->mac_type == e1000_82542_rev2_0) { + DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); + e1000_pci_clear_mwi(hw); + ew32(RCTL, E1000_RCTL_RST); + E1000_WRITE_FLUSH(); + msleep(5); + } + + /* Setup the receive address. This involves initializing all of the Receive + * Address Registers (RARs 0 - 15). + */ + e1000_init_rx_addrs(hw); + + /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ + if (hw->mac_type == e1000_82542_rev2_0) { + ew32(RCTL, 0); + E1000_WRITE_FLUSH(); + msleep(1); + if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) + e1000_pci_set_mwi(hw); + } + + /* Zero out the Multicast HASH table */ + DEBUGOUT("Zeroing the MTA\n"); + mta_size = E1000_MC_TBL_SIZE; + for (i = 0; i < mta_size; i++) { + E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + /* use write flush to prevent Memory Write Block (MWB) from + * occurring when accessing our register space */ + E1000_WRITE_FLUSH(); + } + + /* Set the PCI priority bit correctly in the CTRL register. This + * determines if the adapter gives priority to receives, or if it + * gives equal priority to transmits and receives. Valid only on + * 82542 and 82543 silicon. + */ + if (hw->dma_fairness && hw->mac_type <= e1000_82543) { + ctrl = er32(CTRL); + ew32(CTRL, ctrl | E1000_CTRL_PRIOR); + } + + switch (hw->mac_type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + break; + default: + /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ + if (hw->bus_type == e1000_bus_type_pcix + && e1000_pcix_get_mmrbc(hw) > 2048) + e1000_pcix_set_mmrbc(hw, 2048); + break; + } + + /* Call a subroutine to configure the link and setup flow control. */ + ret_val = e1000_setup_link(hw); + + /* Set the transmit descriptor write-back policy */ + if (hw->mac_type > e1000_82544) { + ctrl = er32(TXDCTL); + ctrl = + (ctrl & ~E1000_TXDCTL_WTHRESH) | + E1000_TXDCTL_FULL_TX_DESC_WB; + ew32(TXDCTL, ctrl); + } + + /* Clear all of the statistics registers (clear on read). It is + * important that we do this after we have tried to establish link + * because the symbol error count will increment wildly if there + * is no link. + */ + e1000_clear_hw_cntrs(hw); + + if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || + hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { + ctrl_ext = er32(CTRL_EXT); + /* Relaxed ordering must be disabled to avoid a parity + * error crash in a PCI slot. */ + ctrl_ext |= E1000_CTRL_EXT_RO_DIS; + ew32(CTRL_EXT, ctrl_ext); + } + + return ret_val; } -/****************************************************************************** - * Adjust SERDES output amplitude based on EEPROM setting. - * - * hw - Struct containing variables accessed by shared code. - *****************************************************************************/ +/** + * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting. + * @hw: Struct containing variables accessed by shared code. + */ static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) { - u16 eeprom_data; - s32 ret_val; - - DEBUGFUNC("e1000_adjust_serdes_amplitude"); - - if (hw->media_type != e1000_media_type_internal_serdes) - return E1000_SUCCESS; - - switch (hw->mac_type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - break; - default: - return E1000_SUCCESS; - } - - ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); - if (ret_val) { - return ret_val; - } - - if (eeprom_data != EEPROM_RESERVED_WORD) { - /* Adjust SERDES output amplitude only. */ - eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; + u16 eeprom_data; + s32 ret_val; + + DEBUGFUNC("e1000_adjust_serdes_amplitude"); + + if (hw->media_type != e1000_media_type_internal_serdes) + return E1000_SUCCESS; + + switch (hw->mac_type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + break; + default: + return E1000_SUCCESS; + } + + ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, + &eeprom_data); + if (ret_val) { + return ret_val; + } + + if (eeprom_data != EEPROM_RESERVED_WORD) { + /* Adjust SERDES output amplitude only. */ + eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; } -/****************************************************************************** - * Configures flow control and link settings. - * - * hw - Struct containing variables accessed by shared code +/** + * e1000_setup_link - Configures flow control and link settings. + * @hw: Struct containing variables accessed by shared code * - * Determines which flow control settings to use. Calls the apropriate media- + * Determines which flow control settings to use. Calls the appropriate media- * specific link configuration function. Configures the flow control settings. * Assuming the adapter has a valid link partner, a valid link should be * established. Assumes the hardware has previously been reset and the * transmitter and receiver are not enabled. - *****************************************************************************/ + */ s32 e1000_setup_link(struct e1000_hw *hw) { - u32 ctrl_ext; - s32 ret_val; - u16 eeprom_data; - - DEBUGFUNC("e1000_setup_link"); - - /* Read and store word 0x0F of the EEPROM. This word contains bits - * that determine the hardware's default PAUSE (flow control) mode, - * a bit that determines whether the HW defaults to enabling or - * disabling auto-negotiation, and the direction of the - * SW defined pins. If there is no SW over-ride of the flow - * control setting, then the variable hw->fc will - * be initialized based on a value in the EEPROM. - */ - if (hw->fc == E1000_FC_DEFAULT) { - ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, - 1, &eeprom_data); - if (ret_val) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) - hw->fc = E1000_FC_NONE; - else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == - EEPROM_WORD0F_ASM_DIR) - hw->fc = E1000_FC_TX_PAUSE; - else - hw->fc = E1000_FC_FULL; - } - - /* We want to save off the original Flow Control configuration just - * in case we get disconnected and then reconnected into a different - * hub or switch with different Flow Control capabilities. - */ - if (hw->mac_type == e1000_82542_rev2_0) - hw->fc &= (~E1000_FC_TX_PAUSE); - - if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) - hw->fc &= (~E1000_FC_RX_PAUSE); - - hw->original_fc = hw->fc; - - DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); - - /* Take the 4 bits from EEPROM word 0x0F that determine the initial - * polarity value for the SW controlled pins, and setup the - * Extended Device Control reg with that info. - * This is needed because one of the SW controlled pins is used for - * signal detection. So this should be done before e1000_setup_pcs_link() - * or e1000_phy_setup() is called. - */ - if (hw->mac_type == e1000_82543) { - ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, - 1, &eeprom_data); - if (ret_val) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << - SWDPIO__EXT_SHIFT); - ew32(CTRL_EXT, ctrl_ext); - } - - /* Call the necessary subroutine to configure the link. */ - ret_val = (hw->media_type == e1000_media_type_copper) ? - e1000_setup_copper_link(hw) : - e1000_setup_fiber_serdes_link(hw); - - /* Initialize the flow control address, type, and PAUSE timer - * registers to their default values. This is done even if flow - * control is disabled, because it does not hurt anything to - * initialize these registers. - */ - DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); - - ew32(FCT, FLOW_CONTROL_TYPE); - ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); - ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); - - ew32(FCTTV, hw->fc_pause_time); - - /* Set the flow control receive threshold registers. Normally, - * these registers will be set to a default threshold that may be - * adjusted later by the driver's runtime code. However, if the - * ability to transmit pause frames in not enabled, then these - * registers will be set to 0. - */ - if (!(hw->fc & E1000_FC_TX_PAUSE)) { - ew32(FCRTL, 0); - ew32(FCRTH, 0); - } else { - /* We need to set up the Receive Threshold high and low water marks - * as well as (optionally) enabling the transmission of XON frames. - */ - if (hw->fc_send_xon) { - ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); - ew32(FCRTH, hw->fc_high_water); - } else { - ew32(FCRTL, hw->fc_low_water); - ew32(FCRTH, hw->fc_high_water); - } - } - return ret_val; + u32 ctrl_ext; + s32 ret_val; + u16 eeprom_data; + + DEBUGFUNC("e1000_setup_link"); + + /* Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + if (hw->fc == E1000_FC_DEFAULT) { + ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, + 1, &eeprom_data); + if (ret_val) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) + hw->fc = E1000_FC_NONE; + else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == + EEPROM_WORD0F_ASM_DIR) + hw->fc = E1000_FC_TX_PAUSE; + else + hw->fc = E1000_FC_FULL; + } + + /* We want to save off the original Flow Control configuration just + * in case we get disconnected and then reconnected into a different + * hub or switch with different Flow Control capabilities. + */ + if (hw->mac_type == e1000_82542_rev2_0) + hw->fc &= (~E1000_FC_TX_PAUSE); + + if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) + hw->fc &= (~E1000_FC_RX_PAUSE); + + hw->original_fc = hw->fc; + + DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); + + /* Take the 4 bits from EEPROM word 0x0F that determine the initial + * polarity value for the SW controlled pins, and setup the + * Extended Device Control reg with that info. + * This is needed because one of the SW controlled pins is used for + * signal detection. So this should be done before e1000_setup_pcs_link() + * or e1000_phy_setup() is called. + */ + if (hw->mac_type == e1000_82543) { + ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, + 1, &eeprom_data); + if (ret_val) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << + SWDPIO__EXT_SHIFT); + ew32(CTRL_EXT, ctrl_ext); + } + + /* Call the necessary subroutine to configure the link. */ + ret_val = (hw->media_type == e1000_media_type_copper) ? + e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw); + + /* Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + DEBUGOUT + ("Initializing the Flow Control address, type and timer regs\n"); + + ew32(FCT, FLOW_CONTROL_TYPE); + ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); + ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); + + ew32(FCTTV, hw->fc_pause_time); + + /* Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames in not enabled, then these + * registers will be set to 0. + */ + if (!(hw->fc & E1000_FC_TX_PAUSE)) { + ew32(FCRTL, 0); + ew32(FCRTH, 0); + } else { + /* We need to set up the Receive Threshold high and low water marks + * as well as (optionally) enabling the transmission of XON frames. + */ + if (hw->fc_send_xon) { + ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); + ew32(FCRTH, hw->fc_high_water); + } else { + ew32(FCRTL, hw->fc_low_water); + ew32(FCRTH, hw->fc_high_water); + } + } + return ret_val; } -/****************************************************************************** - * Sets up link for a fiber based or serdes based adapter - * - * hw - Struct containing variables accessed by shared code +/** + * e1000_setup_fiber_serdes_link - prepare fiber or serdes link + * @hw: Struct containing variables accessed by shared code * * Manipulates Physical Coding Sublayer functions in order to configure * link. Assumes the hardware has been previously reset and the transmitter * and receiver are not enabled. - *****************************************************************************/ + */ static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) { - u32 ctrl; - u32 status; - u32 txcw = 0; - u32 i; - u32 signal = 0; - s32 ret_val; - - DEBUGFUNC("e1000_setup_fiber_serdes_link"); - - /* On adapters with a MAC newer than 82544, SWDP 1 will be - * set when the optics detect a signal. On older adapters, it will be - * cleared when there is a signal. This applies to fiber media only. - * If we're on serdes media, adjust the output amplitude to value - * set in the EEPROM. - */ - ctrl = er32(CTRL); - if (hw->media_type == e1000_media_type_fiber) - signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; - - ret_val = e1000_adjust_serdes_amplitude(hw); - if (ret_val) - return ret_val; - - /* Take the link out of reset */ - ctrl &= ~(E1000_CTRL_LRST); - - /* Adjust VCO speed to improve BER performance */ - ret_val = e1000_set_vco_speed(hw); - if (ret_val) - return ret_val; - - e1000_config_collision_dist(hw); - - /* Check for a software override of the flow control settings, and setup - * the device accordingly. If auto-negotiation is enabled, then software - * will have to set the "PAUSE" bits to the correct value in the Tranmsit - * Config Word Register (TXCW) and re-start auto-negotiation. However, if - * auto-negotiation is disabled, then software will have to manually - * configure the two flow control enable bits in the CTRL register. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames, but - * not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames but we do - * not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - */ - switch (hw->fc) { - case E1000_FC_NONE: - /* Flow control is completely disabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); - break; - case E1000_FC_RX_PAUSE: - /* RX Flow control is enabled and TX Flow control is disabled by a - * software over-ride. Since there really isn't a way to advertise - * that we are capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later, we will - * disable the adapter's ability to send PAUSE frames. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - case E1000_FC_TX_PAUSE: - /* TX Flow control is enabled, and RX Flow control is disabled, by a - * software over-ride. - */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); - break; - case E1000_FC_FULL: - /* Flow control (both RX and TX) is enabled by a software over-ride. */ - txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - break; - } - - /* Since auto-negotiation is enabled, take the link out of reset (the link - * will be in reset, because we previously reset the chip). This will - * restart auto-negotiation. If auto-neogtiation is successful then the - * link-up status bit will be set and the flow control enable bits (RFCE - * and TFCE) will be set according to their negotiated value. - */ - DEBUGOUT("Auto-negotiation enabled\n"); - - ew32(TXCW, txcw); - ew32(CTRL, ctrl); - E1000_WRITE_FLUSH(); - - hw->txcw = txcw; - msleep(1); - - /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" - * indication in the Device Status Register. Time-out if a link isn't - * seen in 500 milliseconds seconds (Auto-negotiation should complete in - * less than 500 milliseconds even if the other end is doing it in SW). - * For internal serdes, we just assume a signal is present, then poll. - */ - if (hw->media_type == e1000_media_type_internal_serdes || - (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { - DEBUGOUT("Looking for Link\n"); - for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { - msleep(10); - status = er32(STATUS); - if (status & E1000_STATUS_LU) break; - } - if (i == (LINK_UP_TIMEOUT / 10)) { - DEBUGOUT("Never got a valid link from auto-neg!!!\n"); - hw->autoneg_failed = 1; - /* AutoNeg failed to achieve a link, so we'll call - * e1000_check_for_link. This routine will force the link up if - * we detect a signal. This will allow us to communicate with - * non-autonegotiating link partners. - */ - ret_val = e1000_check_for_link(hw); - if (ret_val) { - DEBUGOUT("Error while checking for link\n"); - return ret_val; - } - hw->autoneg_failed = 0; - } else { - hw->autoneg_failed = 0; - DEBUGOUT("Valid Link Found\n"); - } - } else { - DEBUGOUT("No Signal Detected\n"); - } - return E1000_SUCCESS; + u32 ctrl; + u32 status; + u32 txcw = 0; + u32 i; + u32 signal = 0; + s32 ret_val; + + DEBUGFUNC("e1000_setup_fiber_serdes_link"); + + /* On adapters with a MAC newer than 82544, SWDP 1 will be + * set when the optics detect a signal. On older adapters, it will be + * cleared when there is a signal. This applies to fiber media only. + * If we're on serdes media, adjust the output amplitude to value + * set in the EEPROM. + */ + ctrl = er32(CTRL); + if (hw->media_type == e1000_media_type_fiber) + signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; + + ret_val = e1000_adjust_serdes_amplitude(hw); + if (ret_val) + return ret_val; + + /* Take the link out of reset */ + ctrl &= ~(E1000_CTRL_LRST); + + /* Adjust VCO speed to improve BER performance */ + ret_val = e1000_set_vco_speed(hw); + if (ret_val) + return ret_val; + + e1000_config_collision_dist(hw); + + /* Check for a software override of the flow control settings, and setup + * the device accordingly. If auto-negotiation is enabled, then software + * will have to set the "PAUSE" bits to the correct value in the Tranmsit + * Config Word Register (TXCW) and re-start auto-negotiation. However, if + * auto-negotiation is disabled, then software will have to manually + * configure the two flow control enable bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, but + * not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we do + * not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + */ + switch (hw->fc) { + case E1000_FC_NONE: + /* Flow control is completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case E1000_FC_RX_PAUSE: + /* RX Flow control is enabled and TX Flow control is disabled by a + * software over-ride. Since there really isn't a way to advertise + * that we are capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later, we will + * disable the adapter's ability to send PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case E1000_FC_TX_PAUSE: + /* TX Flow control is enabled, and RX Flow control is disabled, by a + * software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case E1000_FC_FULL: + /* Flow control (both RX and TX) is enabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + + /* Since auto-negotiation is enabled, take the link out of reset (the link + * will be in reset, because we previously reset the chip). This will + * restart auto-negotiation. If auto-negotiation is successful then the + * link-up status bit will be set and the flow control enable bits (RFCE + * and TFCE) will be set according to their negotiated value. + */ + DEBUGOUT("Auto-negotiation enabled\n"); + + ew32(TXCW, txcw); + ew32(CTRL, ctrl); + E1000_WRITE_FLUSH(); + + hw->txcw = txcw; + msleep(1); + + /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" + * indication in the Device Status Register. Time-out if a link isn't + * seen in 500 milliseconds seconds (Auto-negotiation should complete in + * less than 500 milliseconds even if the other end is doing it in SW). + * For internal serdes, we just assume a signal is present, then poll. + */ + if (hw->media_type == e1000_media_type_internal_serdes || + (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { + DEBUGOUT("Looking for Link\n"); + for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { + msleep(10); + status = er32(STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == (LINK_UP_TIMEOUT / 10)) { + DEBUGOUT("Never got a valid link from auto-neg!!!\n"); + hw->autoneg_failed = 1; + /* AutoNeg failed to achieve a link, so we'll call + * e1000_check_for_link. This routine will force the link up if + * we detect a signal. This will allow us to communicate with + * non-autonegotiating link partners. + */ + ret_val = e1000_check_for_link(hw); + if (ret_val) { + DEBUGOUT("Error while checking for link\n"); + return ret_val; + } + hw->autoneg_failed = 0; + } else { + hw->autoneg_failed = 0; + DEBUGOUT("Valid Link Found\n"); + } + } else { + DEBUGOUT("No Signal Detected\n"); + } + return E1000_SUCCESS; } -/****************************************************************************** -* Make sure we have a valid PHY and change PHY mode before link setup. -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ +/** + * e1000_copper_link_preconfig - early configuration for copper + * @hw: Struct containing variables accessed by shared code + * + * Make sure we have a valid PHY and change PHY mode before link setup. + */ static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) { - u32 ctrl; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_preconfig"); - - ctrl = er32(CTRL); - /* With 82543, we need to force speed and duplex on the MAC equal to what - * the PHY speed and duplex configuration is. In addition, we need to - * perform a hardware reset on the PHY to take it out of reset. - */ - if (hw->mac_type > e1000_82543) { - ctrl |= E1000_CTRL_SLU; - ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ew32(CTRL, ctrl); - } else { - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); - ew32(CTRL, ctrl); - ret_val = e1000_phy_hw_reset(hw); - if (ret_val) - return ret_val; - } - - /* Make sure we have a valid PHY */ - ret_val = e1000_detect_gig_phy(hw); - if (ret_val) { - DEBUGOUT("Error, did not detect valid phy.\n"); - return ret_val; - } - DEBUGOUT1("Phy ID = %x \n", hw->phy_id); - - /* Set PHY to class A mode (if necessary) */ - ret_val = e1000_set_phy_mode(hw); - if (ret_val) - return ret_val; - - if ((hw->mac_type == e1000_82545_rev_3) || - (hw->mac_type == e1000_82546_rev_3)) { - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - phy_data |= 0x00000008; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - } - - if (hw->mac_type <= e1000_82543 || - hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || - hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) - hw->phy_reset_disable = false; - - return E1000_SUCCESS; -} + u32 ctrl; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_preconfig"); + + ctrl = er32(CTRL); + /* With 82543, we need to force speed and duplex on the MAC equal to what + * the PHY speed and duplex configuration is. In addition, we need to + * perform a hardware reset on the PHY to take it out of reset. + */ + if (hw->mac_type > e1000_82543) { + ctrl |= E1000_CTRL_SLU; + ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ew32(CTRL, ctrl); + } else { + ctrl |= + (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); + ew32(CTRL, ctrl); + ret_val = e1000_phy_hw_reset(hw); + if (ret_val) + return ret_val; + } + /* Make sure we have a valid PHY */ + ret_val = e1000_detect_gig_phy(hw); + if (ret_val) { + DEBUGOUT("Error, did not detect valid phy.\n"); + return ret_val; + } + DEBUGOUT1("Phy ID = %x \n", hw->phy_id); + + /* Set PHY to class A mode (if necessary) */ + ret_val = e1000_set_phy_mode(hw); + if (ret_val) + return ret_val; + + if ((hw->mac_type == e1000_82545_rev_3) || + (hw->mac_type == e1000_82546_rev_3)) { + ret_val = + e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + phy_data |= 0x00000008; + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + } + + if (hw->mac_type <= e1000_82543 || + hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || + hw->mac_type == e1000_82541_rev_2 + || hw->mac_type == e1000_82547_rev_2) + hw->phy_reset_disable = false; + + return E1000_SUCCESS; +} -/******************************************************************** -* Copper link setup for e1000_phy_igp series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ +/** + * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series. + * @hw: Struct containing variables accessed by shared code + */ static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) { - u32 led_ctrl; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_igp_setup"); - - if (hw->phy_reset_disable) - return E1000_SUCCESS; - - ret_val = e1000_phy_reset(hw); - if (ret_val) { - DEBUGOUT("Error Resetting the PHY\n"); - return ret_val; - } - - /* Wait 15ms for MAC to configure PHY from eeprom settings */ - msleep(15); - /* Configure activity LED after PHY reset */ - led_ctrl = er32(LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - ew32(LEDCTL, led_ctrl); - - /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ - if (hw->phy_type == e1000_phy_igp) { - /* disable lplu d3 during driver init */ - ret_val = e1000_set_d3_lplu_state(hw, false); - if (ret_val) { - DEBUGOUT("Error Disabling LPLU D3\n"); - return ret_val; - } - } - - /* Configure mdi-mdix settings */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - hw->dsp_config_state = e1000_dsp_config_disabled; - /* Force MDI for earlier revs of the IGP PHY */ - phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); - hw->mdix = 1; - - } else { - hw->dsp_config_state = e1000_dsp_config_enabled; - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - - switch (hw->mdix) { - case 1: - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 2: - phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; - break; - case 0: - default: - phy_data |= IGP01E1000_PSCR_AUTO_MDIX; - break; - } - } - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* set auto-master slave resolution settings */ - if (hw->autoneg) { - e1000_ms_type phy_ms_setting = hw->master_slave; - - if (hw->ffe_config_state == e1000_ffe_config_active) - hw->ffe_config_state = e1000_ffe_config_enabled; - - if (hw->dsp_config_state == e1000_dsp_config_activated) - hw->dsp_config_state = e1000_dsp_config_enabled; - - /* when autonegotiation advertisment is only 1000Mbps then we - * should disable SmartSpeed and enable Auto MasterSlave - * resolution as hardware default. */ - if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { - /* Disable SmartSpeed */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - /* Set auto Master/Slave resolution process */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) - return ret_val; - phy_data &= ~CR_1000T_MS_ENABLE; - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* load defaults for future use */ - hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? - ((phy_data & CR_1000T_MS_VALUE) ? - e1000_ms_force_master : - e1000_ms_force_slave) : - e1000_ms_auto; - - switch (phy_ms_setting) { - case e1000_ms_force_master: - phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); - break; - case e1000_ms_force_slave: - phy_data |= CR_1000T_MS_ENABLE; - phy_data &= ~(CR_1000T_MS_VALUE); - break; - case e1000_ms_auto: - phy_data &= ~CR_1000T_MS_ENABLE; - default: - break; - } - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - return E1000_SUCCESS; + u32 led_ctrl; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_igp_setup"); + + if (hw->phy_reset_disable) + return E1000_SUCCESS; + + ret_val = e1000_phy_reset(hw); + if (ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + + /* Wait 15ms for MAC to configure PHY from eeprom settings */ + msleep(15); + /* Configure activity LED after PHY reset */ + led_ctrl = er32(LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + ew32(LEDCTL, led_ctrl); + + /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ + if (hw->phy_type == e1000_phy_igp) { + /* disable lplu d3 during driver init */ + ret_val = e1000_set_d3_lplu_state(hw, false); + if (ret_val) { + DEBUGOUT("Error Disabling LPLU D3\n"); + return ret_val; + } + } + + /* Configure mdi-mdix settings */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + hw->dsp_config_state = e1000_dsp_config_disabled; + /* Force MDI for earlier revs of the IGP PHY */ + phy_data &= + ~(IGP01E1000_PSCR_AUTO_MDIX | + IGP01E1000_PSCR_FORCE_MDI_MDIX); + hw->mdix = 1; + + } else { + hw->dsp_config_state = e1000_dsp_config_enabled; + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + + switch (hw->mdix) { + case 1: + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 2: + phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; + break; + case 0: + default: + phy_data |= IGP01E1000_PSCR_AUTO_MDIX; + break; + } + } + ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* set auto-master slave resolution settings */ + if (hw->autoneg) { + e1000_ms_type phy_ms_setting = hw->master_slave; + + if (hw->ffe_config_state == e1000_ffe_config_active) + hw->ffe_config_state = e1000_ffe_config_enabled; + + if (hw->dsp_config_state == e1000_dsp_config_activated) + hw->dsp_config_state = e1000_dsp_config_enabled; + + /* when autonegotiation advertisement is only 1000Mbps then we + * should disable SmartSpeed and enable Auto MasterSlave + * resolution as hardware default. */ + if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { + /* Disable SmartSpeed */ + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + /* Set auto Master/Slave resolution process */ + ret_val = + e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; + phy_data &= ~CR_1000T_MS_ENABLE; + ret_val = + e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); + if (ret_val) + return ret_val; + } + + ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* load defaults for future use */ + hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? + ((phy_data & CR_1000T_MS_VALUE) ? + e1000_ms_force_master : + e1000_ms_force_slave) : e1000_ms_auto; + + switch (phy_ms_setting) { + case e1000_ms_force_master: + phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); + break; + case e1000_ms_force_slave: + phy_data |= CR_1000T_MS_ENABLE; + phy_data &= ~(CR_1000T_MS_VALUE); + break; + case e1000_ms_auto: + phy_data &= ~CR_1000T_MS_ENABLE; + default: + break; + } + ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); + if (ret_val) + return ret_val; + } + + return E1000_SUCCESS; } -/******************************************************************** -* Copper link setup for e1000_phy_m88 series. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ +/** + * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series. + * @hw: Struct containing variables accessed by shared code + */ static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) { - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_mgp_setup"); - - if (hw->phy_reset_disable) - return E1000_SUCCESS; - - /* Enable CRS on TX. This must be set for half-duplex operation. */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - - /* Options: - * MDI/MDI-X = 0 (default) - * 0 - Auto for all speeds - * 1 - MDI mode - * 2 - MDI-X mode - * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - - switch (hw->mdix) { - case 1: - phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; - break; - case 2: - phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; - break; - case 3: - phy_data |= M88E1000_PSCR_AUTO_X_1000T; - break; - case 0: - default: - phy_data |= M88E1000_PSCR_AUTO_X_MODE; - break; - } - - /* Options: - * disable_polarity_correction = 0 (default) - * Automatic Correction for Reversed Cable Polarity - * 0 - Disabled - * 1 - Enabled - */ - phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; - if (hw->disable_polarity_correction == 1) - phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if (hw->phy_revision < M88E1011_I_REV_4) { - /* Force TX_CLK in the Extended PHY Specific Control Register - * to 25MHz clock. - */ - ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - - if ((hw->phy_revision == E1000_REVISION_2) && - (hw->phy_id == M88E1111_I_PHY_ID)) { - /* Vidalia Phy, set the downshift counter to 5x */ - phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); - phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; - ret_val = e1000_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } else { - /* Configure Master and Slave downshift values */ - phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); - phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | - M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); - ret_val = e1000_write_phy_reg(hw, - M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - } - } - - /* SW Reset the PHY so all changes take effect */ - ret_val = e1000_phy_reset(hw); - if (ret_val) { - DEBUGOUT("Error Resetting the PHY\n"); - return ret_val; - } - - return E1000_SUCCESS; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_mgp_setup"); + + if (hw->phy_reset_disable) + return E1000_SUCCESS; + + /* Enable CRS on TX. This must be set for half-duplex operation. */ + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + + /* Options: + * MDI/MDI-X = 0 (default) + * 0 - Auto for all speeds + * 1 - MDI mode + * 2 - MDI-X mode + * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + + switch (hw->mdix) { + case 1: + phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; + break; + case 2: + phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; + break; + case 3: + phy_data |= M88E1000_PSCR_AUTO_X_1000T; + break; + case 0: + default: + phy_data |= M88E1000_PSCR_AUTO_X_MODE; + break; + } + + /* Options: + * disable_polarity_correction = 0 (default) + * Automatic Correction for Reversed Cable Polarity + * 0 - Disabled + * 1 - Enabled + */ + phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; + if (hw->disable_polarity_correction == 1) + phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if (hw->phy_revision < M88E1011_I_REV_4) { + /* Force TX_CLK in the Extended PHY Specific Control Register + * to 25MHz clock. + */ + ret_val = + e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + + if ((hw->phy_revision == E1000_REVISION_2) && + (hw->phy_id == M88E1111_I_PHY_ID)) { + /* Vidalia Phy, set the downshift counter to 5x */ + phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); + phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; + ret_val = e1000_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } else { + /* Configure Master and Slave downshift values */ + phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); + phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | + M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); + ret_val = e1000_write_phy_reg(hw, + M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + } + } + + /* SW Reset the PHY so all changes take effect */ + ret_val = e1000_phy_reset(hw); + if (ret_val) { + DEBUGOUT("Error Resetting the PHY\n"); + return ret_val; + } + + return E1000_SUCCESS; } -/******************************************************************** -* Setup auto-negotiation and flow control advertisements, -* and then perform auto-negotiation. -* -* hw - Struct containing variables accessed by shared code -*********************************************************************/ +/** + * e1000_copper_link_autoneg - setup auto-neg + * @hw: Struct containing variables accessed by shared code + * + * Setup auto-negotiation and flow control advertisements, + * and then perform auto-negotiation. + */ static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) { - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_copper_link_autoneg"); - - /* Perform some bounds checking on the hw->autoneg_advertised - * parameter. If this variable is zero, then set it to the default. - */ - hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; - - /* If autoneg_advertised is zero, we assume it was not defaulted - * by the calling code so we set to advertise full capability. - */ - if (hw->autoneg_advertised == 0) - hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; - - DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); - ret_val = e1000_phy_setup_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error Setting up Auto-Negotiation\n"); - return ret_val; - } - DEBUGOUT("Restarting Auto-Neg\n"); - - /* Restart auto-negotiation by setting the Auto Neg Enable bit and - * the Auto Neg Restart bit in the PHY control register. - */ - ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); - ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* Does the user want to wait for Auto-Neg to complete here, or - * check at a later time (for example, callback routine). - */ - if (hw->wait_autoneg_complete) { - ret_val = e1000_wait_autoneg(hw); - if (ret_val) { - DEBUGOUT("Error while waiting for autoneg to complete\n"); - return ret_val; - } - } - - hw->get_link_status = true; - - return E1000_SUCCESS; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_copper_link_autoneg"); + + /* Perform some bounds checking on the hw->autoneg_advertised + * parameter. If this variable is zero, then set it to the default. + */ + hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; + + /* If autoneg_advertised is zero, we assume it was not defaulted + * by the calling code so we set to advertise full capability. + */ + if (hw->autoneg_advertised == 0) + hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; + + DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); + ret_val = e1000_phy_setup_autoneg(hw); + if (ret_val) { + DEBUGOUT("Error Setting up Auto-Negotiation\n"); + return ret_val; + } + DEBUGOUT("Restarting Auto-Neg\n"); + + /* Restart auto-negotiation by setting the Auto Neg Enable bit and + * the Auto Neg Restart bit in the PHY control register. + */ + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + + /* Does the user want to wait for Auto-Neg to complete here, or + * check at a later time (for example, callback routine). + */ + if (hw->wait_autoneg_complete) { + ret_val = e1000_wait_autoneg(hw); + if (ret_val) { + DEBUGOUT + ("Error while waiting for autoneg to complete\n"); + return ret_val; + } + } + + hw->get_link_status = true; + + return E1000_SUCCESS; } -/****************************************************************************** -* Config the MAC and the PHY after link is up. -* 1) Set up the MAC to the current PHY speed/duplex -* if we are on 82543. If we -* are on newer silicon, we only need to configure -* collision distance in the Transmit Control Register. -* 2) Set up flow control on the MAC to that established with -* the link partner. -* 3) Config DSP to improve Gigabit link quality for some PHY revisions. -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ +/** + * e1000_copper_link_postconfig - post link setup + * @hw: Struct containing variables accessed by shared code + * + * Config the MAC and the PHY after link is up. + * 1) Set up the MAC to the current PHY speed/duplex + * if we are on 82543. If we + * are on newer silicon, we only need to configure + * collision distance in the Transmit Control Register. + * 2) Set up flow control on the MAC to that established with + * the link partner. + * 3) Config DSP to improve Gigabit link quality for some PHY revisions. + */ static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) { - s32 ret_val; - DEBUGFUNC("e1000_copper_link_postconfig"); - - if (hw->mac_type >= e1000_82544) { - e1000_config_collision_dist(hw); - } else { - ret_val = e1000_config_mac_to_phy(hw); - if (ret_val) { - DEBUGOUT("Error configuring MAC to PHY settings\n"); - return ret_val; - } - } - ret_val = e1000_config_fc_after_link_up(hw); - if (ret_val) { - DEBUGOUT("Error Configuring Flow Control\n"); - return ret_val; - } - - /* Config DSP to improve Giga link quality */ - if (hw->phy_type == e1000_phy_igp) { - ret_val = e1000_config_dsp_after_link_change(hw, true); - if (ret_val) { - DEBUGOUT("Error Configuring DSP after link up\n"); - return ret_val; - } - } - - return E1000_SUCCESS; + s32 ret_val; + DEBUGFUNC("e1000_copper_link_postconfig"); + + if (hw->mac_type >= e1000_82544) { + e1000_config_collision_dist(hw); + } else { + ret_val = e1000_config_mac_to_phy(hw); + if (ret_val) { + DEBUGOUT("Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + ret_val = e1000_config_fc_after_link_up(hw); + if (ret_val) { + DEBUGOUT("Error Configuring Flow Control\n"); + return ret_val; + } + + /* Config DSP to improve Giga link quality */ + if (hw->phy_type == e1000_phy_igp) { + ret_val = e1000_config_dsp_after_link_change(hw, true); + if (ret_val) { + DEBUGOUT("Error Configuring DSP after link up\n"); + return ret_val; + } + } + + return E1000_SUCCESS; } -/****************************************************************************** -* Detects which PHY is present and setup the speed and duplex -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ +/** + * e1000_setup_copper_link - phy/speed/duplex setting + * @hw: Struct containing variables accessed by shared code + * + * Detects which PHY is present and sets up the speed and duplex + */ static s32 e1000_setup_copper_link(struct e1000_hw *hw) { - s32 ret_val; - u16 i; - u16 phy_data; - - DEBUGFUNC("e1000_setup_copper_link"); - - /* Check if it is a valid PHY and set PHY mode if necessary. */ - ret_val = e1000_copper_link_preconfig(hw); - if (ret_val) - return ret_val; - - if (hw->phy_type == e1000_phy_igp) { - ret_val = e1000_copper_link_igp_setup(hw); - if (ret_val) - return ret_val; - } else if (hw->phy_type == e1000_phy_m88) { - ret_val = e1000_copper_link_mgp_setup(hw); - if (ret_val) - return ret_val; - } - - if (hw->autoneg) { - /* Setup autoneg and flow control advertisement - * and perform autonegotiation */ - ret_val = e1000_copper_link_autoneg(hw); - if (ret_val) - return ret_val; - } else { - /* PHY will be set to 10H, 10F, 100H,or 100F - * depending on value from forced_speed_duplex. */ - DEBUGOUT("Forcing speed and duplex\n"); - ret_val = e1000_phy_force_speed_duplex(hw); - if (ret_val) { - DEBUGOUT("Error Forcing Speed and Duplex\n"); - return ret_val; - } - } - - /* Check link status. Wait up to 100 microseconds for link to become - * valid. - */ - for (i = 0; i < 10; i++) { - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & MII_SR_LINK_STATUS) { - /* Config the MAC and PHY after link is up */ - ret_val = e1000_copper_link_postconfig(hw); - if (ret_val) - return ret_val; - - DEBUGOUT("Valid link established!!!\n"); - return E1000_SUCCESS; - } - udelay(10); - } - - DEBUGOUT("Unable to establish link!!!\n"); - return E1000_SUCCESS; + s32 ret_val; + u16 i; + u16 phy_data; + + DEBUGFUNC("e1000_setup_copper_link"); + + /* Check if it is a valid PHY and set PHY mode if necessary. */ + ret_val = e1000_copper_link_preconfig(hw); + if (ret_val) + return ret_val; + + if (hw->phy_type == e1000_phy_igp) { + ret_val = e1000_copper_link_igp_setup(hw); + if (ret_val) + return ret_val; + } else if (hw->phy_type == e1000_phy_m88) { + ret_val = e1000_copper_link_mgp_setup(hw); + if (ret_val) + return ret_val; + } + + if (hw->autoneg) { + /* Setup autoneg and flow control advertisement + * and perform autonegotiation */ + ret_val = e1000_copper_link_autoneg(hw); + if (ret_val) + return ret_val; + } else { + /* PHY will be set to 10H, 10F, 100H,or 100F + * depending on value from forced_speed_duplex. */ + DEBUGOUT("Forcing speed and duplex\n"); + ret_val = e1000_phy_force_speed_duplex(hw); + if (ret_val) { + DEBUGOUT("Error Forcing Speed and Duplex\n"); + return ret_val; + } + } + + /* Check link status. Wait up to 100 microseconds for link to become + * valid. + */ + for (i = 0; i < 10; i++) { + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & MII_SR_LINK_STATUS) { + /* Config the MAC and PHY after link is up */ + ret_val = e1000_copper_link_postconfig(hw); + if (ret_val) + return ret_val; + + DEBUGOUT("Valid link established!!!\n"); + return E1000_SUCCESS; + } + udelay(10); + } + + DEBUGOUT("Unable to establish link!!!\n"); + return E1000_SUCCESS; } -/****************************************************************************** -* Configures PHY autoneg and flow control advertisement settings -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ +/** + * e1000_phy_setup_autoneg - phy settings + * @hw: Struct containing variables accessed by shared code + * + * Configures PHY autoneg and flow control advertisement settings + */ s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) { - s32 ret_val; - u16 mii_autoneg_adv_reg; - u16 mii_1000t_ctrl_reg; - - DEBUGFUNC("e1000_phy_setup_autoneg"); - - /* Read the MII Auto-Neg Advertisement Register (Address 4). */ - ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - /* Read the MII 1000Base-T Control Register (Address 9). */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - - /* Need to parse both autoneg_advertised and fc and set up - * the appropriate PHY registers. First we will parse for - * autoneg_advertised software override. Since we can advertise - * a plethora of combinations, we need to check each bit - * individually. - */ - - /* First we clear all the 10/100 mb speed bits in the Auto-Neg - * Advertisement Register (Address 4) and the 1000 mb speed bits in - * the 1000Base-T Control Register (Address 9). - */ - mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; - mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; - - DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); - - /* Do we want to advertise 10 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_HALF) { - DEBUGOUT("Advertise 10mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; - } - - /* Do we want to advertise 10 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_10_FULL) { - DEBUGOUT("Advertise 10mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; - } - - /* Do we want to advertise 100 Mb Half Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_HALF) { - DEBUGOUT("Advertise 100mb Half duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; - } - - /* Do we want to advertise 100 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_100_FULL) { - DEBUGOUT("Advertise 100mb Full duplex\n"); - mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; - } - - /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ - if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { - DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); - } - - /* Do we want to advertise 1000 Mb Full Duplex? */ - if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { - DEBUGOUT("Advertise 1000mb Full duplex\n"); - mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; - } - - /* Check for a software override of the flow control settings, and - * setup the PHY advertisement registers accordingly. If - * auto-negotiation is enabled, then software will have to set the - * "PAUSE" bits to the correct value in the Auto-Negotiation - * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause frames - * but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * but we do not support receiving pause frames). - * 3: Both Rx and TX flow control (symmetric) are enabled. - * other: No software override. The flow control configuration - * in the EEPROM is used. - */ - switch (hw->fc) { - case E1000_FC_NONE: /* 0 */ - /* Flow control (RX & TX) is completely disabled by a - * software over-ride. - */ - mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case E1000_FC_RX_PAUSE: /* 1 */ - /* RX Flow control is enabled, and TX Flow control is - * disabled, by a software over-ride. - */ - /* Since there really isn't a way to advertise that we are - * capable of RX Pause ONLY, we will advertise that we - * support both symmetric and asymmetric RX PAUSE. Later - * (in e1000_config_fc_after_link_up) we will disable the - *hw's ability to send PAUSE frames. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - case E1000_FC_TX_PAUSE: /* 2 */ - /* TX Flow control is enabled, and RX Flow control is - * disabled, by a software over-ride. - */ - mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; - mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; - break; - case E1000_FC_FULL: /* 3 */ - /* Flow control (both RX and TX) is enabled by a software - * over-ride. - */ - mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); - if (ret_val) - return ret_val; - - DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); - - ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); - if (ret_val) - return ret_val; - - return E1000_SUCCESS; + s32 ret_val; + u16 mii_autoneg_adv_reg; + u16 mii_1000t_ctrl_reg; + + DEBUGFUNC("e1000_phy_setup_autoneg"); + + /* Read the MII Auto-Neg Advertisement Register (Address 4). */ + ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + /* Read the MII 1000Base-T Control Register (Address 9). */ + ret_val = + e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + + /* Need to parse both autoneg_advertised and fc and set up + * the appropriate PHY registers. First we will parse for + * autoneg_advertised software override. Since we can advertise + * a plethora of combinations, we need to check each bit + * individually. + */ + + /* First we clear all the 10/100 mb speed bits in the Auto-Neg + * Advertisement Register (Address 4) and the 1000 mb speed bits in + * the 1000Base-T Control Register (Address 9). + */ + mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; + mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; + + DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); + + /* Do we want to advertise 10 Mb Half Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_10_HALF) { + DEBUGOUT("Advertise 10mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; + } + + /* Do we want to advertise 10 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_10_FULL) { + DEBUGOUT("Advertise 10mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; + } + + /* Do we want to advertise 100 Mb Half Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_100_HALF) { + DEBUGOUT("Advertise 100mb Half duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; + } + + /* Do we want to advertise 100 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_100_FULL) { + DEBUGOUT("Advertise 100mb Full duplex\n"); + mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; + } + + /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ + if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { + DEBUGOUT + ("Advertise 1000mb Half duplex requested, request denied!\n"); + } + + /* Do we want to advertise 1000 Mb Full Duplex? */ + if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { + DEBUGOUT("Advertise 1000mb Full duplex\n"); + mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; + } + + /* Check for a software override of the flow control settings, and + * setup the PHY advertisement registers accordingly. If + * auto-negotiation is enabled, then software will have to set the + * "PAUSE" bits to the correct value in the Auto-Negotiation + * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + * other: No software override. The flow control configuration + * in the EEPROM is used. + */ + switch (hw->fc) { + case E1000_FC_NONE: /* 0 */ + /* Flow control (RX & TX) is completely disabled by a + * software over-ride. + */ + mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case E1000_FC_RX_PAUSE: /* 1 */ + /* RX Flow control is enabled, and TX Flow control is + * disabled, by a software over-ride. + */ + /* Since there really isn't a way to advertise that we are + * capable of RX Pause ONLY, we will advertise that we + * support both symmetric and asymmetric RX PAUSE. Later + * (in e1000_config_fc_after_link_up) we will disable the + *hw's ability to send PAUSE frames. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + case E1000_FC_TX_PAUSE: /* 2 */ + /* TX Flow control is enabled, and RX Flow control is + * disabled, by a software over-ride. + */ + mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; + mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; + break; + case E1000_FC_FULL: /* 3 */ + /* Flow control (both RX and TX) is enabled by a software + * over-ride. + */ + mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); + if (ret_val) + return ret_val; + + DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + + ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); + if (ret_val) + return ret_val; + + return E1000_SUCCESS; } -/****************************************************************************** -* Force PHY speed and duplex settings to hw->forced_speed_duplex -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ +/** + * e1000_phy_force_speed_duplex - force link settings + * @hw: Struct containing variables accessed by shared code + * + * Force PHY speed and duplex settings to hw->forced_speed_duplex + */ static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) { - u32 ctrl; - s32 ret_val; - u16 mii_ctrl_reg; - u16 mii_status_reg; - u16 phy_data; - u16 i; - - DEBUGFUNC("e1000_phy_force_speed_duplex"); - - /* Turn off Flow control if we are forcing speed and duplex. */ - hw->fc = E1000_FC_NONE; - - DEBUGOUT1("hw->fc = %d\n", hw->fc); - - /* Read the Device Control Register. */ - ctrl = er32(CTRL); - - /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~(DEVICE_SPEED_MASK); - - /* Clear the Auto Speed Detect Enable bit. */ - ctrl &= ~E1000_CTRL_ASDE; - - /* Read the MII Control Register. */ - ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); - if (ret_val) - return ret_val; - - /* We need to disable autoneg in order to force link and duplex. */ - - mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; - - /* Are we forcing Full or Half Duplex? */ - if (hw->forced_speed_duplex == e1000_100_full || - hw->forced_speed_duplex == e1000_10_full) { - /* We want to force full duplex so we SET the full duplex bits in the - * Device and MII Control Registers. - */ - ctrl |= E1000_CTRL_FD; - mii_ctrl_reg |= MII_CR_FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - /* We want to force half duplex so we CLEAR the full duplex bits in - * the Device and MII Control Registers. - */ - ctrl &= ~E1000_CTRL_FD; - mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; - DEBUGOUT("Half Duplex\n"); - } - - /* Are we forcing 100Mbps??? */ - if (hw->forced_speed_duplex == e1000_100_full || - hw->forced_speed_duplex == e1000_100_half) { - /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ - ctrl |= E1000_CTRL_SPD_100; - mii_ctrl_reg |= MII_CR_SPEED_100; - mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); - DEBUGOUT("Forcing 100mb "); - } else { - /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ - ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); - mii_ctrl_reg |= MII_CR_SPEED_10; - mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); - DEBUGOUT("Forcing 10mb "); - } - - e1000_config_collision_dist(hw); - - /* Write the configured values back to the Device Control Reg. */ - ew32(CTRL, ctrl); - - if (hw->phy_type == e1000_phy_m88) { - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI - * forced whenever speed are duplex are forced. - */ - phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); - - /* Need to reset the PHY or these changes will be ignored */ - mii_ctrl_reg |= MII_CR_RESET; - - } else { - /* Clear Auto-Crossover to force MDI manually. IGP requires MDI - * forced whenever speed or duplex are forced. - */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; - phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; - - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); - if (ret_val) - return ret_val; - } - - /* Write back the modified PHY MII control register. */ - ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); - if (ret_val) - return ret_val; - - udelay(1); - - /* The wait_autoneg_complete flag may be a little misleading here. - * Since we are forcing speed and duplex, Auto-Neg is not enabled. - * But we do want to delay for a period while forcing only so we - * don't generate false No Link messages. So we will wait here - * only if the user has set wait_autoneg_complete to 1, which is - * the default. - */ - if (hw->wait_autoneg_complete) { - /* We will wait for autoneg to complete. */ - DEBUGOUT("Waiting for forced speed/duplex link.\n"); - mii_status_reg = 0; - - /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Auto-Neg Complete bit - * to be set. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_LINK_STATUS) break; - msleep(100); - } - if ((i == 0) && - (hw->phy_type == e1000_phy_m88)) { - /* We didn't get link. Reset the DSP and wait again for link. */ - ret_val = e1000_phy_reset_dsp(hw); - if (ret_val) { - DEBUGOUT("Error Resetting PHY DSP\n"); - return ret_val; - } - } - /* This loop will early-out if the link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - if (mii_status_reg & MII_SR_LINK_STATUS) break; - msleep(100); - /* Read the MII Status Register and wait for Auto-Neg Complete bit - * to be set. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - } - } - - if (hw->phy_type == e1000_phy_m88) { - /* Because we reset the PHY above, we need to re-force TX_CLK in the - * Extended PHY Specific Control Register to 25MHz clock. This value - * defaults back to a 2.5MHz clock when the PHY is reset. - */ - ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_EPSCR_TX_CLK_25; - ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - /* In addition, because of the s/w reset above, we need to enable CRS on - * TX. This must be set for both full and half duplex operation. - */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); - if (ret_val) - return ret_val; - - if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && - (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full || - hw->forced_speed_duplex == e1000_10_half)) { - ret_val = e1000_polarity_reversal_workaround(hw); - if (ret_val) - return ret_val; - } - } - return E1000_SUCCESS; + u32 ctrl; + s32 ret_val; + u16 mii_ctrl_reg; + u16 mii_status_reg; + u16 phy_data; + u16 i; + + DEBUGFUNC("e1000_phy_force_speed_duplex"); + + /* Turn off Flow control if we are forcing speed and duplex. */ + hw->fc = E1000_FC_NONE; + + DEBUGOUT1("hw->fc = %d\n", hw->fc); + + /* Read the Device Control Register. */ + ctrl = er32(CTRL); + + /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(DEVICE_SPEED_MASK); + + /* Clear the Auto Speed Detect Enable bit. */ + ctrl &= ~E1000_CTRL_ASDE; + + /* Read the MII Control Register. */ + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); + if (ret_val) + return ret_val; + + /* We need to disable autoneg in order to force link and duplex. */ + + mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; + + /* Are we forcing Full or Half Duplex? */ + if (hw->forced_speed_duplex == e1000_100_full || + hw->forced_speed_duplex == e1000_10_full) { + /* We want to force full duplex so we SET the full duplex bits in the + * Device and MII Control Registers. + */ + ctrl |= E1000_CTRL_FD; + mii_ctrl_reg |= MII_CR_FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + /* We want to force half duplex so we CLEAR the full duplex bits in + * the Device and MII Control Registers. + */ + ctrl &= ~E1000_CTRL_FD; + mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; + DEBUGOUT("Half Duplex\n"); + } + + /* Are we forcing 100Mbps??? */ + if (hw->forced_speed_duplex == e1000_100_full || + hw->forced_speed_duplex == e1000_100_half) { + /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ + ctrl |= E1000_CTRL_SPD_100; + mii_ctrl_reg |= MII_CR_SPEED_100; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); + DEBUGOUT("Forcing 100mb "); + } else { + /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ + ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); + mii_ctrl_reg |= MII_CR_SPEED_10; + mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); + DEBUGOUT("Forcing 10mb "); + } + + e1000_config_collision_dist(hw); + + /* Write the configured values back to the Device Control Reg. */ + ew32(CTRL, ctrl); + + if (hw->phy_type == e1000_phy_m88) { + ret_val = + e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI + * forced whenever speed are duplex are forced. + */ + phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); + + /* Need to reset the PHY or these changes will be ignored */ + mii_ctrl_reg |= MII_CR_RESET; + + /* Disable MDI-X support for 10/100 */ + } else { + /* Clear Auto-Crossover to force MDI manually. IGP requires MDI + * forced whenever speed or duplex are forced. + */ + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; + phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; + + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); + if (ret_val) + return ret_val; + } + + /* Write back the modified PHY MII control register. */ + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); + if (ret_val) + return ret_val; + + udelay(1); + + /* The wait_autoneg_complete flag may be a little misleading here. + * Since we are forcing speed and duplex, Auto-Neg is not enabled. + * But we do want to delay for a period while forcing only so we + * don't generate false No Link messages. So we will wait here + * only if the user has set wait_autoneg_complete to 1, which is + * the default. + */ + if (hw->wait_autoneg_complete) { + /* We will wait for autoneg to complete. */ + DEBUGOUT("Waiting for forced speed/duplex link.\n"); + mii_status_reg = 0; + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Auto-Neg Complete bit + * to be set. + */ + ret_val = + e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = + e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_LINK_STATUS) + break; + msleep(100); + } + if ((i == 0) && (hw->phy_type == e1000_phy_m88)) { + /* We didn't get link. Reset the DSP and wait again for link. */ + ret_val = e1000_phy_reset_dsp(hw); + if (ret_val) { + DEBUGOUT("Error Resetting PHY DSP\n"); + return ret_val; + } + } + /* This loop will early-out if the link condition has been met. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + if (mii_status_reg & MII_SR_LINK_STATUS) + break; + msleep(100); + /* Read the MII Status Register and wait for Auto-Neg Complete bit + * to be set. + */ + ret_val = + e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = + e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + } + } + + if (hw->phy_type == e1000_phy_m88) { + /* Because we reset the PHY above, we need to re-force TX_CLK in the + * Extended PHY Specific Control Register to 25MHz clock. This value + * defaults back to a 2.5MHz clock when the PHY is reset. + */ + ret_val = + e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_EPSCR_TX_CLK_25; + ret_val = + e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, + phy_data); + if (ret_val) + return ret_val; + + /* In addition, because of the s/w reset above, we need to enable CRS on + * TX. This must be set for both full and half duplex operation. + */ + ret_val = + e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); + if (ret_val) + return ret_val; + + if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) + && (!hw->autoneg) + && (hw->forced_speed_duplex == e1000_10_full + || hw->forced_speed_duplex == e1000_10_half)) { + ret_val = e1000_polarity_reversal_workaround(hw); + if (ret_val) + return ret_val; + } + } + return E1000_SUCCESS; } -/****************************************************************************** -* Sets the collision distance in the Transmit Control register -* -* hw - Struct containing variables accessed by shared code -* -* Link should have been established previously. Reads the speed and duplex -* information from the Device Status register. -******************************************************************************/ +/** + * e1000_config_collision_dist - set collision distance register + * @hw: Struct containing variables accessed by shared code + * + * Sets the collision distance in the Transmit Control register. + * Link should have been established previously. Reads the speed and duplex + * information from the Device Status register. + */ void e1000_config_collision_dist(struct e1000_hw *hw) { - u32 tctl, coll_dist; + u32 tctl, coll_dist; - DEBUGFUNC("e1000_config_collision_dist"); + DEBUGFUNC("e1000_config_collision_dist"); - if (hw->mac_type < e1000_82543) - coll_dist = E1000_COLLISION_DISTANCE_82542; - else - coll_dist = E1000_COLLISION_DISTANCE; + if (hw->mac_type < e1000_82543) + coll_dist = E1000_COLLISION_DISTANCE_82542; + else + coll_dist = E1000_COLLISION_DISTANCE; - tctl = er32(TCTL); + tctl = er32(TCTL); - tctl &= ~E1000_TCTL_COLD; - tctl |= coll_dist << E1000_COLD_SHIFT; + tctl &= ~E1000_TCTL_COLD; + tctl |= coll_dist << E1000_COLD_SHIFT; - ew32(TCTL, tctl); - E1000_WRITE_FLUSH(); + ew32(TCTL, tctl); + E1000_WRITE_FLUSH(); } -/****************************************************************************** -* Sets MAC speed and duplex settings to reflect the those in the PHY -* -* hw - Struct containing variables accessed by shared code -* mii_reg - data to write to the MII control register -* -* The contents of the PHY register containing the needed information need to -* be passed in. -******************************************************************************/ +/** + * e1000_config_mac_to_phy - sync phy and mac settings + * @hw: Struct containing variables accessed by shared code + * @mii_reg: data to write to the MII control register + * + * Sets MAC speed and duplex settings to reflect the those in the PHY + * The contents of the PHY register containing the needed information need to + * be passed in. + */ static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) { - u32 ctrl; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_config_mac_to_phy"); - - /* 82544 or newer MAC, Auto Speed Detection takes care of - * MAC speed/duplex configuration.*/ - if (hw->mac_type >= e1000_82544) - return E1000_SUCCESS; - - /* Read the Device Control Register and set the bits to Force Speed - * and Duplex. - */ - ctrl = er32(CTRL); - ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); - ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); - - /* Set up duplex in the Device Control and Transmit Control - * registers depending on negotiated values. - */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & M88E1000_PSSR_DPLX) - ctrl |= E1000_CTRL_FD; - else - ctrl &= ~E1000_CTRL_FD; - - e1000_config_collision_dist(hw); - - /* Set up speed in the Device Control register depending on - * negotiated values. - */ - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) - ctrl |= E1000_CTRL_SPD_1000; - else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) - ctrl |= E1000_CTRL_SPD_100; - - /* Write the configured values back to the Device Control Reg. */ - ew32(CTRL, ctrl); - return E1000_SUCCESS; + u32 ctrl; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_config_mac_to_phy"); + + /* 82544 or newer MAC, Auto Speed Detection takes care of + * MAC speed/duplex configuration.*/ + if (hw->mac_type >= e1000_82544) + return E1000_SUCCESS; + + /* Read the Device Control Register and set the bits to Force Speed + * and Duplex. + */ + ctrl = er32(CTRL); + ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); + ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); + + /* Set up duplex in the Device Control and Transmit Control + * registers depending on negotiated values. + */ + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & M88E1000_PSSR_DPLX) + ctrl |= E1000_CTRL_FD; + else + ctrl &= ~E1000_CTRL_FD; + + e1000_config_collision_dist(hw); + + /* Set up speed in the Device Control register depending on + * negotiated values. + */ + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) + ctrl |= E1000_CTRL_SPD_1000; + else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) + ctrl |= E1000_CTRL_SPD_100; + + /* Write the configured values back to the Device Control Reg. */ + ew32(CTRL, ctrl); + return E1000_SUCCESS; } -/****************************************************************************** - * Forces the MAC's flow control settings. - * - * hw - Struct containing variables accessed by shared code +/** + * e1000_force_mac_fc - force flow control settings + * @hw: Struct containing variables accessed by shared code * + * Forces the MAC's flow control settings. * Sets the TFCE and RFCE bits in the device control register to reflect * the adapter settings. TFCE and RFCE need to be explicitly set by * software when a Copper PHY is used because autonegotiation is managed * by the PHY rather than the MAC. Software must also configure these * bits when link is forced on a fiber connection. - *****************************************************************************/ + */ s32 e1000_force_mac_fc(struct e1000_hw *hw) { - u32 ctrl; - - DEBUGFUNC("e1000_force_mac_fc"); - - /* Get the current configuration of the Device Control Register */ - ctrl = er32(CTRL); - - /* Because we didn't get link via the internal auto-negotiation - * mechanism (we either forced link or we got link via PHY - * auto-neg), we have to manually enable/disable transmit an - * receive flow control. - * - * The "Case" statement below enables/disable flow control - * according to the "hw->fc" parameter. - * - * The possible values of the "fc" parameter are: - * 0: Flow control is completely disabled - * 1: Rx flow control is enabled (we can receive pause - * frames but not send pause frames). - * 2: Tx flow control is enabled (we can send pause frames - * frames but we do not receive pause frames). - * 3: Both Rx and TX flow control (symmetric) is enabled. - * other: No other values should be possible at this point. - */ - - switch (hw->fc) { - case E1000_FC_NONE: - ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); - break; - case E1000_FC_RX_PAUSE: - ctrl &= (~E1000_CTRL_TFCE); - ctrl |= E1000_CTRL_RFCE; - break; - case E1000_FC_TX_PAUSE: - ctrl &= (~E1000_CTRL_RFCE); - ctrl |= E1000_CTRL_TFCE; - break; - case E1000_FC_FULL: - ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); - break; - default: - DEBUGOUT("Flow control param set incorrectly\n"); - return -E1000_ERR_CONFIG; - } - - /* Disable TX Flow Control for 82542 (rev 2.0) */ - if (hw->mac_type == e1000_82542_rev2_0) - ctrl &= (~E1000_CTRL_TFCE); - - ew32(CTRL, ctrl); - return E1000_SUCCESS; + u32 ctrl; + + DEBUGFUNC("e1000_force_mac_fc"); + + /* Get the current configuration of the Device Control Register */ + ctrl = er32(CTRL); + + /* Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "hw->fc" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and TX flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + + switch (hw->fc) { + case E1000_FC_NONE: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case E1000_FC_RX_PAUSE: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case E1000_FC_TX_PAUSE: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case E1000_FC_FULL: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + DEBUGOUT("Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + /* Disable TX Flow Control for 82542 (rev 2.0) */ + if (hw->mac_type == e1000_82542_rev2_0) + ctrl &= (~E1000_CTRL_TFCE); + + ew32(CTRL, ctrl); + return E1000_SUCCESS; } -/****************************************************************************** - * Configures flow control settings after link is established - * - * hw - Struct containing variables accessed by shared code +/** + * e1000_config_fc_after_link_up - configure flow control after autoneg + * @hw: Struct containing variables accessed by shared code * + * Configures flow control settings after link is established * Should be called immediately after a valid link has been established. * Forces MAC flow control settings if link was forced. When in MII/GMII mode * and autonegotiation is enabled, the MAC flow control settings will be set * based on the flow control negotiated by the PHY. In TBI mode, the TFCE - * and RFCE bits will be automaticaly set to the negotiated flow control mode. - *****************************************************************************/ + * and RFCE bits will be automatically set to the negotiated flow control mode. + */ static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) { - s32 ret_val; - u16 mii_status_reg; - u16 mii_nway_adv_reg; - u16 mii_nway_lp_ability_reg; - u16 speed; - u16 duplex; - - DEBUGFUNC("e1000_config_fc_after_link_up"); - - /* Check for the case where we have fiber media and auto-neg failed - * so we had to force link. In this case, we need to force the - * configuration of the MAC to match the "fc" parameter. - */ - if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || - ((hw->media_type == e1000_media_type_internal_serdes) && - (hw->autoneg_failed)) || - ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { - ret_val = e1000_force_mac_fc(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } - - /* Check for the case where we have copper media and auto-neg is - * enabled. In this case, we need to check and see if Auto-Neg - * has completed, and if so, how the PHY and link partner has - * flow control configured. - */ - if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { - /* Read the MII Status Register and check to see if AutoNeg - * has completed. We read this twice because this reg has - * some "sticky" (latched) bits. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { - /* The AutoNeg process has completed, so we now need to - * read both the Auto Negotiation Advertisement Register - * (Address 4) and the Auto_Negotiation Base Page Ability - * Register (Address 5) to determine how flow control was - * negotiated. - */ - ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, - &mii_nway_adv_reg); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, - &mii_nway_lp_ability_reg); - if (ret_val) - return ret_val; - - /* Two bits in the Auto Negotiation Advertisement Register - * (Address 4) and two bits in the Auto Negotiation Base - * Page Ability Register (Address 5) determine flow control - * for both the PHY and the link partner. The following - * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, - * 1999, describes these PAUSE resolution bits and how flow - * control is determined based upon these settings. - * NOTE: DC = Don't Care - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution - *-------|---------|-------|---------|-------------------- - * 0 | 0 | DC | DC | E1000_FC_NONE - * 0 | 1 | 0 | DC | E1000_FC_NONE - * 0 | 1 | 1 | 0 | E1000_FC_NONE - * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE - * 1 | 0 | 0 | DC | E1000_FC_NONE - * 1 | DC | 1 | DC | E1000_FC_FULL - * 1 | 1 | 0 | 0 | E1000_FC_NONE - * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE - * - */ - /* Are both PAUSE bits set to 1? If so, this implies - * Symmetric Flow Control is enabled at both ends. The - * ASM_DIR bits are irrelevant per the spec. - * - * For Symmetric Flow Control: - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | DC | 1 | DC | E1000_FC_FULL - * - */ - if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { - /* Now we need to check if the user selected RX ONLY - * of pause frames. In this case, we had to advertise - * FULL flow control because we could not advertise RX - * ONLY. Hence, we must now check to see if we need to - * turn OFF the TRANSMISSION of PAUSE frames. - */ - if (hw->original_fc == E1000_FC_FULL) { - hw->fc = E1000_FC_FULL; - DEBUGOUT("Flow Control = FULL.\n"); - } else { - hw->fc = E1000_FC_RX_PAUSE; - DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); - } - } - /* For receiving PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE - * - */ - else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc = E1000_FC_TX_PAUSE; - DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); - } - /* For transmitting PAUSE frames ONLY. - * - * LOCAL DEVICE | LINK PARTNER - * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result - *-------|---------|-------|---------|-------------------- - * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE - * - */ - else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && - (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && - !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && - (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { - hw->fc = E1000_FC_RX_PAUSE; - DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); - } - /* Per the IEEE spec, at this point flow control should be - * disabled. However, we want to consider that we could - * be connected to a legacy switch that doesn't advertise - * desired flow control, but can be forced on the link - * partner. So if we advertised no flow control, that is - * what we will resolve to. If we advertised some kind of - * receive capability (Rx Pause Only or Full Flow Control) - * and the link partner advertised none, we will configure - * ourselves to enable Rx Flow Control only. We can do - * this safely for two reasons: If the link partner really - * didn't want flow control enabled, and we enable Rx, no - * harm done since we won't be receiving any PAUSE frames - * anyway. If the intent on the link partner was to have - * flow control enabled, then by us enabling RX only, we - * can at least receive pause frames and process them. - * This is a good idea because in most cases, since we are - * predominantly a server NIC, more times than not we will - * be asked to delay transmission of packets than asking - * our link partner to pause transmission of frames. - */ - else if ((hw->original_fc == E1000_FC_NONE || - hw->original_fc == E1000_FC_TX_PAUSE) || - hw->fc_strict_ieee) { - hw->fc = E1000_FC_NONE; - DEBUGOUT("Flow Control = NONE.\n"); - } else { - hw->fc = E1000_FC_RX_PAUSE; - DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); - } - - /* Now we need to do one last check... If we auto- - * negotiated to HALF DUPLEX, flow control should not be - * enabled per IEEE 802.3 spec. - */ - ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - - if (duplex == HALF_DUPLEX) - hw->fc = E1000_FC_NONE; - - /* Now we call a subroutine to actually force the MAC - * controller to use the correct flow control settings. - */ - ret_val = e1000_force_mac_fc(hw); - if (ret_val) { - DEBUGOUT("Error forcing flow control settings\n"); - return ret_val; - } - } else { - DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); - } - } - return E1000_SUCCESS; + s32 ret_val; + u16 mii_status_reg; + u16 mii_nway_adv_reg; + u16 mii_nway_lp_ability_reg; + u16 speed; + u16 duplex; + + DEBUGFUNC("e1000_config_fc_after_link_up"); + + /* Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) + || ((hw->media_type == e1000_media_type_internal_serdes) + && (hw->autoneg_failed)) + || ((hw->media_type == e1000_media_type_copper) + && (!hw->autoneg))) { + ret_val = e1000_force_mac_fc(hw); + if (ret_val) { + DEBUGOUT("Error forcing flow control settings\n"); + return ret_val; + } + } + + /* Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { + /* Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement Register + * (Address 4) and the Auto_Negotiation Base Page Ability + * Register (Address 5) to determine how flow control was + * negotiated. + */ + ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, + &mii_nway_adv_reg); + if (ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, + &mii_nway_lp_ability_reg); + if (ret_val) + return ret_val; + + /* Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | E1000_FC_NONE + * 0 | 1 | 0 | DC | E1000_FC_NONE + * 0 | 1 | 1 | 0 | E1000_FC_NONE + * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE + * 1 | 0 | 0 | DC | E1000_FC_NONE + * 1 | DC | 1 | DC | E1000_FC_FULL + * 1 | 1 | 0 | 0 | E1000_FC_NONE + * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE + * + */ + /* Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | E1000_FC_FULL + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* Now we need to check if the user selected RX ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise RX + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (hw->original_fc == E1000_FC_FULL) { + hw->fc = E1000_FC_FULL; + DEBUGOUT("Flow Control = FULL.\n"); + } else { + hw->fc = E1000_FC_RX_PAUSE; + DEBUGOUT + ("Flow Control = RX PAUSE frames only.\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE + * + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) + { + hw->fc = E1000_FC_TX_PAUSE; + DEBUGOUT + ("Flow Control = TX PAUSE frames only.\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE + * + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) + { + hw->fc = E1000_FC_RX_PAUSE; + DEBUGOUT + ("Flow Control = RX PAUSE frames only.\n"); + } + /* Per the IEEE spec, at this point flow control should be + * disabled. However, we want to consider that we could + * be connected to a legacy switch that doesn't advertise + * desired flow control, but can be forced on the link + * partner. So if we advertised no flow control, that is + * what we will resolve to. If we advertised some kind of + * receive capability (Rx Pause Only or Full Flow Control) + * and the link partner advertised none, we will configure + * ourselves to enable Rx Flow Control only. We can do + * this safely for two reasons: If the link partner really + * didn't want flow control enabled, and we enable Rx, no + * harm done since we won't be receiving any PAUSE frames + * anyway. If the intent on the link partner was to have + * flow control enabled, then by us enabling RX only, we + * can at least receive pause frames and process them. + * This is a good idea because in most cases, since we are + * predominantly a server NIC, more times than not we will + * be asked to delay transmission of packets than asking + * our link partner to pause transmission of frames. + */ + else if ((hw->original_fc == E1000_FC_NONE || + hw->original_fc == E1000_FC_TX_PAUSE) || + hw->fc_strict_ieee) { + hw->fc = E1000_FC_NONE; + DEBUGOUT("Flow Control = NONE.\n"); + } else { + hw->fc = E1000_FC_RX_PAUSE; + DEBUGOUT + ("Flow Control = RX PAUSE frames only.\n"); + } + + /* Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = + e1000_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT + ("Error getting link speed and duplex\n"); + return ret_val; + } + + if (duplex == HALF_DUPLEX) + hw->fc = E1000_FC_NONE; + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = e1000_force_mac_fc(hw); + if (ret_val) { + DEBUGOUT + ("Error forcing flow control settings\n"); + return ret_val; + } + } else { + DEBUGOUT + ("Copper PHY and Auto Neg has not completed.\n"); + } + } + return E1000_SUCCESS; } /** - * e1000_check_for_serdes_link_generic - Check for link (Serdes) - * @hw: pointer to the HW structure + * e1000_check_for_serdes_link_generic - Check for link (Serdes) + * @hw: pointer to the HW structure * - * Checks for link up on the hardware. If link is not up and we have - * a signal, then we need to force link up. - **/ + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + */ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) { u32 rxcw; @@ -2227,11 +2279,11 @@ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) if (!(rxcw & E1000_RXCW_IV)) { hw->serdes_has_link = true; DEBUGOUT("SERDES: Link up - autoneg " - "completed sucessfully.\n"); + "completed successfully.\n"); } else { hw->serdes_has_link = false; DEBUGOUT("SERDES: Link down - invalid" - "codewords detected in autoneg.\n"); + "codewords detected in autoneg.\n"); } } else { hw->serdes_has_link = false; @@ -2243,2631 +2295,2660 @@ s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw) } } -out: + out: return ret_val; } -/****************************************************************************** - * Checks to see if the link status of the hardware has changed. - * - * hw - Struct containing variables accessed by shared code + +/** + * e1000_check_for_link + * @hw: Struct containing variables accessed by shared code * + * Checks to see if the link status of the hardware has changed. * Called by any function that needs to check the link status of the adapter. - *****************************************************************************/ + */ s32 e1000_check_for_link(struct e1000_hw *hw) { - u32 rxcw = 0; - u32 ctrl; - u32 status; - u32 rctl; - u32 icr; - u32 signal = 0; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_check_for_link"); - - ctrl = er32(CTRL); - status = er32(STATUS); - - /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be - * set when the optics detect a signal. On older adapters, it will be - * cleared when there is a signal. This applies to fiber media only. - */ - if ((hw->media_type == e1000_media_type_fiber) || - (hw->media_type == e1000_media_type_internal_serdes)) { - rxcw = er32(RXCW); - - if (hw->media_type == e1000_media_type_fiber) { - signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; - if (status & E1000_STATUS_LU) - hw->get_link_status = false; - } - } - - /* If we have a copper PHY then we only want to go out to the PHY - * registers to see if Auto-Neg has completed and/or if our link - * status has changed. The get_link_status flag will be set if we - * receive a Link Status Change interrupt or we have Rx Sequence - * Errors. - */ - if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { - /* First we want to see if the MII Status Register reports - * link. If so, then we want to get the current speed/duplex - * of the PHY. - * Read the register twice since the link bit is sticky. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if (phy_data & MII_SR_LINK_STATUS) { - hw->get_link_status = false; - /* Check if there was DownShift, must be checked immediately after - * link-up */ - e1000_check_downshift(hw); - - /* If we are on 82544 or 82543 silicon and speed/duplex - * are forced to 10H or 10F, then we will implement the polarity - * reversal workaround. We disable interrupts first, and upon - * returning, place the devices interrupt state to its previous - * value except for the link status change interrupt which will - * happen due to the execution of this workaround. - */ - - if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && - (!hw->autoneg) && - (hw->forced_speed_duplex == e1000_10_full || - hw->forced_speed_duplex == e1000_10_half)) { - ew32(IMC, 0xffffffff); - ret_val = e1000_polarity_reversal_workaround(hw); - icr = er32(ICR); - ew32(ICS, (icr & ~E1000_ICS_LSC)); - ew32(IMS, IMS_ENABLE_MASK); - } - - } else { - /* No link detected */ - e1000_config_dsp_after_link_change(hw, false); - return 0; - } - - /* If we are forcing speed/duplex, then we simply return since - * we have already determined whether we have link or not. - */ - if (!hw->autoneg) return -E1000_ERR_CONFIG; - - /* optimize the dsp settings for the igp phy */ - e1000_config_dsp_after_link_change(hw, true); - - /* We have a M88E1000 PHY and Auto-Neg is enabled. If we - * have Si on board that is 82544 or newer, Auto - * Speed Detection takes care of MAC speed/duplex - * configuration. So we only need to configure Collision - * Distance in the MAC. Otherwise, we need to force - * speed/duplex on the MAC to the current PHY speed/duplex - * settings. - */ - if (hw->mac_type >= e1000_82544) - e1000_config_collision_dist(hw); - else { - ret_val = e1000_config_mac_to_phy(hw); - if (ret_val) { - DEBUGOUT("Error configuring MAC to PHY settings\n"); - return ret_val; - } - } - - /* Configure Flow Control now that Auto-Neg has completed. First, we - * need to restore the desired flow control settings because we may - * have had to re-autoneg with a different link partner. - */ - ret_val = e1000_config_fc_after_link_up(hw); - if (ret_val) { - DEBUGOUT("Error configuring flow control\n"); - return ret_val; - } - - /* At this point we know that we are on copper and we have - * auto-negotiated link. These are conditions for checking the link - * partner capability register. We use the link speed to determine if - * TBI compatibility needs to be turned on or off. If the link is not - * at gigabit speed, then TBI compatibility is not needed. If we are - * at gigabit speed, we turn on TBI compatibility. - */ - if (hw->tbi_compatibility_en) { - u16 speed, duplex; - ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - if (speed != SPEED_1000) { - /* If link speed is not set to gigabit speed, we do not need - * to enable TBI compatibility. - */ - if (hw->tbi_compatibility_on) { - /* If we previously were in the mode, turn it off. */ - rctl = er32(RCTL); - rctl &= ~E1000_RCTL_SBP; - ew32(RCTL, rctl); - hw->tbi_compatibility_on = false; - } - } else { - /* If TBI compatibility is was previously off, turn it on. For - * compatibility with a TBI link partner, we will store bad - * packets. Some frames have an additional byte on the end and - * will look like CRC errors to the hardware. - */ - if (!hw->tbi_compatibility_on) { - hw->tbi_compatibility_on = true; - rctl = er32(RCTL); - rctl |= E1000_RCTL_SBP; - ew32(RCTL, rctl); - } - } - } - } - - if ((hw->media_type == e1000_media_type_fiber) || - (hw->media_type == e1000_media_type_internal_serdes)) - e1000_check_for_serdes_link_generic(hw); - - return E1000_SUCCESS; + u32 rxcw = 0; + u32 ctrl; + u32 status; + u32 rctl; + u32 icr; + u32 signal = 0; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_check_for_link"); + + ctrl = er32(CTRL); + status = er32(STATUS); + + /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be + * set when the optics detect a signal. On older adapters, it will be + * cleared when there is a signal. This applies to fiber media only. + */ + if ((hw->media_type == e1000_media_type_fiber) || + (hw->media_type == e1000_media_type_internal_serdes)) { + rxcw = er32(RXCW); + + if (hw->media_type == e1000_media_type_fiber) { + signal = + (hw->mac_type > + e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; + if (status & E1000_STATUS_LU) + hw->get_link_status = false; + } + } + + /* If we have a copper PHY then we only want to go out to the PHY + * registers to see if Auto-Neg has completed and/or if our link + * status has changed. The get_link_status flag will be set if we + * receive a Link Status Change interrupt or we have Rx Sequence + * Errors. + */ + if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { + /* First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + * Read the register twice since the link bit is sticky. + */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if (phy_data & MII_SR_LINK_STATUS) { + hw->get_link_status = false; + /* Check if there was DownShift, must be checked immediately after + * link-up */ + e1000_check_downshift(hw); + + /* If we are on 82544 or 82543 silicon and speed/duplex + * are forced to 10H or 10F, then we will implement the polarity + * reversal workaround. We disable interrupts first, and upon + * returning, place the devices interrupt state to its previous + * value except for the link status change interrupt which will + * happen due to the execution of this workaround. + */ + + if ((hw->mac_type == e1000_82544 + || hw->mac_type == e1000_82543) && (!hw->autoneg) + && (hw->forced_speed_duplex == e1000_10_full + || hw->forced_speed_duplex == e1000_10_half)) { + ew32(IMC, 0xffffffff); + ret_val = + e1000_polarity_reversal_workaround(hw); + icr = er32(ICR); + ew32(ICS, (icr & ~E1000_ICS_LSC)); + ew32(IMS, IMS_ENABLE_MASK); + } + + } else { + /* No link detected */ + e1000_config_dsp_after_link_change(hw, false); + return 0; + } + + /* If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!hw->autoneg) + return -E1000_ERR_CONFIG; + + /* optimize the dsp settings for the igp phy */ + e1000_config_dsp_after_link_change(hw, true); + + /* We have a M88E1000 PHY and Auto-Neg is enabled. If we + * have Si on board that is 82544 or newer, Auto + * Speed Detection takes care of MAC speed/duplex + * configuration. So we only need to configure Collision + * Distance in the MAC. Otherwise, we need to force + * speed/duplex on the MAC to the current PHY speed/duplex + * settings. + */ + if (hw->mac_type >= e1000_82544) + e1000_config_collision_dist(hw); + else { + ret_val = e1000_config_mac_to_phy(hw); + if (ret_val) { + DEBUGOUT + ("Error configuring MAC to PHY settings\n"); + return ret_val; + } + } + + /* Configure Flow Control now that Auto-Neg has completed. First, we + * need to restore the desired flow control settings because we may + * have had to re-autoneg with a different link partner. + */ + ret_val = e1000_config_fc_after_link_up(hw); + if (ret_val) { + DEBUGOUT("Error configuring flow control\n"); + return ret_val; + } + + /* At this point we know that we are on copper and we have + * auto-negotiated link. These are conditions for checking the link + * partner capability register. We use the link speed to determine if + * TBI compatibility needs to be turned on or off. If the link is not + * at gigabit speed, then TBI compatibility is not needed. If we are + * at gigabit speed, we turn on TBI compatibility. + */ + if (hw->tbi_compatibility_en) { + u16 speed, duplex; + ret_val = + e1000_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT + ("Error getting link speed and duplex\n"); + return ret_val; + } + if (speed != SPEED_1000) { + /* If link speed is not set to gigabit speed, we do not need + * to enable TBI compatibility. + */ + if (hw->tbi_compatibility_on) { + /* If we previously were in the mode, turn it off. */ + rctl = er32(RCTL); + rctl &= ~E1000_RCTL_SBP; + ew32(RCTL, rctl); + hw->tbi_compatibility_on = false; + } + } else { + /* If TBI compatibility is was previously off, turn it on. For + * compatibility with a TBI link partner, we will store bad + * packets. Some frames have an additional byte on the end and + * will look like CRC errors to to the hardware. + */ + if (!hw->tbi_compatibility_on) { + hw->tbi_compatibility_on = true; + rctl = er32(RCTL); + rctl |= E1000_RCTL_SBP; + ew32(RCTL, rctl); + } + } + } + } + + if ((hw->media_type == e1000_media_type_fiber) || + (hw->media_type == e1000_media_type_internal_serdes)) + e1000_check_for_serdes_link_generic(hw); + + return E1000_SUCCESS; } -/****************************************************************************** +/** + * e1000_get_speed_and_duplex + * @hw: Struct containing variables accessed by shared code + * @speed: Speed of the connection + * @duplex: Duplex setting of the connection + * Detects the current speed and duplex settings of the hardware. - * - * hw - Struct containing variables accessed by shared code - * speed - Speed of the connection - * duplex - Duplex setting of the connection - *****************************************************************************/ + */ s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) { - u32 status; - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_get_speed_and_duplex"); - - if (hw->mac_type >= e1000_82543) { - status = er32(STATUS); - if (status & E1000_STATUS_SPEED_1000) { - *speed = SPEED_1000; - DEBUGOUT("1000 Mbs, "); - } else if (status & E1000_STATUS_SPEED_100) { - *speed = SPEED_100; - DEBUGOUT("100 Mbs, "); - } else { - *speed = SPEED_10; - DEBUGOUT("10 Mbs, "); - } - - if (status & E1000_STATUS_FD) { - *duplex = FULL_DUPLEX; - DEBUGOUT("Full Duplex\n"); - } else { - *duplex = HALF_DUPLEX; - DEBUGOUT(" Half Duplex\n"); - } - } else { - DEBUGOUT("1000 Mbs, Full Duplex\n"); - *speed = SPEED_1000; - *duplex = FULL_DUPLEX; - } - - /* IGP01 PHY may advertise full duplex operation after speed downgrade even - * if it is operating at half duplex. Here we set the duplex settings to - * match the duplex in the link partner's capabilities. - */ - if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { - ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); - if (ret_val) - return ret_val; - - if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) - *duplex = HALF_DUPLEX; - else { - ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); - if (ret_val) - return ret_val; - if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || - (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) - *duplex = HALF_DUPLEX; - } - } - - return E1000_SUCCESS; + u32 status; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_get_speed_and_duplex"); + + if (hw->mac_type >= e1000_82543) { + status = er32(STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + DEBUGOUT("1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + DEBUGOUT("100 Mbs, "); + } else { + *speed = SPEED_10; + DEBUGOUT("10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + DEBUGOUT("Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + DEBUGOUT(" Half Duplex\n"); + } + } else { + DEBUGOUT("1000 Mbs, Full Duplex\n"); + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + } + + /* IGP01 PHY may advertise full duplex operation after speed downgrade even + * if it is operating at half duplex. Here we set the duplex settings to + * match the duplex in the link partner's capabilities. + */ + if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { + ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); + if (ret_val) + return ret_val; + + if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) + *duplex = HALF_DUPLEX; + else { + ret_val = + e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); + if (ret_val) + return ret_val; + if ((*speed == SPEED_100 + && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) + || (*speed == SPEED_10 + && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) + *duplex = HALF_DUPLEX; + } + } + + return E1000_SUCCESS; } -/****************************************************************************** -* Blocks until autoneg completes or times out (~4.5 seconds) -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ +/** + * e1000_wait_autoneg + * @hw: Struct containing variables accessed by shared code + * + * Blocks until autoneg completes or times out (~4.5 seconds) + */ static s32 e1000_wait_autoneg(struct e1000_hw *hw) { - s32 ret_val; - u16 i; - u16 phy_data; - - DEBUGFUNC("e1000_wait_autoneg"); - DEBUGOUT("Waiting for Auto-Neg to complete.\n"); - - /* We will wait for autoneg to complete or 4.5 seconds to expire. */ - for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Auto-Neg - * Complete bit to be set. - */ - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - if (phy_data & MII_SR_AUTONEG_COMPLETE) { - return E1000_SUCCESS; - } - msleep(100); - } - return E1000_SUCCESS; + s32 ret_val; + u16 i; + u16 phy_data; + + DEBUGFUNC("e1000_wait_autoneg"); + DEBUGOUT("Waiting for Auto-Neg to complete.\n"); + + /* We will wait for autoneg to complete or 4.5 seconds to expire. */ + for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Auto-Neg + * Complete bit to be set. + */ + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + if (phy_data & MII_SR_AUTONEG_COMPLETE) { + return E1000_SUCCESS; + } + msleep(100); + } + return E1000_SUCCESS; } -/****************************************************************************** -* Raises the Management Data Clock -* -* hw - Struct containing variables accessed by shared code -* ctrl - Device control register's current value -******************************************************************************/ +/** + * e1000_raise_mdi_clk - Raises the Management Data Clock + * @hw: Struct containing variables accessed by shared code + * @ctrl: Device control register's current value + */ static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) { - /* Raise the clock input to the Management Data Clock (by setting the MDC - * bit), and then delay 10 microseconds. - */ - ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(); - udelay(10); + /* Raise the clock input to the Management Data Clock (by setting the MDC + * bit), and then delay 10 microseconds. + */ + ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(); + udelay(10); } -/****************************************************************************** -* Lowers the Management Data Clock -* -* hw - Struct containing variables accessed by shared code -* ctrl - Device control register's current value -******************************************************************************/ +/** + * e1000_lower_mdi_clk - Lowers the Management Data Clock + * @hw: Struct containing variables accessed by shared code + * @ctrl: Device control register's current value + */ static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) { - /* Lower the clock input to the Management Data Clock (by clearing the MDC - * bit), and then delay 10 microseconds. - */ - ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); - E1000_WRITE_FLUSH(); - udelay(10); + /* Lower the clock input to the Management Data Clock (by clearing the MDC + * bit), and then delay 10 microseconds. + */ + ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); + E1000_WRITE_FLUSH(); + udelay(10); } -/****************************************************************************** -* Shifts data bits out to the PHY -* -* hw - Struct containing variables accessed by shared code -* data - Data to send out to the PHY -* count - Number of bits to shift out -* -* Bits are shifted out in MSB to LSB order. -******************************************************************************/ +/** + * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY + * @hw: Struct containing variables accessed by shared code + * @data: Data to send out to the PHY + * @count: Number of bits to shift out + * + * Bits are shifted out in MSB to LSB order. + */ static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) { - u32 ctrl; - u32 mask; - - /* We need to shift "count" number of bits out to the PHY. So, the value - * in the "data" parameter will be shifted out to the PHY one bit at a - * time. In order to do this, "data" must be broken down into bits. - */ - mask = 0x01; - mask <<= (count - 1); - - ctrl = er32(CTRL); - - /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ - ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); - - while (mask) { - /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and - * then raising and lowering the Management Data Clock. A "0" is - * shifted out to the PHY by setting the MDIO bit to "0" and then - * raising and lowering the clock. - */ - if (data & mask) - ctrl |= E1000_CTRL_MDIO; - else - ctrl &= ~E1000_CTRL_MDIO; - - ew32(CTRL, ctrl); - E1000_WRITE_FLUSH(); - - udelay(10); - - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - mask = mask >> 1; - } + u32 ctrl; + u32 mask; + + /* We need to shift "count" number of bits out to the PHY. So, the value + * in the "data" parameter will be shifted out to the PHY one bit at a + * time. In order to do this, "data" must be broken down into bits. + */ + mask = 0x01; + mask <<= (count - 1); + + ctrl = er32(CTRL); + + /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ + ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + + while (mask) { + /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and + * then raising and lowering the Management Data Clock. A "0" is + * shifted out to the PHY by setting the MDIO bit to "0" and then + * raising and lowering the clock. + */ + if (data & mask) + ctrl |= E1000_CTRL_MDIO; + else + ctrl &= ~E1000_CTRL_MDIO; + + ew32(CTRL, ctrl); + E1000_WRITE_FLUSH(); + + udelay(10); + + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + mask = mask >> 1; + } } -/****************************************************************************** -* Shifts data bits in from the PHY -* -* hw - Struct containing variables accessed by shared code -* -* Bits are shifted in in MSB to LSB order. -******************************************************************************/ +/** + * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY + * @hw: Struct containing variables accessed by shared code + * + * Bits are shifted in in MSB to LSB order. + */ static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) { - u32 ctrl; - u16 data = 0; - u8 i; - - /* In order to read a register from the PHY, we need to shift in a total - * of 18 bits from the PHY. The first two bit (turnaround) times are used - * to avoid contention on the MDIO pin when a read operation is performed. - * These two bits are ignored by us and thrown away. Bits are "shifted in" - * by raising the input to the Management Data Clock (setting the MDC bit), - * and then reading the value of the MDIO bit. - */ - ctrl = er32(CTRL); - - /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ - ctrl &= ~E1000_CTRL_MDIO_DIR; - ctrl &= ~E1000_CTRL_MDIO; - - ew32(CTRL, ctrl); - E1000_WRITE_FLUSH(); - - /* Raise and Lower the clock before reading in the data. This accounts for - * the turnaround bits. The first clock occurred when we clocked out the - * last bit of the Register Address. - */ - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - for (data = 0, i = 0; i < 16; i++) { - data = data << 1; - e1000_raise_mdi_clk(hw, &ctrl); - ctrl = er32(CTRL); - /* Check to see if we shifted in a "1". */ - if (ctrl & E1000_CTRL_MDIO) - data |= 1; - e1000_lower_mdi_clk(hw, &ctrl); - } - - e1000_raise_mdi_clk(hw, &ctrl); - e1000_lower_mdi_clk(hw, &ctrl); - - return data; + u32 ctrl; + u16 data = 0; + u8 i; + + /* In order to read a register from the PHY, we need to shift in a total + * of 18 bits from the PHY. The first two bit (turnaround) times are used + * to avoid contention on the MDIO pin when a read operation is performed. + * These two bits are ignored by us and thrown away. Bits are "shifted in" + * by raising the input to the Management Data Clock (setting the MDC bit), + * and then reading the value of the MDIO bit. + */ + ctrl = er32(CTRL); + + /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ + ctrl &= ~E1000_CTRL_MDIO_DIR; + ctrl &= ~E1000_CTRL_MDIO; + + ew32(CTRL, ctrl); + E1000_WRITE_FLUSH(); + + /* Raise and Lower the clock before reading in the data. This accounts for + * the turnaround bits. The first clock occurred when we clocked out the + * last bit of the Register Address. + */ + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + for (data = 0, i = 0; i < 16; i++) { + data = data << 1; + e1000_raise_mdi_clk(hw, &ctrl); + ctrl = er32(CTRL); + /* Check to see if we shifted in a "1". */ + if (ctrl & E1000_CTRL_MDIO) + data |= 1; + e1000_lower_mdi_clk(hw, &ctrl); + } + + e1000_raise_mdi_clk(hw, &ctrl); + e1000_lower_mdi_clk(hw, &ctrl); + + return data; } -/***************************************************************************** -* Reads the value from a PHY register, if the value is on a specific non zero -* page, sets the page first. -* hw - Struct containing variables accessed by shared code -* reg_addr - address of the PHY register to read -******************************************************************************/ + +/** + * e1000_read_phy_reg - read a phy register + * @hw: Struct containing variables accessed by shared code + * @reg_addr: address of the PHY register to read + * + * Reads the value from a PHY register, if the value is on a specific non zero + * page, sets the page first. + */ s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) { - u32 ret_val; + u32 ret_val; - DEBUGFUNC("e1000_read_phy_reg"); + DEBUGFUNC("e1000_read_phy_reg"); - if ((hw->phy_type == e1000_phy_igp) && - (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { - ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, - (u16)reg_addr); - if (ret_val) - return ret_val; - } + if ((hw->phy_type == e1000_phy_igp) && + (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { + ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, + (u16) reg_addr); + if (ret_val) + return ret_val; + } + + ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, + phy_data); - ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, - phy_data); - return ret_val; + return ret_val; } static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) { - u32 i; - u32 mdic = 0; - const u32 phy_addr = 1; - - DEBUGFUNC("e1000_read_phy_reg_ex"); - - if (reg_addr > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); - return -E1000_ERR_PARAM; - } - - if (hw->mac_type > e1000_82543) { - /* Set up Op-code, Phy Address, and register address in the MDI - * Control register. The MAC will take care of interfacing with the - * PHY to retrieve the desired data. - */ - mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_READ)); - - ew32(MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < 64; i++) { - udelay(50); - mdic = er32(MDIC); - if (mdic & E1000_MDIC_READY) break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Read did not complete\n"); - return -E1000_ERR_PHY; - } - if (mdic & E1000_MDIC_ERROR) { - DEBUGOUT("MDI Error\n"); - return -E1000_ERR_PHY; - } - *phy_data = (u16)mdic; - } else { - /* We must first send a preamble through the MDIO pin to signal the - * beginning of an MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the next few fields that are required for a read - * operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine five different times. The format of - * a MII read instruction consists of a shift out of 14 bits and is - * defined as follows: - * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> - * followed by a shift in of 18 bits. This first two bits shifted in - * are TurnAround bits used to avoid contention on the MDIO pin when a - * READ operation is performed. These two bits are thrown away - * followed by a shift in of 16 bits which contains the desired data. - */ - mdic = ((reg_addr) | (phy_addr << 5) | - (PHY_OP_READ << 10) | (PHY_SOF << 12)); - - e1000_shift_out_mdi_bits(hw, mdic, 14); - - /* Now that we've shifted out the read command to the MII, we need to - * "shift in" the 16-bit value (18 total bits) of the requested PHY - * register address. - */ - *phy_data = e1000_shift_in_mdi_bits(hw); - } - return E1000_SUCCESS; + u32 i; + u32 mdic = 0; + const u32 phy_addr = 1; + + DEBUGFUNC("e1000_read_phy_reg_ex"); + + if (reg_addr > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + + if (hw->mac_type > e1000_82543) { + /* Set up Op-code, Phy Address, and register address in the MDI + * Control register. The MAC will take care of interfacing with the + * PHY to retrieve the desired data. + */ + mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_READ)); + + ew32(MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < 64; i++) { + udelay(50); + mdic = er32(MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Read did not complete\n"); + return -E1000_ERR_PHY; + } + if (mdic & E1000_MDIC_ERROR) { + DEBUGOUT("MDI Error\n"); + return -E1000_ERR_PHY; + } + *phy_data = (u16) mdic; + } else { + /* We must first send a preamble through the MDIO pin to signal the + * beginning of an MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the next few fields that are required for a read + * operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine five different times. The format of + * a MII read instruction consists of a shift out of 14 bits and is + * defined as follows: + * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> + * followed by a shift in of 18 bits. This first two bits shifted in + * are TurnAround bits used to avoid contention on the MDIO pin when a + * READ operation is performed. These two bits are thrown away + * followed by a shift in of 16 bits which contains the desired data. + */ + mdic = ((reg_addr) | (phy_addr << 5) | + (PHY_OP_READ << 10) | (PHY_SOF << 12)); + + e1000_shift_out_mdi_bits(hw, mdic, 14); + + /* Now that we've shifted out the read command to the MII, we need to + * "shift in" the 16-bit value (18 total bits) of the requested PHY + * register address. + */ + *phy_data = e1000_shift_in_mdi_bits(hw); + } + return E1000_SUCCESS; } -/****************************************************************************** -* Writes a value to a PHY register -* -* hw - Struct containing variables accessed by shared code -* reg_addr - address of the PHY register to write -* data - data to write to the PHY -******************************************************************************/ +/** + * e1000_write_phy_reg - write a phy register + * + * @hw: Struct containing variables accessed by shared code + * @reg_addr: address of the PHY register to write + * @data: data to write to the PHY + + * Writes a value to a PHY register + */ s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) { - u32 ret_val; + u32 ret_val; - DEBUGFUNC("e1000_write_phy_reg"); + DEBUGFUNC("e1000_write_phy_reg"); - if ((hw->phy_type == e1000_phy_igp) && - (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { - ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, - (u16)reg_addr); - if (ret_val) - return ret_val; - } + if ((hw->phy_type == e1000_phy_igp) && + (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { + ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, + (u16) reg_addr); + if (ret_val) + return ret_val; + } - ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, - phy_data); + ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, + phy_data); - return ret_val; + return ret_val; } static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) { - u32 i; - u32 mdic = 0; - const u32 phy_addr = 1; - - DEBUGFUNC("e1000_write_phy_reg_ex"); - - if (reg_addr > MAX_PHY_REG_ADDRESS) { - DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); - return -E1000_ERR_PARAM; - } - - if (hw->mac_type > e1000_82543) { - /* Set up Op-code, Phy Address, register address, and data intended - * for the PHY register in the MDI Control register. The MAC will take - * care of interfacing with the PHY to send the desired data. - */ - mdic = (((u32)phy_data) | - (reg_addr << E1000_MDIC_REG_SHIFT) | - (phy_addr << E1000_MDIC_PHY_SHIFT) | - (E1000_MDIC_OP_WRITE)); - - ew32(MDIC, mdic); - - /* Poll the ready bit to see if the MDI read completed */ - for (i = 0; i < 641; i++) { - udelay(5); - mdic = er32(MDIC); - if (mdic & E1000_MDIC_READY) break; - } - if (!(mdic & E1000_MDIC_READY)) { - DEBUGOUT("MDI Write did not complete\n"); - return -E1000_ERR_PHY; - } - } else { - /* We'll need to use the SW defined pins to shift the write command - * out to the PHY. We first send a preamble to the PHY to signal the - * beginning of the MII instruction. This is done by sending 32 - * consecutive "1" bits. - */ - e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); - - /* Now combine the remaining required fields that will indicate a - * write operation. We use this method instead of calling the - * e1000_shift_out_mdi_bits routine for each field in the command. The - * format of a MII write instruction is as follows: - * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. - */ - mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | - (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); - mdic <<= 16; - mdic |= (u32)phy_data; - - e1000_shift_out_mdi_bits(hw, mdic, 32); - } - - return E1000_SUCCESS; + u32 i; + u32 mdic = 0; + const u32 phy_addr = 1; + + DEBUGFUNC("e1000_write_phy_reg_ex"); + + if (reg_addr > MAX_PHY_REG_ADDRESS) { + DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); + return -E1000_ERR_PARAM; + } + + if (hw->mac_type > e1000_82543) { + /* Set up Op-code, Phy Address, register address, and data intended + * for the PHY register in the MDI Control register. The MAC will take + * care of interfacing with the PHY to send the desired data. + */ + mdic = (((u32) phy_data) | + (reg_addr << E1000_MDIC_REG_SHIFT) | + (phy_addr << E1000_MDIC_PHY_SHIFT) | + (E1000_MDIC_OP_WRITE)); + + ew32(MDIC, mdic); + + /* Poll the ready bit to see if the MDI read completed */ + for (i = 0; i < 641; i++) { + udelay(5); + mdic = er32(MDIC); + if (mdic & E1000_MDIC_READY) + break; + } + if (!(mdic & E1000_MDIC_READY)) { + DEBUGOUT("MDI Write did not complete\n"); + return -E1000_ERR_PHY; + } + } else { + /* We'll need to use the SW defined pins to shift the write command + * out to the PHY. We first send a preamble to the PHY to signal the + * beginning of the MII instruction. This is done by sending 32 + * consecutive "1" bits. + */ + e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + + /* Now combine the remaining required fields that will indicate a + * write operation. We use this method instead of calling the + * e1000_shift_out_mdi_bits routine for each field in the command. The + * format of a MII write instruction is as follows: + * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. + */ + mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | + (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); + mdic <<= 16; + mdic |= (u32) phy_data; + + e1000_shift_out_mdi_bits(hw, mdic, 32); + } + + return E1000_SUCCESS; } -/****************************************************************************** -* Returns the PHY to the power-on reset state -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ +/** + * e1000_phy_hw_reset - reset the phy, hardware style + * @hw: Struct containing variables accessed by shared code + * + * Returns the PHY to the power-on reset state + */ s32 e1000_phy_hw_reset(struct e1000_hw *hw) { - u32 ctrl, ctrl_ext; - u32 led_ctrl; - s32 ret_val; - - DEBUGFUNC("e1000_phy_hw_reset"); - - DEBUGOUT("Resetting Phy...\n"); - - if (hw->mac_type > e1000_82543) { - /* Read the device control register and assert the E1000_CTRL_PHY_RST - * bit. Then, take it out of reset. - * For e1000 hardware, we delay for 10ms between the assert - * and deassert. - */ - ctrl = er32(CTRL); - ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); - E1000_WRITE_FLUSH(); - - msleep(10); - - ew32(CTRL, ctrl); - E1000_WRITE_FLUSH(); - } else { - /* Read the Extended Device Control Register, assert the PHY_RESET_DIR - * bit to put the PHY into reset. Then, take it out of reset. - */ - ctrl_ext = er32(CTRL_EXT); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; - ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; - ew32(CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(); - msleep(10); - ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; - ew32(CTRL_EXT, ctrl_ext); - E1000_WRITE_FLUSH(); - } - udelay(150); - - if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { - /* Configure activity LED after PHY reset */ - led_ctrl = er32(LEDCTL); - led_ctrl &= IGP_ACTIVITY_LED_MASK; - led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); - ew32(LEDCTL, led_ctrl); - } - - /* Wait for FW to finish PHY configuration. */ - ret_val = e1000_get_phy_cfg_done(hw); - if (ret_val != E1000_SUCCESS) - return ret_val; - - return ret_val; + u32 ctrl, ctrl_ext; + u32 led_ctrl; + s32 ret_val; + + DEBUGFUNC("e1000_phy_hw_reset"); + + DEBUGOUT("Resetting Phy...\n"); + + if (hw->mac_type > e1000_82543) { + /* Read the device control register and assert the E1000_CTRL_PHY_RST + * bit. Then, take it out of reset. + * For e1000 hardware, we delay for 10ms between the assert + * and deassert. + */ + ctrl = er32(CTRL); + ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); + E1000_WRITE_FLUSH(); + + msleep(10); + + ew32(CTRL, ctrl); + E1000_WRITE_FLUSH(); + + } else { + /* Read the Extended Device Control Register, assert the PHY_RESET_DIR + * bit to put the PHY into reset. Then, take it out of reset. + */ + ctrl_ext = er32(CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; + ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; + ew32(CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(); + msleep(10); + ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; + ew32(CTRL_EXT, ctrl_ext); + E1000_WRITE_FLUSH(); + } + udelay(150); + + if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { + /* Configure activity LED after PHY reset */ + led_ctrl = er32(LEDCTL); + led_ctrl &= IGP_ACTIVITY_LED_MASK; + led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); + ew32(LEDCTL, led_ctrl); + } + + /* Wait for FW to finish PHY configuration. */ + ret_val = e1000_get_phy_cfg_done(hw); + if (ret_val != E1000_SUCCESS) + return ret_val; + + return ret_val; } -/****************************************************************************** -* Resets the PHY -* -* hw - Struct containing variables accessed by shared code -* -* Sets bit 15 of the MII Control register -******************************************************************************/ +/** + * e1000_phy_reset - reset the phy to commit settings + * @hw: Struct containing variables accessed by shared code + * + * Resets the PHY + * Sets bit 15 of the MII Control register + */ s32 e1000_phy_reset(struct e1000_hw *hw) { - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_phy_reset"); - - switch (hw->phy_type) { - case e1000_phy_igp: - ret_val = e1000_phy_hw_reset(hw); - if (ret_val) - return ret_val; - break; - default: - ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_data |= MII_CR_RESET; - ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); - if (ret_val) - return ret_val; - - udelay(1); - break; - } - - if (hw->phy_type == e1000_phy_igp) - e1000_phy_init_script(hw); - - return E1000_SUCCESS; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_phy_reset"); + + switch (hw->phy_type) { + case e1000_phy_igp: + ret_val = e1000_phy_hw_reset(hw); + if (ret_val) + return ret_val; + break; + default: + ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_data |= MII_CR_RESET; + ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); + if (ret_val) + return ret_val; + + udelay(1); + break; + } + + if (hw->phy_type == e1000_phy_igp) + e1000_phy_init_script(hw); + + return E1000_SUCCESS; } -/****************************************************************************** -* Probes the expected PHY address for known PHY IDs -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ +/** + * e1000_detect_gig_phy - check the phy type + * @hw: Struct containing variables accessed by shared code + * + * Probes the expected PHY address for known PHY IDs + */ static s32 e1000_detect_gig_phy(struct e1000_hw *hw) { - s32 phy_init_status, ret_val; - u16 phy_id_high, phy_id_low; - bool match = false; - - DEBUGFUNC("e1000_detect_gig_phy"); - - if (hw->phy_id != 0) - return E1000_SUCCESS; - - /* Read the PHY ID Registers to identify which PHY is onboard. */ - ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); - if (ret_val) - return ret_val; - - hw->phy_id = (u32)(phy_id_high << 16); - udelay(20); - ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); - if (ret_val) - return ret_val; - - hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK); - hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK; - - switch (hw->mac_type) { - case e1000_82543: - if (hw->phy_id == M88E1000_E_PHY_ID) match = true; - break; - case e1000_82544: - if (hw->phy_id == M88E1000_I_PHY_ID) match = true; - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - if (hw->phy_id == M88E1011_I_PHY_ID) match = true; - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true; - break; - default: - DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); - return -E1000_ERR_CONFIG; - } - phy_init_status = e1000_set_phy_type(hw); - - if ((match) && (phy_init_status == E1000_SUCCESS)) { - DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); - return E1000_SUCCESS; - } - DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); - return -E1000_ERR_PHY; + s32 phy_init_status, ret_val; + u16 phy_id_high, phy_id_low; + bool match = false; + + DEBUGFUNC("e1000_detect_gig_phy"); + + if (hw->phy_id != 0) + return E1000_SUCCESS; + + /* Read the PHY ID Registers to identify which PHY is onboard. */ + ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); + if (ret_val) + return ret_val; + + hw->phy_id = (u32) (phy_id_high << 16); + udelay(20); + ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); + if (ret_val) + return ret_val; + + hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK); + hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK; + + switch (hw->mac_type) { + case e1000_82543: + if (hw->phy_id == M88E1000_E_PHY_ID) + match = true; + break; + case e1000_82544: + if (hw->phy_id == M88E1000_I_PHY_ID) + match = true; + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + if (hw->phy_id == M88E1011_I_PHY_ID) + match = true; + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + if (hw->phy_id == IGP01E1000_I_PHY_ID) + match = true; + break; + default: + DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); + return -E1000_ERR_CONFIG; + } + phy_init_status = e1000_set_phy_type(hw); + + if ((match) && (phy_init_status == E1000_SUCCESS)) { + DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); + return E1000_SUCCESS; + } + DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); + return -E1000_ERR_PHY; } -/****************************************************************************** -* Resets the PHY's DSP -* -* hw - Struct containing variables accessed by shared code -******************************************************************************/ +/** + * e1000_phy_reset_dsp - reset DSP + * @hw: Struct containing variables accessed by shared code + * + * Resets the PHY's DSP + */ static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) { - s32 ret_val; - DEBUGFUNC("e1000_phy_reset_dsp"); - - do { - ret_val = e1000_write_phy_reg(hw, 29, 0x001d); - if (ret_val) break; - ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); - if (ret_val) break; - ret_val = e1000_write_phy_reg(hw, 30, 0x0000); - if (ret_val) break; - ret_val = E1000_SUCCESS; - } while (0); - - return ret_val; + s32 ret_val; + DEBUGFUNC("e1000_phy_reset_dsp"); + + do { + ret_val = e1000_write_phy_reg(hw, 29, 0x001d); + if (ret_val) + break; + ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); + if (ret_val) + break; + ret_val = e1000_write_phy_reg(hw, 30, 0x0000); + if (ret_val) + break; + ret_val = E1000_SUCCESS; + } while (0); + + return ret_val; } -/****************************************************************************** -* Get PHY information from various PHY registers for igp PHY only. -* -* hw - Struct containing variables accessed by shared code -* phy_info - PHY information structure -******************************************************************************/ +/** + * e1000_phy_igp_get_info - get igp specific registers + * @hw: Struct containing variables accessed by shared code + * @phy_info: PHY information structure + * + * Get PHY information from various PHY registers for igp PHY only. + */ static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) { - s32 ret_val; - u16 phy_data, min_length, max_length, average; - e1000_rev_polarity polarity; - - DEBUGFUNC("e1000_phy_igp_get_info"); - - /* The downshift status is checked only once, after link is established, - * and it stored in the hw->speed_downgraded parameter. */ - phy_info->downshift = (e1000_downshift)hw->speed_downgraded; - - /* IGP01E1000 does not need to support it. */ - phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; - - /* IGP01E1000 always correct polarity reversal */ - phy_info->polarity_correction = e1000_polarity_reversal_enabled; - - /* Check polarity status */ - ret_val = e1000_check_polarity(hw, &polarity); - if (ret_val) - return ret_val; - - phy_info->cable_polarity = polarity; - - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >> - IGP01E1000_PSSR_MDIX_SHIFT); - - if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - /* Local/Remote Receiver Information are only valid at 1000 Mbps */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> - SR_1000T_LOCAL_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> - SR_1000T_REMOTE_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - - /* Get cable length */ - ret_val = e1000_get_cable_length(hw, &min_length, &max_length); - if (ret_val) - return ret_val; - - /* Translate to old method */ - average = (max_length + min_length) / 2; - - if (average <= e1000_igp_cable_length_50) - phy_info->cable_length = e1000_cable_length_50; - else if (average <= e1000_igp_cable_length_80) - phy_info->cable_length = e1000_cable_length_50_80; - else if (average <= e1000_igp_cable_length_110) - phy_info->cable_length = e1000_cable_length_80_110; - else if (average <= e1000_igp_cable_length_140) - phy_info->cable_length = e1000_cable_length_110_140; - else - phy_info->cable_length = e1000_cable_length_140; - } - - return E1000_SUCCESS; -} + s32 ret_val; + u16 phy_data, min_length, max_length, average; + e1000_rev_polarity polarity; + + DEBUGFUNC("e1000_phy_igp_get_info"); + + /* The downshift status is checked only once, after link is established, + * and it stored in the hw->speed_downgraded parameter. */ + phy_info->downshift = (e1000_downshift) hw->speed_downgraded; + + /* IGP01E1000 does not need to support it. */ + phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; + + /* IGP01E1000 always correct polarity reversal */ + phy_info->polarity_correction = e1000_polarity_reversal_enabled; + + /* Check polarity status */ + ret_val = e1000_check_polarity(hw, &polarity); + if (ret_val) + return ret_val; + + phy_info->cable_polarity = polarity; + + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->mdix_mode = + (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >> + IGP01E1000_PSSR_MDIX_SHIFT); + + if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + /* Local/Remote Receiver Information are only valid at 1000 Mbps */ + ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> + SR_1000T_LOCAL_RX_STATUS_SHIFT) ? + e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; + phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> + SR_1000T_REMOTE_RX_STATUS_SHIFT) ? + e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; + + /* Get cable length */ + ret_val = e1000_get_cable_length(hw, &min_length, &max_length); + if (ret_val) + return ret_val; + + /* Translate to old method */ + average = (max_length + min_length) / 2; + + if (average <= e1000_igp_cable_length_50) + phy_info->cable_length = e1000_cable_length_50; + else if (average <= e1000_igp_cable_length_80) + phy_info->cable_length = e1000_cable_length_50_80; + else if (average <= e1000_igp_cable_length_110) + phy_info->cable_length = e1000_cable_length_80_110; + else if (average <= e1000_igp_cable_length_140) + phy_info->cable_length = e1000_cable_length_110_140; + else + phy_info->cable_length = e1000_cable_length_140; + } + return E1000_SUCCESS; +} -/****************************************************************************** -* Get PHY information from various PHY registers fot m88 PHY only. -* -* hw - Struct containing variables accessed by shared code -* phy_info - PHY information structure -******************************************************************************/ +/** + * e1000_phy_m88_get_info - get m88 specific registers + * @hw: Struct containing variables accessed by shared code + * @phy_info: PHY information structure + * + * Get PHY information from various PHY registers for m88 PHY only. + */ static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) { - s32 ret_val; - u16 phy_data; - e1000_rev_polarity polarity; - - DEBUGFUNC("e1000_phy_m88_get_info"); - - /* The downshift status is checked only once, after link is established, - * and it stored in the hw->speed_downgraded parameter. */ - phy_info->downshift = (e1000_downshift)hw->speed_downgraded; - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); - if (ret_val) - return ret_val; - - phy_info->extended_10bt_distance = - ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> - M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? - e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal; - - phy_info->polarity_correction = - ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> - M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? - e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; - - /* Check polarity status */ - ret_val = e1000_check_polarity(hw, &polarity); - if (ret_val) - return ret_val; - phy_info->cable_polarity = polarity; - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >> - M88E1000_PSSR_MDIX_SHIFT); - - if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { - /* Cable Length Estimation and Local/Remote Receiver Information - * are only valid at 1000 Mbps. - */ - phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT); - - ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); - if (ret_val) - return ret_val; - - phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> - SR_1000T_LOCAL_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> - SR_1000T_REMOTE_RX_STATUS_SHIFT) ? - e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; - - } - - return E1000_SUCCESS; + s32 ret_val; + u16 phy_data; + e1000_rev_polarity polarity; + + DEBUGFUNC("e1000_phy_m88_get_info"); + + /* The downshift status is checked only once, after link is established, + * and it stored in the hw->speed_downgraded parameter. */ + phy_info->downshift = (e1000_downshift) hw->speed_downgraded; + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); + if (ret_val) + return ret_val; + + phy_info->extended_10bt_distance = + ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> + M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? + e1000_10bt_ext_dist_enable_lower : + e1000_10bt_ext_dist_enable_normal; + + phy_info->polarity_correction = + ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> + M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? + e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; + + /* Check polarity status */ + ret_val = e1000_check_polarity(hw, &polarity); + if (ret_val) + return ret_val; + phy_info->cable_polarity = polarity; + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->mdix_mode = + (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >> + M88E1000_PSSR_MDIX_SHIFT); + + if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { + /* Cable Length Estimation and Local/Remote Receiver Information + * are only valid at 1000 Mbps. + */ + phy_info->cable_length = + (e1000_cable_length) ((phy_data & + M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT); + + ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); + if (ret_val) + return ret_val; + + phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> + SR_1000T_LOCAL_RX_STATUS_SHIFT) ? + e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; + phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> + SR_1000T_REMOTE_RX_STATUS_SHIFT) ? + e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; + + } + + return E1000_SUCCESS; } -/****************************************************************************** -* Get PHY information from various PHY registers -* -* hw - Struct containing variables accessed by shared code -* phy_info - PHY information structure -******************************************************************************/ +/** + * e1000_phy_get_info - request phy info + * @hw: Struct containing variables accessed by shared code + * @phy_info: PHY information structure + * + * Get PHY information from various PHY registers + */ s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) { - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_phy_get_info"); - - phy_info->cable_length = e1000_cable_length_undefined; - phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; - phy_info->cable_polarity = e1000_rev_polarity_undefined; - phy_info->downshift = e1000_downshift_undefined; - phy_info->polarity_correction = e1000_polarity_reversal_undefined; - phy_info->mdix_mode = e1000_auto_x_mode_undefined; - phy_info->local_rx = e1000_1000t_rx_status_undefined; - phy_info->remote_rx = e1000_1000t_rx_status_undefined; - - if (hw->media_type != e1000_media_type_copper) { - DEBUGOUT("PHY info is only valid for copper media\n"); - return -E1000_ERR_CONFIG; - } - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); - if (ret_val) - return ret_val; - - if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { - DEBUGOUT("PHY info is only valid if link is up\n"); - return -E1000_ERR_CONFIG; - } - - if (hw->phy_type == e1000_phy_igp) - return e1000_phy_igp_get_info(hw, phy_info); - else - return e1000_phy_m88_get_info(hw, phy_info); + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_phy_get_info"); + + phy_info->cable_length = e1000_cable_length_undefined; + phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; + phy_info->cable_polarity = e1000_rev_polarity_undefined; + phy_info->downshift = e1000_downshift_undefined; + phy_info->polarity_correction = e1000_polarity_reversal_undefined; + phy_info->mdix_mode = e1000_auto_x_mode_undefined; + phy_info->local_rx = e1000_1000t_rx_status_undefined; + phy_info->remote_rx = e1000_1000t_rx_status_undefined; + + if (hw->media_type != e1000_media_type_copper) { + DEBUGOUT("PHY info is only valid for copper media\n"); + return -E1000_ERR_CONFIG; + } + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); + if (ret_val) + return ret_val; + + if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { + DEBUGOUT("PHY info is only valid if link is up\n"); + return -E1000_ERR_CONFIG; + } + + if (hw->phy_type == e1000_phy_igp) + return e1000_phy_igp_get_info(hw, phy_info); + else + return e1000_phy_m88_get_info(hw, phy_info); } s32 e1000_validate_mdi_setting(struct e1000_hw *hw) { - DEBUGFUNC("e1000_validate_mdi_settings"); - - if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { - DEBUGOUT("Invalid MDI setting detected\n"); - hw->mdix = 1; - return -E1000_ERR_CONFIG; - } - return E1000_SUCCESS; -} + DEBUGFUNC("e1000_validate_mdi_settings"); + if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { + DEBUGOUT("Invalid MDI setting detected\n"); + hw->mdix = 1; + return -E1000_ERR_CONFIG; + } + return E1000_SUCCESS; +} -/****************************************************************************** +/** + * e1000_init_eeprom_params - initialize sw eeprom vars + * @hw: Struct containing variables accessed by shared code + * * Sets up eeprom variables in the hw struct. Must be called after mac_type * is configured. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ + */ s32 e1000_init_eeprom_params(struct e1000_hw *hw) { - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 eecd = er32(EECD); - s32 ret_val = E1000_SUCCESS; - u16 eeprom_size; - - DEBUGFUNC("e1000_init_eeprom_params"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - eeprom->type = e1000_eeprom_microwire; - eeprom->word_size = 64; - eeprom->opcode_bits = 3; - eeprom->address_bits = 6; - eeprom->delay_usec = 50; - eeprom->use_eerd = false; - eeprom->use_eewr = false; - break; - case e1000_82540: - case e1000_82545: - case e1000_82545_rev_3: - case e1000_82546: - case e1000_82546_rev_3: - eeprom->type = e1000_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if (eecd & E1000_EECD_SIZE) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - eeprom->use_eerd = false; - eeprom->use_eewr = false; - break; - case e1000_82541: - case e1000_82541_rev_2: - case e1000_82547: - case e1000_82547_rev_2: - if (eecd & E1000_EECD_TYPE) { - eeprom->type = e1000_eeprom_spi; - eeprom->opcode_bits = 8; - eeprom->delay_usec = 1; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->page_size = 32; - eeprom->address_bits = 16; - } else { - eeprom->page_size = 8; - eeprom->address_bits = 8; - } - } else { - eeprom->type = e1000_eeprom_microwire; - eeprom->opcode_bits = 3; - eeprom->delay_usec = 50; - if (eecd & E1000_EECD_ADDR_BITS) { - eeprom->word_size = 256; - eeprom->address_bits = 8; - } else { - eeprom->word_size = 64; - eeprom->address_bits = 6; - } - } - eeprom->use_eerd = false; - eeprom->use_eewr = false; - break; - default: - break; - } - - if (eeprom->type == e1000_eeprom_spi) { - /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to - * 32KB (incremented by powers of 2). - */ - /* Set to default value for initial eeprom read. */ - eeprom->word_size = 64; - ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); - if (ret_val) - return ret_val; - eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; - /* 256B eeprom size was not supported in earlier hardware, so we - * bump eeprom_size up one to ensure that "1" (which maps to 256B) - * is never the result used in the shifting logic below. */ - if (eeprom_size) - eeprom_size++; - - eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); - } - return ret_val; + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 eecd = er32(EECD); + s32 ret_val = E1000_SUCCESS; + u16 eeprom_size; + + DEBUGFUNC("e1000_init_eeprom_params"); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + eeprom->type = e1000_eeprom_microwire; + eeprom->word_size = 64; + eeprom->opcode_bits = 3; + eeprom->address_bits = 6; + eeprom->delay_usec = 50; + eeprom->use_eerd = false; + eeprom->use_eewr = false; + break; + case e1000_82540: + case e1000_82545: + case e1000_82545_rev_3: + case e1000_82546: + case e1000_82546_rev_3: + eeprom->type = e1000_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if (eecd & E1000_EECD_SIZE) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + eeprom->use_eerd = false; + eeprom->use_eewr = false; + break; + case e1000_82541: + case e1000_82541_rev_2: + case e1000_82547: + case e1000_82547_rev_2: + if (eecd & E1000_EECD_TYPE) { + eeprom->type = e1000_eeprom_spi; + eeprom->opcode_bits = 8; + eeprom->delay_usec = 1; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->page_size = 32; + eeprom->address_bits = 16; + } else { + eeprom->page_size = 8; + eeprom->address_bits = 8; + } + } else { + eeprom->type = e1000_eeprom_microwire; + eeprom->opcode_bits = 3; + eeprom->delay_usec = 50; + if (eecd & E1000_EECD_ADDR_BITS) { + eeprom->word_size = 256; + eeprom->address_bits = 8; + } else { + eeprom->word_size = 64; + eeprom->address_bits = 6; + } + } + eeprom->use_eerd = false; + eeprom->use_eewr = false; + break; + default: + break; + } + + if (eeprom->type == e1000_eeprom_spi) { + /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to + * 32KB (incremented by powers of 2). + */ + /* Set to default value for initial eeprom read. */ + eeprom->word_size = 64; + ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); + if (ret_val) + return ret_val; + eeprom_size = + (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; + /* 256B eeprom size was not supported in earlier hardware, so we + * bump eeprom_size up one to ensure that "1" (which maps to 256B) + * is never the result used in the shifting logic below. */ + if (eeprom_size) + eeprom_size++; + + eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); + } + return ret_val; } -/****************************************************************************** - * Raises the EEPROM's clock input. - * - * hw - Struct containing variables accessed by shared code - * eecd - EECD's current value - *****************************************************************************/ +/** + * e1000_raise_ee_clk - Raises the EEPROM's clock input. + * @hw: Struct containing variables accessed by shared code + * @eecd: EECD's current value + */ static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) { - /* Raise the clock input to the EEPROM (by setting the SK bit), and then - * wait <delay> microseconds. - */ - *eecd = *eecd | E1000_EECD_SK; - ew32(EECD, *eecd); - E1000_WRITE_FLUSH(); - udelay(hw->eeprom.delay_usec); + /* Raise the clock input to the EEPROM (by setting the SK bit), and then + * wait <delay> microseconds. + */ + *eecd = *eecd | E1000_EECD_SK; + ew32(EECD, *eecd); + E1000_WRITE_FLUSH(); + udelay(hw->eeprom.delay_usec); } -/****************************************************************************** - * Lowers the EEPROM's clock input. - * - * hw - Struct containing variables accessed by shared code - * eecd - EECD's current value - *****************************************************************************/ +/** + * e1000_lower_ee_clk - Lowers the EEPROM's clock input. + * @hw: Struct containing variables accessed by shared code + * @eecd: EECD's current value + */ static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) { - /* Lower the clock input to the EEPROM (by clearing the SK bit), and then - * wait 50 microseconds. - */ - *eecd = *eecd & ~E1000_EECD_SK; - ew32(EECD, *eecd); - E1000_WRITE_FLUSH(); - udelay(hw->eeprom.delay_usec); + /* Lower the clock input to the EEPROM (by clearing the SK bit), and then + * wait 50 microseconds. + */ + *eecd = *eecd & ~E1000_EECD_SK; + ew32(EECD, *eecd); + E1000_WRITE_FLUSH(); + udelay(hw->eeprom.delay_usec); } -/****************************************************************************** - * Shift data bits out to the EEPROM. - * - * hw - Struct containing variables accessed by shared code - * data - data to send to the EEPROM - * count - number of bits to shift out - *****************************************************************************/ +/** + * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM. + * @hw: Struct containing variables accessed by shared code + * @data: data to send to the EEPROM + * @count: number of bits to shift out + */ static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) { - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 eecd; - u32 mask; - - /* We need to shift "count" bits out to the EEPROM. So, value in the - * "data" parameter will be shifted out to the EEPROM one bit at a time. - * In order to do this, "data" must be broken down into bits. - */ - mask = 0x01 << (count - 1); - eecd = er32(EECD); - if (eeprom->type == e1000_eeprom_microwire) { - eecd &= ~E1000_EECD_DO; - } else if (eeprom->type == e1000_eeprom_spi) { - eecd |= E1000_EECD_DO; - } - do { - /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", - * and then raising and then lowering the clock (the SK bit controls - * the clock input to the EEPROM). A "0" is shifted out to the EEPROM - * by setting "DI" to "0" and then raising and then lowering the clock. - */ - eecd &= ~E1000_EECD_DI; - - if (data & mask) - eecd |= E1000_EECD_DI; - - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - - udelay(eeprom->delay_usec); - - e1000_raise_ee_clk(hw, &eecd); - e1000_lower_ee_clk(hw, &eecd); - - mask = mask >> 1; - - } while (mask); - - /* We leave the "DI" bit set to "0" when we leave this routine. */ - eecd &= ~E1000_EECD_DI; - ew32(EECD, eecd); + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 eecd; + u32 mask; + + /* We need to shift "count" bits out to the EEPROM. So, value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + */ + mask = 0x01 << (count - 1); + eecd = er32(EECD); + if (eeprom->type == e1000_eeprom_microwire) { + eecd &= ~E1000_EECD_DO; + } else if (eeprom->type == e1000_eeprom_spi) { + eecd |= E1000_EECD_DO; + } + do { + /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", + * and then raising and then lowering the clock (the SK bit controls + * the clock input to the EEPROM). A "0" is shifted out to the EEPROM + * by setting "DI" to "0" and then raising and then lowering the clock. + */ + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + + udelay(eeprom->delay_usec); + + e1000_raise_ee_clk(hw, &eecd); + e1000_lower_ee_clk(hw, &eecd); + + mask = mask >> 1; + + } while (mask); + + /* We leave the "DI" bit set to "0" when we leave this routine. */ + eecd &= ~E1000_EECD_DI; + ew32(EECD, eecd); } -/****************************************************************************** - * Shift data bits in from the EEPROM - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ +/** + * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM + * @hw: Struct containing variables accessed by shared code + * @count: number of bits to shift in + */ static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) { - u32 eecd; - u32 i; - u16 data; - - /* In order to read a register from the EEPROM, we need to shift 'count' - * bits in from the EEPROM. Bits are "shifted in" by raising the clock - * input to the EEPROM (setting the SK bit), and then reading the value of - * the "DO" bit. During this "shifting in" process the "DI" bit should - * always be clear. - */ + u32 eecd; + u32 i; + u16 data; + + /* In order to read a register from the EEPROM, we need to shift 'count' + * bits in from the EEPROM. Bits are "shifted in" by raising the clock + * input to the EEPROM (setting the SK bit), and then reading the value of + * the "DO" bit. During this "shifting in" process the "DI" bit should + * always be clear. + */ - eecd = er32(EECD); + eecd = er32(EECD); - eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); - data = 0; + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; - for (i = 0; i < count; i++) { - data = data << 1; - e1000_raise_ee_clk(hw, &eecd); + for (i = 0; i < count; i++) { + data = data << 1; + e1000_raise_ee_clk(hw, &eecd); - eecd = er32(EECD); + eecd = er32(EECD); - eecd &= ~(E1000_EECD_DI); - if (eecd & E1000_EECD_DO) - data |= 1; + eecd &= ~(E1000_EECD_DI); + if (eecd & E1000_EECD_DO) + data |= 1; - e1000_lower_ee_clk(hw, &eecd); - } + e1000_lower_ee_clk(hw, &eecd); + } - return data; + return data; } -/****************************************************************************** - * Prepares EEPROM for access - * - * hw - Struct containing variables accessed by shared code +/** + * e1000_acquire_eeprom - Prepares EEPROM for access + * @hw: Struct containing variables accessed by shared code * * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This * function should be called before issuing a command to the EEPROM. - *****************************************************************************/ + */ static s32 e1000_acquire_eeprom(struct e1000_hw *hw) { - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 eecd, i=0; - - DEBUGFUNC("e1000_acquire_eeprom"); - - eecd = er32(EECD); - - /* Request EEPROM Access */ - if (hw->mac_type > e1000_82544) { - eecd |= E1000_EECD_REQ; - ew32(EECD, eecd); - eecd = er32(EECD); - while ((!(eecd & E1000_EECD_GNT)) && - (i < E1000_EEPROM_GRANT_ATTEMPTS)) { - i++; - udelay(5); - eecd = er32(EECD); - } - if (!(eecd & E1000_EECD_GNT)) { - eecd &= ~E1000_EECD_REQ; - ew32(EECD, eecd); - DEBUGOUT("Could not acquire EEPROM grant\n"); - return -E1000_ERR_EEPROM; - } - } - - /* Setup EEPROM for Read/Write */ - - if (eeprom->type == e1000_eeprom_microwire) { - /* Clear SK and DI */ - eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); - ew32(EECD, eecd); - - /* Set CS */ - eecd |= E1000_EECD_CS; - ew32(EECD, eecd); - } else if (eeprom->type == e1000_eeprom_spi) { - /* Clear SK and CS */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - ew32(EECD, eecd); - udelay(1); - } - - return E1000_SUCCESS; + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 eecd, i = 0; + + DEBUGFUNC("e1000_acquire_eeprom"); + + eecd = er32(EECD); + + /* Request EEPROM Access */ + if (hw->mac_type > e1000_82544) { + eecd |= E1000_EECD_REQ; + ew32(EECD, eecd); + eecd = er32(EECD); + while ((!(eecd & E1000_EECD_GNT)) && + (i < E1000_EEPROM_GRANT_ATTEMPTS)) { + i++; + udelay(5); + eecd = er32(EECD); + } + if (!(eecd & E1000_EECD_GNT)) { + eecd &= ~E1000_EECD_REQ; + ew32(EECD, eecd); + DEBUGOUT("Could not acquire EEPROM grant\n"); + return -E1000_ERR_EEPROM; + } + } + + /* Setup EEPROM for Read/Write */ + + if (eeprom->type == e1000_eeprom_microwire) { + /* Clear SK and DI */ + eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); + ew32(EECD, eecd); + + /* Set CS */ + eecd |= E1000_EECD_CS; + ew32(EECD, eecd); + } else if (eeprom->type == e1000_eeprom_spi) { + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + ew32(EECD, eecd); + udelay(1); + } + + return E1000_SUCCESS; } -/****************************************************************************** - * Returns EEPROM to a "standby" state - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ +/** + * e1000_standby_eeprom - Returns EEPROM to a "standby" state + * @hw: Struct containing variables accessed by shared code + */ static void e1000_standby_eeprom(struct e1000_hw *hw) { - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 eecd; - - eecd = er32(EECD); - - if (eeprom->type == e1000_eeprom_microwire) { - eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - - /* Clock high */ - eecd |= E1000_EECD_SK; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - - /* Select EEPROM */ - eecd |= E1000_EECD_CS; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - - /* Clock low */ - eecd &= ~E1000_EECD_SK; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - } else if (eeprom->type == e1000_eeprom_spi) { - /* Toggle CS to flush commands */ - eecd |= E1000_EECD_CS; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - eecd &= ~E1000_EECD_CS; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(eeprom->delay_usec); - } + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 eecd; + + eecd = er32(EECD); + + if (eeprom->type == e1000_eeprom_microwire) { + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + + /* Clock high */ + eecd |= E1000_EECD_SK; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + + /* Select EEPROM */ + eecd |= E1000_EECD_CS; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + + /* Clock low */ + eecd &= ~E1000_EECD_SK; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + } else if (eeprom->type == e1000_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + eecd &= ~E1000_EECD_CS; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(eeprom->delay_usec); + } } -/****************************************************************************** - * Terminates a command by inverting the EEPROM's chip select pin +/** + * e1000_release_eeprom - drop chip select + * @hw: Struct containing variables accessed by shared code * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ + * Terminates a command by inverting the EEPROM's chip select pin + */ static void e1000_release_eeprom(struct e1000_hw *hw) { - u32 eecd; + u32 eecd; - DEBUGFUNC("e1000_release_eeprom"); + DEBUGFUNC("e1000_release_eeprom"); - eecd = er32(EECD); + eecd = er32(EECD); - if (hw->eeprom.type == e1000_eeprom_spi) { - eecd |= E1000_EECD_CS; /* Pull CS high */ - eecd &= ~E1000_EECD_SK; /* Lower SCK */ + if (hw->eeprom.type == e1000_eeprom_spi) { + eecd |= E1000_EECD_CS; /* Pull CS high */ + eecd &= ~E1000_EECD_SK; /* Lower SCK */ - ew32(EECD, eecd); + ew32(EECD, eecd); - udelay(hw->eeprom.delay_usec); - } else if (hw->eeprom.type == e1000_eeprom_microwire) { - /* cleanup eeprom */ + udelay(hw->eeprom.delay_usec); + } else if (hw->eeprom.type == e1000_eeprom_microwire) { + /* cleanup eeprom */ - /* CS on Microwire is active-high */ - eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); + /* CS on Microwire is active-high */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); - ew32(EECD, eecd); + ew32(EECD, eecd); - /* Rising edge of clock */ - eecd |= E1000_EECD_SK; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(hw->eeprom.delay_usec); + /* Rising edge of clock */ + eecd |= E1000_EECD_SK; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(hw->eeprom.delay_usec); - /* Falling edge of clock */ - eecd &= ~E1000_EECD_SK; - ew32(EECD, eecd); - E1000_WRITE_FLUSH(); - udelay(hw->eeprom.delay_usec); - } + /* Falling edge of clock */ + eecd &= ~E1000_EECD_SK; + ew32(EECD, eecd); + E1000_WRITE_FLUSH(); + udelay(hw->eeprom.delay_usec); + } - /* Stop requesting EEPROM access */ - if (hw->mac_type > e1000_82544) { - eecd &= ~E1000_EECD_REQ; - ew32(EECD, eecd); - } + /* Stop requesting EEPROM access */ + if (hw->mac_type > e1000_82544) { + eecd &= ~E1000_EECD_REQ; + ew32(EECD, eecd); + } } -/****************************************************************************** - * Reads a 16 bit word from the EEPROM. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ +/** + * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM. + * @hw: Struct containing variables accessed by shared code + */ static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) { - u16 retry_count = 0; - u8 spi_stat_reg; - - DEBUGFUNC("e1000_spi_eeprom_ready"); - - /* Read "Status Register" repeatedly until the LSB is cleared. The - * EEPROM will signal that the command has been completed by clearing - * bit 0 of the internal status register. If it's not cleared within - * 5 milliseconds, then error out. - */ - retry_count = 0; - do { - e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, - hw->eeprom.opcode_bits); - spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8); - if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) - break; - - udelay(5); - retry_count += 5; - - e1000_standby_eeprom(hw); - } while (retry_count < EEPROM_MAX_RETRY_SPI); - - /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and - * only 0-5mSec on 5V devices) - */ - if (retry_count >= EEPROM_MAX_RETRY_SPI) { - DEBUGOUT("SPI EEPROM Status error\n"); - return -E1000_ERR_EEPROM; - } - - return E1000_SUCCESS; + u16 retry_count = 0; + u8 spi_stat_reg; + + DEBUGFUNC("e1000_spi_eeprom_ready"); + + /* Read "Status Register" repeatedly until the LSB is cleared. The + * EEPROM will signal that the command has been completed by clearing + * bit 0 of the internal status register. If it's not cleared within + * 5 milliseconds, then error out. + */ + retry_count = 0; + do { + e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, + hw->eeprom.opcode_bits); + spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8); + if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) + break; + + udelay(5); + retry_count += 5; + + e1000_standby_eeprom(hw); + } while (retry_count < EEPROM_MAX_RETRY_SPI); + + /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and + * only 0-5mSec on 5V devices) + */ + if (retry_count >= EEPROM_MAX_RETRY_SPI) { + DEBUGOUT("SPI EEPROM Status error\n"); + return -E1000_ERR_EEPROM; + } + + return E1000_SUCCESS; } -/****************************************************************************** - * Reads a 16 bit word from the EEPROM. - * - * hw - Struct containing variables accessed by shared code - * offset - offset of word in the EEPROM to read - * data - word read from the EEPROM - * words - number of words to read - *****************************************************************************/ +/** + * e1000_read_eeprom - Reads a 16 bit word from the EEPROM. + * @hw: Struct containing variables accessed by shared code + * @offset: offset of word in the EEPROM to read + * @data: word read from the EEPROM + * @words: number of words to read + */ s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { - s32 ret; - spin_lock(&e1000_eeprom_lock); - ret = e1000_do_read_eeprom(hw, offset, words, data); - spin_unlock(&e1000_eeprom_lock); - return ret; + s32 ret; + spin_lock(&e1000_eeprom_lock); + ret = e1000_do_read_eeprom(hw, offset, words, data); + spin_unlock(&e1000_eeprom_lock); + return ret; } -static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) { - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 i = 0; - - DEBUGFUNC("e1000_read_eeprom"); - - /* If eeprom is not yet detected, do so now */ - if (eeprom->word_size == 0) - e1000_init_eeprom_params(hw); - - /* A check for invalid values: offset too large, too many words, and not - * enough words. - */ - if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || - (words == 0)) { - DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size); - return -E1000_ERR_EEPROM; - } - - /* EEPROM's that don't use EERD to read require us to bit-bang the SPI - * directly. In this case, we need to acquire the EEPROM so that - * FW or other port software does not interrupt. - */ - if (!hw->eeprom.use_eerd) { - /* Prepare the EEPROM for bit-bang reading */ - if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - } - - /* Eerd register EEPROM access requires no eeprom aquire/release */ - if (eeprom->use_eerd) - return e1000_read_eeprom_eerd(hw, offset, words, data); - - /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have - * acquired the EEPROM at this point, so any returns should relase it */ - if (eeprom->type == e1000_eeprom_spi) { - u16 word_in; - u8 read_opcode = EEPROM_READ_OPCODE_SPI; - - if (e1000_spi_eeprom_ready(hw)) { - e1000_release_eeprom(hw); - return -E1000_ERR_EEPROM; - } - - e1000_standby_eeprom(hw); - - /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if ((eeprom->address_bits == 8) && (offset >= 128)) - read_opcode |= EEPROM_A8_OPCODE_SPI; - - /* Send the READ command (opcode + addr) */ - e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); - e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits); - - /* Read the data. The address of the eeprom internally increments with - * each byte (spi) being read, saving on the overhead of eeprom setup - * and tear-down. The address counter will roll over if reading beyond - * the size of the eeprom, thus allowing the entire memory to be read - * starting from any offset. */ - for (i = 0; i < words; i++) { - word_in = e1000_shift_in_ee_bits(hw, 16); - data[i] = (word_in >> 8) | (word_in << 8); - } - } else if (eeprom->type == e1000_eeprom_microwire) { - for (i = 0; i < words; i++) { - /* Send the READ command (opcode + addr) */ - e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, - eeprom->opcode_bits); - e1000_shift_out_ee_bits(hw, (u16)(offset + i), - eeprom->address_bits); - - /* Read the data. For microwire, each word requires the overhead - * of eeprom setup and tear-down. */ - data[i] = e1000_shift_in_ee_bits(hw, 16); - e1000_standby_eeprom(hw); - } - } - - /* End this read operation */ - e1000_release_eeprom(hw); - - return E1000_SUCCESS; + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 i = 0; + + DEBUGFUNC("e1000_read_eeprom"); + + /* If eeprom is not yet detected, do so now */ + if (eeprom->word_size == 0) + e1000_init_eeprom_params(hw); + + /* A check for invalid values: offset too large, too many words, and not + * enough words. + */ + if ((offset >= eeprom->word_size) + || (words > eeprom->word_size - offset) || (words == 0)) { + DEBUGOUT2 + ("\"words\" parameter out of bounds. Words = %d, size = %d\n", + offset, eeprom->word_size); + return -E1000_ERR_EEPROM; + } + + /* EEPROM's that don't use EERD to read require us to bit-bang the SPI + * directly. In this case, we need to acquire the EEPROM so that + * FW or other port software does not interrupt. + */ + if (!hw->eeprom.use_eerd) { + /* Prepare the EEPROM for bit-bang reading */ + if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + } + + /* Eerd register EEPROM access requires no eeprom aquire/release */ + if (eeprom->use_eerd) + return e1000_read_eeprom_eerd(hw, offset, words, data); + + /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have + * acquired the EEPROM at this point, so any returns should release it */ + if (eeprom->type == e1000_eeprom_spi) { + u16 word_in; + u8 read_opcode = EEPROM_READ_OPCODE_SPI; + + if (e1000_spi_eeprom_ready(hw)) { + e1000_release_eeprom(hw); + return -E1000_ERR_EEPROM; + } + + e1000_standby_eeprom(hw); + + /* Some SPI eeproms use the 8th address bit embedded in the opcode */ + if ((eeprom->address_bits == 8) && (offset >= 128)) + read_opcode |= EEPROM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); + e1000_shift_out_ee_bits(hw, (u16) (offset * 2), + eeprom->address_bits); + + /* Read the data. The address of the eeprom internally increments with + * each byte (spi) being read, saving on the overhead of eeprom setup + * and tear-down. The address counter will roll over if reading beyond + * the size of the eeprom, thus allowing the entire memory to be read + * starting from any offset. */ + for (i = 0; i < words; i++) { + word_in = e1000_shift_in_ee_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + } else if (eeprom->type == e1000_eeprom_microwire) { + for (i = 0; i < words; i++) { + /* Send the READ command (opcode + addr) */ + e1000_shift_out_ee_bits(hw, + EEPROM_READ_OPCODE_MICROWIRE, + eeprom->opcode_bits); + e1000_shift_out_ee_bits(hw, (u16) (offset + i), + eeprom->address_bits); + + /* Read the data. For microwire, each word requires the overhead + * of eeprom setup and tear-down. */ + data[i] = e1000_shift_in_ee_bits(hw, 16); + e1000_standby_eeprom(hw); + } + } + + /* End this read operation */ + e1000_release_eeprom(hw); + + return E1000_SUCCESS; } -/****************************************************************************** +/** * Reads a 16 bit word from the EEPROM using the EERD register. * - * hw - Struct containing variables accessed by shared code + * @hw: Struct containing variables accessed by shared code * offset - offset of word in the EEPROM to read * data - word read from the EEPROM * words - number of words to read - *****************************************************************************/ + */ static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { - u32 i, eerd = 0; - s32 error = 0; + u32 i, eerd = 0; + s32 error = 0; - for (i = 0; i < words; i++) { - eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + - E1000_EEPROM_RW_REG_START; + for (i = 0; i < words; i++) { + eerd = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT) + + E1000_EEPROM_RW_REG_START; - ew32(EERD, eerd); - error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); + ew32(EERD, eerd); + error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); - if (error) { - break; - } - data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA); + if (error) { + break; + } + data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA); - } + } - return error; + return error; } -/****************************************************************************** +/** * Writes a 16 bit word from the EEPROM using the EEWR register. * - * hw - Struct containing variables accessed by shared code + * @hw: Struct containing variables accessed by shared code * offset - offset of word in the EEPROM to read * data - word read from the EEPROM * words - number of words to read - *****************************************************************************/ + */ static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { - u32 register_value = 0; - u32 i = 0; - s32 error = 0; + u32 register_value = 0; + u32 i = 0; + s32 error = 0; + for (i = 0; i < words; i++) { + register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | + ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT) | + E1000_EEPROM_RW_REG_START; - for (i = 0; i < words; i++) { - register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | - ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | - E1000_EEPROM_RW_REG_START; - - error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - if (error) { - break; - } + error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); + if (error) { + break; + } - ew32(EEWR, register_value); + ew32(EEWR, register_value); - error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); + error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); - if (error) { - break; - } - } + if (error) { + break; + } + } - return error; + return error; } -/****************************************************************************** +/** * Polls the status bit (bit 1) of the EERD to determine when the read is done. * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ + * @hw: Struct containing variables accessed by shared code + */ static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) { - u32 attempts = 100000; - u32 i, reg = 0; - s32 done = E1000_ERR_EEPROM; - - for (i = 0; i < attempts; i++) { - if (eerd == E1000_EEPROM_POLL_READ) - reg = er32(EERD); - else - reg = er32(EEWR); - - if (reg & E1000_EEPROM_RW_REG_DONE) { - done = E1000_SUCCESS; - break; - } - udelay(5); - } - - return done; + u32 attempts = 100000; + u32 i, reg = 0; + s32 done = E1000_ERR_EEPROM; + + for (i = 0; i < attempts; i++) { + if (eerd == E1000_EEPROM_POLL_READ) + reg = er32(EERD); + else + reg = er32(EEWR); + + if (reg & E1000_EEPROM_RW_REG_DONE) { + done = E1000_SUCCESS; + break; + } + udelay(5); + } + + return done; } -/****************************************************************************** - * Verifies that the EEPROM has a valid checksum - * - * hw - Struct containing variables accessed by shared code +/** + * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum + * @hw: Struct containing variables accessed by shared code * * Reads the first 64 16 bit words of the EEPROM and sums the values read. * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is * valid. - *****************************************************************************/ + */ s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) { - u16 checksum = 0; - u16 i, eeprom_data; - - DEBUGFUNC("e1000_validate_eeprom_checksum"); - - for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { - if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - checksum += eeprom_data; - } - - if (checksum == (u16)EEPROM_SUM) - return E1000_SUCCESS; - else { - DEBUGOUT("EEPROM Checksum Invalid\n"); - return -E1000_ERR_EEPROM; - } + u16 checksum = 0; + u16 i, eeprom_data; + + DEBUGFUNC("e1000_validate_eeprom_checksum"); + + for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { + if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + + if (checksum == (u16) EEPROM_SUM) + return E1000_SUCCESS; + else { + DEBUGOUT("EEPROM Checksum Invalid\n"); + return -E1000_ERR_EEPROM; + } } -/****************************************************************************** - * Calculates the EEPROM checksum and writes it to the EEPROM - * - * hw - Struct containing variables accessed by shared code +/** + * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum + * @hw: Struct containing variables accessed by shared code * * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. * Writes the difference to word offset 63 of the EEPROM. - *****************************************************************************/ + */ s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) { - u16 checksum = 0; - u16 i, eeprom_data; - - DEBUGFUNC("e1000_update_eeprom_checksum"); - - for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { - if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - checksum += eeprom_data; - } - checksum = (u16)EEPROM_SUM - checksum; - if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { - DEBUGOUT("EEPROM Write Error\n"); - return -E1000_ERR_EEPROM; - } - return E1000_SUCCESS; + u16 checksum = 0; + u16 i, eeprom_data; + + DEBUGFUNC("e1000_update_eeprom_checksum"); + + for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { + if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + checksum += eeprom_data; + } + checksum = (u16) EEPROM_SUM - checksum; + if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { + DEBUGOUT("EEPROM Write Error\n"); + return -E1000_ERR_EEPROM; + } + return E1000_SUCCESS; } -/****************************************************************************** - * Parent function for writing words to the different EEPROM types. - * - * hw - Struct containing variables accessed by shared code - * offset - offset within the EEPROM to be written to - * words - number of words to write - * data - 16 bit word to be written to the EEPROM +/** + * e1000_write_eeprom - write words to the different EEPROM types. + * @hw: Struct containing variables accessed by shared code + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word to be written to the EEPROM * * If e1000_update_eeprom_checksum is not called after this function, the * EEPROM will most likely contain an invalid checksum. - *****************************************************************************/ + */ s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { - s32 ret; - spin_lock(&e1000_eeprom_lock); - ret = e1000_do_write_eeprom(hw, offset, words, data); - spin_unlock(&e1000_eeprom_lock); - return ret; + s32 ret; + spin_lock(&e1000_eeprom_lock); + ret = e1000_do_write_eeprom(hw, offset, words, data); + spin_unlock(&e1000_eeprom_lock); + return ret; } - -static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, + u16 *data) { - struct e1000_eeprom_info *eeprom = &hw->eeprom; - s32 status = 0; - - DEBUGFUNC("e1000_write_eeprom"); - - /* If eeprom is not yet detected, do so now */ - if (eeprom->word_size == 0) - e1000_init_eeprom_params(hw); - - /* A check for invalid values: offset too large, too many words, and not - * enough words. - */ - if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || - (words == 0)) { - DEBUGOUT("\"words\" parameter out of bounds\n"); - return -E1000_ERR_EEPROM; - } - - if (eeprom->use_eewr) - return e1000_write_eeprom_eewr(hw, offset, words, data); - - /* Prepare the EEPROM for writing */ - if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) - return -E1000_ERR_EEPROM; - - if (eeprom->type == e1000_eeprom_microwire) { - status = e1000_write_eeprom_microwire(hw, offset, words, data); - } else { - status = e1000_write_eeprom_spi(hw, offset, words, data); - msleep(10); - } - - /* Done with writing */ - e1000_release_eeprom(hw); - - return status; + struct e1000_eeprom_info *eeprom = &hw->eeprom; + s32 status = 0; + + DEBUGFUNC("e1000_write_eeprom"); + + /* If eeprom is not yet detected, do so now */ + if (eeprom->word_size == 0) + e1000_init_eeprom_params(hw); + + /* A check for invalid values: offset too large, too many words, and not + * enough words. + */ + if ((offset >= eeprom->word_size) + || (words > eeprom->word_size - offset) || (words == 0)) { + DEBUGOUT("\"words\" parameter out of bounds\n"); + return -E1000_ERR_EEPROM; + } + + if (eeprom->use_eewr) + return e1000_write_eeprom_eewr(hw, offset, words, data); + + /* Prepare the EEPROM for writing */ + if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) + return -E1000_ERR_EEPROM; + + if (eeprom->type == e1000_eeprom_microwire) { + status = e1000_write_eeprom_microwire(hw, offset, words, data); + } else { + status = e1000_write_eeprom_spi(hw, offset, words, data); + msleep(10); + } + + /* Done with writing */ + e1000_release_eeprom(hw); + + return status; } -/****************************************************************************** - * Writes a 16 bit word to a given offset in an SPI EEPROM. - * - * hw - Struct containing variables accessed by shared code - * offset - offset within the EEPROM to be written to - * words - number of words to write - * data - pointer to array of 8 bit words to be written to the EEPROM - * - *****************************************************************************/ +/** + * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM. + * @hw: Struct containing variables accessed by shared code + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: pointer to array of 8 bit words to be written to the EEPROM + */ static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u16 widx = 0; + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u16 widx = 0; - DEBUGFUNC("e1000_write_eeprom_spi"); + DEBUGFUNC("e1000_write_eeprom_spi"); - while (widx < words) { - u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; + while (widx < words) { + u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; - if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; + if (e1000_spi_eeprom_ready(hw)) + return -E1000_ERR_EEPROM; - e1000_standby_eeprom(hw); + e1000_standby_eeprom(hw); - /* Send the WRITE ENABLE command (8 bit opcode ) */ - e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, - eeprom->opcode_bits); + /* Send the WRITE ENABLE command (8 bit opcode ) */ + e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, + eeprom->opcode_bits); - e1000_standby_eeprom(hw); + e1000_standby_eeprom(hw); - /* Some SPI eeproms use the 8th address bit embedded in the opcode */ - if ((eeprom->address_bits == 8) && (offset >= 128)) - write_opcode |= EEPROM_A8_OPCODE_SPI; + /* Some SPI eeproms use the 8th address bit embedded in the opcode */ + if ((eeprom->address_bits == 8) && (offset >= 128)) + write_opcode |= EEPROM_A8_OPCODE_SPI; - /* Send the Write command (8-bit opcode + addr) */ - e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); + /* Send the Write command (8-bit opcode + addr) */ + e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); - e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2), - eeprom->address_bits); + e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2), + eeprom->address_bits); - /* Send the data */ + /* Send the data */ - /* Loop to allow for up to whole page write (32 bytes) of eeprom */ - while (widx < words) { - u16 word_out = data[widx]; - word_out = (word_out >> 8) | (word_out << 8); - e1000_shift_out_ee_bits(hw, word_out, 16); - widx++; + /* Loop to allow for up to whole page write (32 bytes) of eeprom */ + while (widx < words) { + u16 word_out = data[widx]; + word_out = (word_out >> 8) | (word_out << 8); + e1000_shift_out_ee_bits(hw, word_out, 16); + widx++; - /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE - * operation, while the smaller eeproms are capable of an 8-byte - * PAGE WRITE operation. Break the inner loop to pass new address - */ - if ((((offset + widx)*2) % eeprom->page_size) == 0) { - e1000_standby_eeprom(hw); - break; - } - } - } + /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE + * operation, while the smaller eeproms are capable of an 8-byte + * PAGE WRITE operation. Break the inner loop to pass new address + */ + if ((((offset + widx) * 2) % eeprom->page_size) == 0) { + e1000_standby_eeprom(hw); + break; + } + } + } - return E1000_SUCCESS; + return E1000_SUCCESS; } -/****************************************************************************** - * Writes a 16 bit word to a given offset in a Microwire EEPROM. - * - * hw - Struct containing variables accessed by shared code - * offset - offset within the EEPROM to be written to - * words - number of words to write - * data - pointer to array of 16 bit words to be written to the EEPROM - * - *****************************************************************************/ +/** + * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM. + * @hw: Struct containing variables accessed by shared code + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: pointer to array of 8 bit words to be written to the EEPROM + */ static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) { - struct e1000_eeprom_info *eeprom = &hw->eeprom; - u32 eecd; - u16 words_written = 0; - u16 i = 0; - - DEBUGFUNC("e1000_write_eeprom_microwire"); - - /* Send the write enable command to the EEPROM (3-bit opcode plus - * 6/8-bit dummy address beginning with 11). It's less work to include - * the 11 of the dummy address as part of the opcode than it is to shift - * it over the correct number of bits for the address. This puts the - * EEPROM into write/erase mode. - */ - e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, - (u16)(eeprom->opcode_bits + 2)); - - e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); - - /* Prepare the EEPROM */ - e1000_standby_eeprom(hw); - - while (words_written < words) { - /* Send the Write command (3-bit opcode + addr) */ - e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, - eeprom->opcode_bits); - - e1000_shift_out_ee_bits(hw, (u16)(offset + words_written), - eeprom->address_bits); - - /* Send the data */ - e1000_shift_out_ee_bits(hw, data[words_written], 16); - - /* Toggle the CS line. This in effect tells the EEPROM to execute - * the previous command. - */ - e1000_standby_eeprom(hw); - - /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will - * signal that the command has been completed by raising the DO signal. - * If DO does not go high in 10 milliseconds, then error out. - */ - for (i = 0; i < 200; i++) { - eecd = er32(EECD); - if (eecd & E1000_EECD_DO) break; - udelay(50); - } - if (i == 200) { - DEBUGOUT("EEPROM Write did not complete\n"); - return -E1000_ERR_EEPROM; - } - - /* Recover from write */ - e1000_standby_eeprom(hw); - - words_written++; - } - - /* Send the write disable command to the EEPROM (3-bit opcode plus - * 6/8-bit dummy address beginning with 10). It's less work to include - * the 10 of the dummy address as part of the opcode than it is to shift - * it over the correct number of bits for the address. This takes the - * EEPROM out of write/erase mode. - */ - e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, - (u16)(eeprom->opcode_bits + 2)); - - e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); - - return E1000_SUCCESS; + struct e1000_eeprom_info *eeprom = &hw->eeprom; + u32 eecd; + u16 words_written = 0; + u16 i = 0; + + DEBUGFUNC("e1000_write_eeprom_microwire"); + + /* Send the write enable command to the EEPROM (3-bit opcode plus + * 6/8-bit dummy address beginning with 11). It's less work to include + * the 11 of the dummy address as part of the opcode than it is to shift + * it over the correct number of bits for the address. This puts the + * EEPROM into write/erase mode. + */ + e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, + (u16) (eeprom->opcode_bits + 2)); + + e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); + + /* Prepare the EEPROM */ + e1000_standby_eeprom(hw); + + while (words_written < words) { + /* Send the Write command (3-bit opcode + addr) */ + e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, + eeprom->opcode_bits); + + e1000_shift_out_ee_bits(hw, (u16) (offset + words_written), + eeprom->address_bits); + + /* Send the data */ + e1000_shift_out_ee_bits(hw, data[words_written], 16); + + /* Toggle the CS line. This in effect tells the EEPROM to execute + * the previous command. + */ + e1000_standby_eeprom(hw); + + /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will + * signal that the command has been completed by raising the DO signal. + * If DO does not go high in 10 milliseconds, then error out. + */ + for (i = 0; i < 200; i++) { + eecd = er32(EECD); + if (eecd & E1000_EECD_DO) + break; + udelay(50); + } + if (i == 200) { + DEBUGOUT("EEPROM Write did not complete\n"); + return -E1000_ERR_EEPROM; + } + + /* Recover from write */ + e1000_standby_eeprom(hw); + + words_written++; + } + + /* Send the write disable command to the EEPROM (3-bit opcode plus + * 6/8-bit dummy address beginning with 10). It's less work to include + * the 10 of the dummy address as part of the opcode than it is to shift + * it over the correct number of bits for the address. This takes the + * EEPROM out of write/erase mode. + */ + e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, + (u16) (eeprom->opcode_bits + 2)); + + e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2)); + + return E1000_SUCCESS; } -/****************************************************************************** +/** + * e1000_read_mac_addr - read the adapters MAC from eeprom + * @hw: Struct containing variables accessed by shared code + * * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the * second function of dual function devices - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ + */ s32 e1000_read_mac_addr(struct e1000_hw *hw) { - u16 offset; - u16 eeprom_data, i; - - DEBUGFUNC("e1000_read_mac_addr"); - - for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { - offset = i >> 1; - if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF); - hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8); - } - - switch (hw->mac_type) { - default: - break; - case e1000_82546: - case e1000_82546_rev_3: - if (er32(STATUS) & E1000_STATUS_FUNC_1) - hw->perm_mac_addr[5] ^= 0x01; - break; - } - - for (i = 0; i < NODE_ADDRESS_SIZE; i++) - hw->mac_addr[i] = hw->perm_mac_addr[i]; - return E1000_SUCCESS; + u16 offset; + u16 eeprom_data, i; + + DEBUGFUNC("e1000_read_mac_addr"); + + for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { + offset = i >> 1; + if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF); + hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8); + } + + switch (hw->mac_type) { + default: + break; + case e1000_82546: + case e1000_82546_rev_3: + if (er32(STATUS) & E1000_STATUS_FUNC_1) + hw->perm_mac_addr[5] ^= 0x01; + break; + } + + for (i = 0; i < NODE_ADDRESS_SIZE; i++) + hw->mac_addr[i] = hw->perm_mac_addr[i]; + return E1000_SUCCESS; } -/****************************************************************************** - * Initializes receive address filters. - * - * hw - Struct containing variables accessed by shared code +/** + * e1000_init_rx_addrs - Initializes receive address filters. + * @hw: Struct containing variables accessed by shared code * * Places the MAC address in receive address register 0 and clears the rest - * of the receive addresss registers. Clears the multicast table. Assumes + * of the receive address registers. Clears the multicast table. Assumes * the receiver is in reset when the routine is called. - *****************************************************************************/ + */ static void e1000_init_rx_addrs(struct e1000_hw *hw) { - u32 i; - u32 rar_num; + u32 i; + u32 rar_num; - DEBUGFUNC("e1000_init_rx_addrs"); + DEBUGFUNC("e1000_init_rx_addrs"); - /* Setup the receive address. */ - DEBUGOUT("Programming MAC Address into RAR[0]\n"); + /* Setup the receive address. */ + DEBUGOUT("Programming MAC Address into RAR[0]\n"); - e1000_rar_set(hw, hw->mac_addr, 0); + e1000_rar_set(hw, hw->mac_addr, 0); - rar_num = E1000_RAR_ENTRIES; + rar_num = E1000_RAR_ENTRIES; - /* Zero out the other 15 receive addresses. */ - DEBUGOUT("Clearing RAR[1-15]\n"); - for (i = 1; i < rar_num; i++) { - E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); - E1000_WRITE_FLUSH(); - E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); - E1000_WRITE_FLUSH(); - } + /* Zero out the other 15 receive addresses. */ + DEBUGOUT("Clearing RAR[1-15]\n"); + for (i = 1; i < rar_num; i++) { + E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + E1000_WRITE_FLUSH(); + E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + E1000_WRITE_FLUSH(); + } } -/****************************************************************************** - * Hashes an address to determine its location in the multicast table - * - * hw - Struct containing variables accessed by shared code - * mc_addr - the multicast address to hash - *****************************************************************************/ +/** + * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table + * @hw: Struct containing variables accessed by shared code + * @mc_addr: the multicast address to hash + */ u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) { - u32 hash_value = 0; - - /* The portion of the address that is used for the hash table is - * determined by the mc_filter_type setting. - */ - switch (hw->mc_filter_type) { - /* [0] [1] [2] [3] [4] [5] - * 01 AA 00 12 34 56 - * LSB MSB - */ - case 0: - /* [47:36] i.e. 0x563 for above example address */ - hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); - break; - case 1: - /* [46:35] i.e. 0xAC6 for above example address */ - hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); - break; - case 2: - /* [45:34] i.e. 0x5D8 for above example address */ - hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); - break; - case 3: - /* [43:32] i.e. 0x634 for above example address */ - hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); - break; - } - - hash_value &= 0xFFF; - return hash_value; + u32 hash_value = 0; + + /* The portion of the address that is used for the hash table is + * determined by the mc_filter_type setting. + */ + switch (hw->mc_filter_type) { + /* [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + */ + case 0: + /* [47:36] i.e. 0x563 for above example address */ + hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); + break; + case 1: + /* [46:35] i.e. 0xAC6 for above example address */ + hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); + break; + case 2: + /* [45:34] i.e. 0x5D8 for above example address */ + hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); + break; + case 3: + /* [43:32] i.e. 0x634 for above example address */ + hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); + break; + } + + hash_value &= 0xFFF; + return hash_value; } -/****************************************************************************** - * Puts an ethernet address into a receive address register. - * - * hw - Struct containing variables accessed by shared code - * addr - Address to put into receive address register - * index - Receive address register to write - *****************************************************************************/ +/** + * e1000_rar_set - Puts an ethernet address into a receive address register. + * @hw: Struct containing variables accessed by shared code + * @addr: Address to put into receive address register + * @index: Receive address register to write + */ void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) { - u32 rar_low, rar_high; - - /* HW expects these in little endian so we reverse the byte order - * from network order (big endian) to little endian - */ - rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | - ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); - rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); - - /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx - * unit hang. - * - * Description: - * If there are any Rx frames queued up or otherwise present in the HW - * before RSS is enabled, and then we enable RSS, the HW Rx unit will - * hang. To work around this issue, we have to disable receives and - * flush out all Rx frames before we enable RSS. To do so, we modify we - * redirect all Rx traffic to manageability and then reset the HW. - * This flushes away Rx frames, and (since the redirections to - * manageability persists across resets) keeps new ones from coming in - * while we work. Then, we clear the Address Valid AV bit for all MAC - * addresses and undo the re-direction to manageability. - * Now, frames are coming in again, but the MAC won't accept them, so - * far so good. We now proceed to initialize RSS (if necessary) and - * configure the Rx unit. Last, we re-enable the AV bits and continue - * on our merry way. - */ - switch (hw->mac_type) { - default: - /* Indicate to hardware the Address is Valid. */ - rar_high |= E1000_RAH_AV; - break; - } - - E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); - E1000_WRITE_FLUSH(); - E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); - E1000_WRITE_FLUSH(); + u32 rar_low, rar_high; + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx + * unit hang. + * + * Description: + * If there are any Rx frames queued up or otherwise present in the HW + * before RSS is enabled, and then we enable RSS, the HW Rx unit will + * hang. To work around this issue, we have to disable receives and + * flush out all Rx frames before we enable RSS. To do so, we modify we + * redirect all Rx traffic to manageability and then reset the HW. + * This flushes away Rx frames, and (since the redirections to + * manageability persists across resets) keeps new ones from coming in + * while we work. Then, we clear the Address Valid AV bit for all MAC + * addresses and undo the re-direction to manageability. + * Now, frames are coming in again, but the MAC won't accept them, so + * far so good. We now proceed to initialize RSS (if necessary) and + * configure the Rx unit. Last, we re-enable the AV bits and continue + * on our merry way. + */ + switch (hw->mac_type) { + default: + /* Indicate to hardware the Address is Valid. */ + rar_high |= E1000_RAH_AV; + break; + } + + E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); + E1000_WRITE_FLUSH(); + E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); + E1000_WRITE_FLUSH(); } -/****************************************************************************** - * Writes a value to the specified offset in the VLAN filter table. - * - * hw - Struct containing variables accessed by shared code - * offset - Offset in VLAN filer table to write - * value - Value to write into VLAN filter table - *****************************************************************************/ +/** + * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table. + * @hw: Struct containing variables accessed by shared code + * @offset: Offset in VLAN filer table to write + * @value: Value to write into VLAN filter table + */ void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) { - u32 temp; - - if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { - temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); - E1000_WRITE_FLUSH(); - E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); - E1000_WRITE_FLUSH(); - } else { - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); - E1000_WRITE_FLUSH(); - } + u32 temp; + + if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { + temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_FLUSH(); + E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); + E1000_WRITE_FLUSH(); + } else { + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); + E1000_WRITE_FLUSH(); + } } -/****************************************************************************** - * Clears the VLAN filer table - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ +/** + * e1000_clear_vfta - Clears the VLAN filer table + * @hw: Struct containing variables accessed by shared code + */ static void e1000_clear_vfta(struct e1000_hw *hw) { - u32 offset; - u32 vfta_value = 0; - u32 vfta_offset = 0; - u32 vfta_bit_in_reg = 0; - - for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { - /* If the offset we want to clear is the same offset of the - * manageability VLAN ID, then clear all bits except that of the - * manageability unit */ - vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; - E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); - E1000_WRITE_FLUSH(); - } + u32 offset; + u32 vfta_value = 0; + u32 vfta_offset = 0; + u32 vfta_bit_in_reg = 0; + + for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { + /* If the offset we want to clear is the same offset of the + * manageability VLAN ID, then clear all bits except that of the + * manageability unit */ + vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; + E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); + E1000_WRITE_FLUSH(); + } } static s32 e1000_id_led_init(struct e1000_hw *hw) { - u32 ledctl; - const u32 ledctl_mask = 0x000000FF; - const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; - const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; - u16 eeprom_data, i, temp; - const u16 led_mask = 0x0F; - - DEBUGFUNC("e1000_id_led_init"); - - if (hw->mac_type < e1000_82540) { - /* Nothing to do */ - return E1000_SUCCESS; - } - - ledctl = er32(LEDCTL); - hw->ledctl_default = ledctl; - hw->ledctl_mode1 = hw->ledctl_default; - hw->ledctl_mode2 = hw->ledctl_default; - - if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { - DEBUGOUT("EEPROM Read Error\n"); - return -E1000_ERR_EEPROM; - } - - if ((eeprom_data == ID_LED_RESERVED_0000) || - (eeprom_data == ID_LED_RESERVED_FFFF)) { - eeprom_data = ID_LED_DEFAULT; - } - - for (i = 0; i < 4; i++) { - temp = (eeprom_data >> (i << 2)) & led_mask; - switch (temp) { - case ID_LED_ON1_DEF2: - case ID_LED_ON1_ON2: - case ID_LED_ON1_OFF2: - hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode1 |= ledctl_on << (i << 3); - break; - case ID_LED_OFF1_DEF2: - case ID_LED_OFF1_ON2: - case ID_LED_OFF1_OFF2: - hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode1 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - switch (temp) { - case ID_LED_DEF1_ON2: - case ID_LED_ON1_ON2: - case ID_LED_OFF1_ON2: - hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode2 |= ledctl_on << (i << 3); - break; - case ID_LED_DEF1_OFF2: - case ID_LED_ON1_OFF2: - case ID_LED_OFF1_OFF2: - hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); - hw->ledctl_mode2 |= ledctl_off << (i << 3); - break; - default: - /* Do nothing */ - break; - } - } - return E1000_SUCCESS; + u32 ledctl; + const u32 ledctl_mask = 0x000000FF; + const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + u16 eeprom_data, i, temp; + const u16 led_mask = 0x0F; + + DEBUGFUNC("e1000_id_led_init"); + + if (hw->mac_type < e1000_82540) { + /* Nothing to do */ + return E1000_SUCCESS; + } + + ledctl = er32(LEDCTL); + hw->ledctl_default = ledctl; + hw->ledctl_mode1 = hw->ledctl_default; + hw->ledctl_mode2 = hw->ledctl_default; + + if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { + DEBUGOUT("EEPROM Read Error\n"); + return -E1000_ERR_EEPROM; + } + + if ((eeprom_data == ID_LED_RESERVED_0000) || + (eeprom_data == ID_LED_RESERVED_FFFF)) { + eeprom_data = ID_LED_DEFAULT; + } + + for (i = 0; i < 4; i++) { + temp = (eeprom_data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + hw->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + return E1000_SUCCESS; } -/****************************************************************************** - * Prepares SW controlable LED for use and saves the current state of the LED. +/** + * e1000_setup_led + * @hw: Struct containing variables accessed by shared code * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ + * Prepares SW controlable LED for use and saves the current state of the LED. + */ s32 e1000_setup_led(struct e1000_hw *hw) { - u32 ledctl; - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_setup_led"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - /* No setup necessary */ - break; - case e1000_82541: - case e1000_82547: - case e1000_82541_rev_2: - case e1000_82547_rev_2: - /* Turn off PHY Smart Power Down (if enabled) */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, - &hw->phy_spd_default); - if (ret_val) - return ret_val; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, - (u16)(hw->phy_spd_default & - ~IGP01E1000_GMII_SPD)); - if (ret_val) - return ret_val; - /* Fall Through */ - default: - if (hw->media_type == e1000_media_type_fiber) { - ledctl = er32(LEDCTL); - /* Save current LEDCTL settings */ - hw->ledctl_default = ledctl; - /* Turn off LED0 */ - ledctl &= ~(E1000_LEDCTL_LED0_IVRT | - E1000_LEDCTL_LED0_BLINK | - E1000_LEDCTL_LED0_MODE_MASK); - ledctl |= (E1000_LEDCTL_MODE_LED_OFF << - E1000_LEDCTL_LED0_MODE_SHIFT); - ew32(LEDCTL, ledctl); - } else if (hw->media_type == e1000_media_type_copper) - ew32(LEDCTL, hw->ledctl_mode1); - break; - } - - return E1000_SUCCESS; + u32 ledctl; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_setup_led"); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + /* No setup necessary */ + break; + case e1000_82541: + case e1000_82547: + case e1000_82541_rev_2: + case e1000_82547_rev_2: + /* Turn off PHY Smart Power Down (if enabled) */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, + &hw->phy_spd_default); + if (ret_val) + return ret_val; + ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + (u16) (hw->phy_spd_default & + ~IGP01E1000_GMII_SPD)); + if (ret_val) + return ret_val; + /* Fall Through */ + default: + if (hw->media_type == e1000_media_type_fiber) { + ledctl = er32(LEDCTL); + /* Save current LEDCTL settings */ + hw->ledctl_default = ledctl; + /* Turn off LED0 */ + ledctl &= ~(E1000_LEDCTL_LED0_IVRT | + E1000_LEDCTL_LED0_BLINK | + E1000_LEDCTL_LED0_MODE_MASK); + ledctl |= (E1000_LEDCTL_MODE_LED_OFF << + E1000_LEDCTL_LED0_MODE_SHIFT); + ew32(LEDCTL, ledctl); + } else if (hw->media_type == e1000_media_type_copper) + ew32(LEDCTL, hw->ledctl_mode1); + break; + } + + return E1000_SUCCESS; } -/****************************************************************************** - * Restores the saved state of the SW controlable LED. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ +/** + * e1000_cleanup_led - Restores the saved state of the SW controlable LED. + * @hw: Struct containing variables accessed by shared code + */ s32 e1000_cleanup_led(struct e1000_hw *hw) { - s32 ret_val = E1000_SUCCESS; - - DEBUGFUNC("e1000_cleanup_led"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - case e1000_82544: - /* No cleanup necessary */ - break; - case e1000_82541: - case e1000_82547: - case e1000_82541_rev_2: - case e1000_82547_rev_2: - /* Turn on PHY Smart Power Down (if previously enabled) */ - ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, - hw->phy_spd_default); - if (ret_val) - return ret_val; - /* Fall Through */ - default: - /* Restore LEDCTL settings */ - ew32(LEDCTL, hw->ledctl_default); - break; - } - - return E1000_SUCCESS; + s32 ret_val = E1000_SUCCESS; + + DEBUGFUNC("e1000_cleanup_led"); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + case e1000_82544: + /* No cleanup necessary */ + break; + case e1000_82541: + case e1000_82547: + case e1000_82541_rev_2: + case e1000_82547_rev_2: + /* Turn on PHY Smart Power Down (if previously enabled) */ + ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + hw->phy_spd_default); + if (ret_val) + return ret_val; + /* Fall Through */ + default: + /* Restore LEDCTL settings */ + ew32(LEDCTL, hw->ledctl_default); + break; + } + + return E1000_SUCCESS; } -/****************************************************************************** - * Turns on the software controllable LED - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ +/** + * e1000_led_on - Turns on the software controllable LED + * @hw: Struct containing variables accessed by shared code + */ s32 e1000_led_on(struct e1000_hw *hw) { - u32 ctrl = er32(CTRL); - - DEBUGFUNC("e1000_led_on"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - /* Set SW Defineable Pin 0 to turn on the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - break; - case e1000_82544: - if (hw->media_type == e1000_media_type_fiber) { - /* Set SW Defineable Pin 0 to turn on the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else { - /* Clear SW Defineable Pin 0 to turn on the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } - break; - default: - if (hw->media_type == e1000_media_type_fiber) { - /* Clear SW Defineable Pin 0 to turn on the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else if (hw->media_type == e1000_media_type_copper) { - ew32(LEDCTL, hw->ledctl_mode2); - return E1000_SUCCESS; - } - break; - } - - ew32(CTRL, ctrl); - - return E1000_SUCCESS; + u32 ctrl = er32(CTRL); + + DEBUGFUNC("e1000_led_on"); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + /* Set SW Defineable Pin 0 to turn on the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + break; + case e1000_82544: + if (hw->media_type == e1000_media_type_fiber) { + /* Set SW Defineable Pin 0 to turn on the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + /* Clear SW Defineable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + break; + default: + if (hw->media_type == e1000_media_type_fiber) { + /* Clear SW Defineable Pin 0 to turn on the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else if (hw->media_type == e1000_media_type_copper) { + ew32(LEDCTL, hw->ledctl_mode2); + return E1000_SUCCESS; + } + break; + } + + ew32(CTRL, ctrl); + + return E1000_SUCCESS; } -/****************************************************************************** - * Turns off the software controllable LED - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ +/** + * e1000_led_off - Turns off the software controllable LED + * @hw: Struct containing variables accessed by shared code + */ s32 e1000_led_off(struct e1000_hw *hw) { - u32 ctrl = er32(CTRL); - - DEBUGFUNC("e1000_led_off"); - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - case e1000_82543: - /* Clear SW Defineable Pin 0 to turn off the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - break; - case e1000_82544: - if (hw->media_type == e1000_media_type_fiber) { - /* Clear SW Defineable Pin 0 to turn off the LED */ - ctrl &= ~E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else { - /* Set SW Defineable Pin 0 to turn off the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } - break; - default: - if (hw->media_type == e1000_media_type_fiber) { - /* Set SW Defineable Pin 0 to turn off the LED */ - ctrl |= E1000_CTRL_SWDPIN0; - ctrl |= E1000_CTRL_SWDPIO0; - } else if (hw->media_type == e1000_media_type_copper) { - ew32(LEDCTL, hw->ledctl_mode1); - return E1000_SUCCESS; - } - break; - } - - ew32(CTRL, ctrl); - - return E1000_SUCCESS; + u32 ctrl = er32(CTRL); + + DEBUGFUNC("e1000_led_off"); + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + case e1000_82543: + /* Clear SW Defineable Pin 0 to turn off the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + break; + case e1000_82544: + if (hw->media_type == e1000_media_type_fiber) { + /* Clear SW Defineable Pin 0 to turn off the LED */ + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else { + /* Set SW Defineable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } + break; + default: + if (hw->media_type == e1000_media_type_fiber) { + /* Set SW Defineable Pin 0 to turn off the LED */ + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + } else if (hw->media_type == e1000_media_type_copper) { + ew32(LEDCTL, hw->ledctl_mode1); + return E1000_SUCCESS; + } + break; + } + + ew32(CTRL, ctrl); + + return E1000_SUCCESS; } -/****************************************************************************** - * Clears all hardware statistics counters. - * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ +/** + * e1000_clear_hw_cntrs - Clears all hardware statistics counters. + * @hw: Struct containing variables accessed by shared code + */ static void e1000_clear_hw_cntrs(struct e1000_hw *hw) { - volatile u32 temp; - - temp = er32(CRCERRS); - temp = er32(SYMERRS); - temp = er32(MPC); - temp = er32(SCC); - temp = er32(ECOL); - temp = er32(MCC); - temp = er32(LATECOL); - temp = er32(COLC); - temp = er32(DC); - temp = er32(SEC); - temp = er32(RLEC); - temp = er32(XONRXC); - temp = er32(XONTXC); - temp = er32(XOFFRXC); - temp = er32(XOFFTXC); - temp = er32(FCRUC); - - temp = er32(PRC64); - temp = er32(PRC127); - temp = er32(PRC255); - temp = er32(PRC511); - temp = er32(PRC1023); - temp = er32(PRC1522); - - temp = er32(GPRC); - temp = er32(BPRC); - temp = er32(MPRC); - temp = er32(GPTC); - temp = er32(GORCL); - temp = er32(GORCH); - temp = er32(GOTCL); - temp = er32(GOTCH); - temp = er32(RNBC); - temp = er32(RUC); - temp = er32(RFC); - temp = er32(ROC); - temp = er32(RJC); - temp = er32(TORL); - temp = er32(TORH); - temp = er32(TOTL); - temp = er32(TOTH); - temp = er32(TPR); - temp = er32(TPT); - - temp = er32(PTC64); - temp = er32(PTC127); - temp = er32(PTC255); - temp = er32(PTC511); - temp = er32(PTC1023); - temp = er32(PTC1522); - - temp = er32(MPTC); - temp = er32(BPTC); - - if (hw->mac_type < e1000_82543) return; - - temp = er32(ALGNERRC); - temp = er32(RXERRC); - temp = er32(TNCRS); - temp = er32(CEXTERR); - temp = er32(TSCTC); - temp = er32(TSCTFC); - - if (hw->mac_type <= e1000_82544) return; - - temp = er32(MGTPRC); - temp = er32(MGTPDC); - temp = er32(MGTPTC); + volatile u32 temp; + + temp = er32(CRCERRS); + temp = er32(SYMERRS); + temp = er32(MPC); + temp = er32(SCC); + temp = er32(ECOL); + temp = er32(MCC); + temp = er32(LATECOL); + temp = er32(COLC); + temp = er32(DC); + temp = er32(SEC); + temp = er32(RLEC); + temp = er32(XONRXC); + temp = er32(XONTXC); + temp = er32(XOFFRXC); + temp = er32(XOFFTXC); + temp = er32(FCRUC); + + temp = er32(PRC64); + temp = er32(PRC127); + temp = er32(PRC255); + temp = er32(PRC511); + temp = er32(PRC1023); + temp = er32(PRC1522); + + temp = er32(GPRC); + temp = er32(BPRC); + temp = er32(MPRC); + temp = er32(GPTC); + temp = er32(GORCL); + temp = er32(GORCH); + temp = er32(GOTCL); + temp = er32(GOTCH); + temp = er32(RNBC); + temp = er32(RUC); + temp = er32(RFC); + temp = er32(ROC); + temp = er32(RJC); + temp = er32(TORL); + temp = er32(TORH); + temp = er32(TOTL); + temp = er32(TOTH); + temp = er32(TPR); + temp = er32(TPT); + + temp = er32(PTC64); + temp = er32(PTC127); + temp = er32(PTC255); + temp = er32(PTC511); + temp = er32(PTC1023); + temp = er32(PTC1522); + + temp = er32(MPTC); + temp = er32(BPTC); + + if (hw->mac_type < e1000_82543) + return; + + temp = er32(ALGNERRC); + temp = er32(RXERRC); + temp = er32(TNCRS); + temp = er32(CEXTERR); + temp = er32(TSCTC); + temp = er32(TSCTFC); + + if (hw->mac_type <= e1000_82544) + return; + + temp = er32(MGTPRC); + temp = er32(MGTPDC); + temp = er32(MGTPTC); } -/****************************************************************************** - * Resets Adaptive IFS to its default state. - * - * hw - Struct containing variables accessed by shared code +/** + * e1000_reset_adaptive - Resets Adaptive IFS to its default state. + * @hw: Struct containing variables accessed by shared code * * Call this after e1000_init_hw. You may override the IFS defaults by setting * hw->ifs_params_forced to true. However, you must initialize hw-> * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio * before calling this function. - *****************************************************************************/ + */ void e1000_reset_adaptive(struct e1000_hw *hw) { - DEBUGFUNC("e1000_reset_adaptive"); - - if (hw->adaptive_ifs) { - if (!hw->ifs_params_forced) { - hw->current_ifs_val = 0; - hw->ifs_min_val = IFS_MIN; - hw->ifs_max_val = IFS_MAX; - hw->ifs_step_size = IFS_STEP; - hw->ifs_ratio = IFS_RATIO; - } - hw->in_ifs_mode = false; - ew32(AIT, 0); - } else { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - } + DEBUGFUNC("e1000_reset_adaptive"); + + if (hw->adaptive_ifs) { + if (!hw->ifs_params_forced) { + hw->current_ifs_val = 0; + hw->ifs_min_val = IFS_MIN; + hw->ifs_max_val = IFS_MAX; + hw->ifs_step_size = IFS_STEP; + hw->ifs_ratio = IFS_RATIO; + } + hw->in_ifs_mode = false; + ew32(AIT, 0); + } else { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + } } -/****************************************************************************** +/** + * e1000_update_adaptive - update adaptive IFS + * @hw: Struct containing variables accessed by shared code + * @tx_packets: Number of transmits since last callback + * @total_collisions: Number of collisions since last callback + * * Called during the callback/watchdog routine to update IFS value based on * the ratio of transmits to collisions. - * - * hw - Struct containing variables accessed by shared code - * tx_packets - Number of transmits since last callback - * total_collisions - Number of collisions since last callback - *****************************************************************************/ + */ void e1000_update_adaptive(struct e1000_hw *hw) { - DEBUGFUNC("e1000_update_adaptive"); - - if (hw->adaptive_ifs) { - if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { - if (hw->tx_packet_delta > MIN_NUM_XMITS) { - hw->in_ifs_mode = true; - if (hw->current_ifs_val < hw->ifs_max_val) { - if (hw->current_ifs_val == 0) - hw->current_ifs_val = hw->ifs_min_val; - else - hw->current_ifs_val += hw->ifs_step_size; - ew32(AIT, hw->current_ifs_val); - } - } - } else { - if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { - hw->current_ifs_val = 0; - hw->in_ifs_mode = false; - ew32(AIT, 0); - } - } - } else { - DEBUGOUT("Not in Adaptive IFS mode!\n"); - } + DEBUGFUNC("e1000_update_adaptive"); + + if (hw->adaptive_ifs) { + if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) { + if (hw->tx_packet_delta > MIN_NUM_XMITS) { + hw->in_ifs_mode = true; + if (hw->current_ifs_val < hw->ifs_max_val) { + if (hw->current_ifs_val == 0) + hw->current_ifs_val = + hw->ifs_min_val; + else + hw->current_ifs_val += + hw->ifs_step_size; + ew32(AIT, hw->current_ifs_val); + } + } + } else { + if (hw->in_ifs_mode + && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { + hw->current_ifs_val = 0; + hw->in_ifs_mode = false; + ew32(AIT, 0); + } + } + } else { + DEBUGOUT("Not in Adaptive IFS mode!\n"); + } } -/****************************************************************************** - * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT +/** + * e1000_tbi_adjust_stats + * @hw: Struct containing variables accessed by shared code + * @frame_len: The length of the frame in question + * @mac_addr: The Ethernet destination address of the frame in question * - * hw - Struct containing variables accessed by shared code - * frame_len - The length of the frame in question - * mac_addr - The Ethernet destination address of the frame in question - *****************************************************************************/ + * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT + */ void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, u32 frame_len, u8 *mac_addr) { - u64 carry_bit; - - /* First adjust the frame length. */ - frame_len--; - /* We need to adjust the statistics counters, since the hardware - * counters overcount this packet as a CRC error and undercount - * the packet as a good packet - */ - /* This packet should not be counted as a CRC error. */ - stats->crcerrs--; - /* This packet does count as a Good Packet Received. */ - stats->gprc++; - - /* Adjust the Good Octets received counters */ - carry_bit = 0x80000000 & stats->gorcl; - stats->gorcl += frame_len; - /* If the high bit of Gorcl (the low 32 bits of the Good Octets - * Received Count) was one before the addition, - * AND it is zero after, then we lost the carry out, - * need to add one to Gorch (Good Octets Received Count High). - * This could be simplified if all environments supported - * 64-bit integers. - */ - if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) - stats->gorch++; - /* Is this a broadcast or multicast? Check broadcast first, - * since the test for a multicast frame will test positive on - * a broadcast frame. - */ - if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff)) - /* Broadcast packet */ - stats->bprc++; - else if (*mac_addr & 0x01) - /* Multicast packet */ - stats->mprc++; - - if (frame_len == hw->max_frame_size) { - /* In this case, the hardware has overcounted the number of - * oversize frames. - */ - if (stats->roc > 0) - stats->roc--; - } - - /* Adjust the bin counters when the extra byte put the frame in the - * wrong bin. Remember that the frame_len was adjusted above. - */ - if (frame_len == 64) { - stats->prc64++; - stats->prc127--; - } else if (frame_len == 127) { - stats->prc127++; - stats->prc255--; - } else if (frame_len == 255) { - stats->prc255++; - stats->prc511--; - } else if (frame_len == 511) { - stats->prc511++; - stats->prc1023--; - } else if (frame_len == 1023) { - stats->prc1023++; - stats->prc1522--; - } else if (frame_len == 1522) { - stats->prc1522++; - } + u64 carry_bit; + + /* First adjust the frame length. */ + frame_len--; + /* We need to adjust the statistics counters, since the hardware + * counters overcount this packet as a CRC error and undercount + * the packet as a good packet + */ + /* This packet should not be counted as a CRC error. */ + stats->crcerrs--; + /* This packet does count as a Good Packet Received. */ + stats->gprc++; + + /* Adjust the Good Octets received counters */ + carry_bit = 0x80000000 & stats->gorcl; + stats->gorcl += frame_len; + /* If the high bit of Gorcl (the low 32 bits of the Good Octets + * Received Count) was one before the addition, + * AND it is zero after, then we lost the carry out, + * need to add one to Gorch (Good Octets Received Count High). + * This could be simplified if all environments supported + * 64-bit integers. + */ + if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) + stats->gorch++; + /* Is this a broadcast or multicast? Check broadcast first, + * since the test for a multicast frame will test positive on + * a broadcast frame. + */ + if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff)) + /* Broadcast packet */ + stats->bprc++; + else if (*mac_addr & 0x01) + /* Multicast packet */ + stats->mprc++; + + if (frame_len == hw->max_frame_size) { + /* In this case, the hardware has overcounted the number of + * oversize frames. + */ + if (stats->roc > 0) + stats->roc--; + } + + /* Adjust the bin counters when the extra byte put the frame in the + * wrong bin. Remember that the frame_len was adjusted above. + */ + if (frame_len == 64) { + stats->prc64++; + stats->prc127--; + } else if (frame_len == 127) { + stats->prc127++; + stats->prc255--; + } else if (frame_len == 255) { + stats->prc255++; + stats->prc511--; + } else if (frame_len == 511) { + stats->prc511++; + stats->prc1023--; + } else if (frame_len == 1023) { + stats->prc1023++; + stats->prc1522--; + } else if (frame_len == 1522) { + stats->prc1522++; + } } -/****************************************************************************** - * Gets the current PCI bus type, speed, and width of the hardware +/** + * e1000_get_bus_info + * @hw: Struct containing variables accessed by shared code * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ + * Gets the current PCI bus type, speed, and width of the hardware + */ void e1000_get_bus_info(struct e1000_hw *hw) { - u32 status; - - switch (hw->mac_type) { - case e1000_82542_rev2_0: - case e1000_82542_rev2_1: - hw->bus_type = e1000_bus_type_pci; - hw->bus_speed = e1000_bus_speed_unknown; - hw->bus_width = e1000_bus_width_unknown; - break; - default: - status = er32(STATUS); - hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? - e1000_bus_type_pcix : e1000_bus_type_pci; - - if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { - hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? - e1000_bus_speed_66 : e1000_bus_speed_120; - } else if (hw->bus_type == e1000_bus_type_pci) { - hw->bus_speed = (status & E1000_STATUS_PCI66) ? - e1000_bus_speed_66 : e1000_bus_speed_33; - } else { - switch (status & E1000_STATUS_PCIX_SPEED) { - case E1000_STATUS_PCIX_SPEED_66: - hw->bus_speed = e1000_bus_speed_66; - break; - case E1000_STATUS_PCIX_SPEED_100: - hw->bus_speed = e1000_bus_speed_100; - break; - case E1000_STATUS_PCIX_SPEED_133: - hw->bus_speed = e1000_bus_speed_133; - break; - default: - hw->bus_speed = e1000_bus_speed_reserved; - break; - } - } - hw->bus_width = (status & E1000_STATUS_BUS64) ? - e1000_bus_width_64 : e1000_bus_width_32; - break; - } + u32 status; + + switch (hw->mac_type) { + case e1000_82542_rev2_0: + case e1000_82542_rev2_1: + hw->bus_type = e1000_bus_type_pci; + hw->bus_speed = e1000_bus_speed_unknown; + hw->bus_width = e1000_bus_width_unknown; + break; + default: + status = er32(STATUS); + hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? + e1000_bus_type_pcix : e1000_bus_type_pci; + + if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { + hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? + e1000_bus_speed_66 : e1000_bus_speed_120; + } else if (hw->bus_type == e1000_bus_type_pci) { + hw->bus_speed = (status & E1000_STATUS_PCI66) ? + e1000_bus_speed_66 : e1000_bus_speed_33; + } else { + switch (status & E1000_STATUS_PCIX_SPEED) { + case E1000_STATUS_PCIX_SPEED_66: + hw->bus_speed = e1000_bus_speed_66; + break; + case E1000_STATUS_PCIX_SPEED_100: + hw->bus_speed = e1000_bus_speed_100; + break; + case E1000_STATUS_PCIX_SPEED_133: + hw->bus_speed = e1000_bus_speed_133; + break; + default: + hw->bus_speed = e1000_bus_speed_reserved; + break; + } + } + hw->bus_width = (status & E1000_STATUS_BUS64) ? + e1000_bus_width_64 : e1000_bus_width_32; + break; + } } -/****************************************************************************** +/** + * e1000_write_reg_io + * @hw: Struct containing variables accessed by shared code + * @offset: offset to write to + * @value: value to write + * * Writes a value to one of the devices registers using port I/O (as opposed to * memory mapped I/O). Only 82544 and newer devices support port I/O. - * - * hw - Struct containing variables accessed by shared code - * offset - offset to write to - * value - value to write - *****************************************************************************/ + */ static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) { - unsigned long io_addr = hw->io_base; - unsigned long io_data = hw->io_base + 4; + unsigned long io_addr = hw->io_base; + unsigned long io_data = hw->io_base + 4; - e1000_io_write(hw, io_addr, offset); - e1000_io_write(hw, io_data, value); + e1000_io_write(hw, io_addr, offset); + e1000_io_write(hw, io_data, value); } -/****************************************************************************** - * Estimates the cable length. - * - * hw - Struct containing variables accessed by shared code - * min_length - The estimated minimum length - * max_length - The estimated maximum length +/** + * e1000_get_cable_length - Estimates the cable length. + * @hw: Struct containing variables accessed by shared code + * @min_length: The estimated minimum length + * @max_length: The estimated maximum length * * returns: - E1000_ERR_XXX * E1000_SUCCESS @@ -4876,112 +4957,115 @@ static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) * So for M88 phy's, this function interprets the one value returned from the * register to the minimum and maximum range. * For IGP phy's, the function calculates the range by the AGC registers. - *****************************************************************************/ + */ static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, u16 *max_length) { - s32 ret_val; - u16 agc_value = 0; - u16 i, phy_data; - u16 cable_length; - - DEBUGFUNC("e1000_get_cable_length"); - - *min_length = *max_length = 0; - - /* Use old method for Phy older than IGP */ - if (hw->phy_type == e1000_phy_m88) { - - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> - M88E1000_PSSR_CABLE_LENGTH_SHIFT; - - /* Convert the enum value to ranged values */ - switch (cable_length) { - case e1000_cable_length_50: - *min_length = 0; - *max_length = e1000_igp_cable_length_50; - break; - case e1000_cable_length_50_80: - *min_length = e1000_igp_cable_length_50; - *max_length = e1000_igp_cable_length_80; - break; - case e1000_cable_length_80_110: - *min_length = e1000_igp_cable_length_80; - *max_length = e1000_igp_cable_length_110; - break; - case e1000_cable_length_110_140: - *min_length = e1000_igp_cable_length_110; - *max_length = e1000_igp_cable_length_140; - break; - case e1000_cable_length_140: - *min_length = e1000_igp_cable_length_140; - *max_length = e1000_igp_cable_length_170; - break; - default: - return -E1000_ERR_PHY; - break; - } - } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ - u16 cur_agc_value; - u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; - u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = - {IGP01E1000_PHY_AGC_A, - IGP01E1000_PHY_AGC_B, - IGP01E1000_PHY_AGC_C, - IGP01E1000_PHY_AGC_D}; - /* Read the AGC registers for all channels */ - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - - ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; - - /* Value bound check. */ - if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || - (cur_agc_value == 0)) - return -E1000_ERR_PHY; - - agc_value += cur_agc_value; - - /* Update minimal AGC value. */ - if (min_agc_value > cur_agc_value) - min_agc_value = cur_agc_value; - } - - /* Remove the minimal AGC result for length < 50m */ - if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { - agc_value -= min_agc_value; - - /* Get the average length of the remaining 3 channels */ - agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); - } else { - /* Get the average length of all the 4 channels. */ - agc_value /= IGP01E1000_PHY_CHANNEL_NUM; - } - - /* Set the range of the calculated length. */ - *min_length = ((e1000_igp_cable_length_table[agc_value] - - IGP01E1000_AGC_RANGE) > 0) ? - (e1000_igp_cable_length_table[agc_value] - - IGP01E1000_AGC_RANGE) : 0; - *max_length = e1000_igp_cable_length_table[agc_value] + - IGP01E1000_AGC_RANGE; - } - - return E1000_SUCCESS; + s32 ret_val; + u16 agc_value = 0; + u16 i, phy_data; + u16 cable_length; + + DEBUGFUNC("e1000_get_cable_length"); + + *min_length = *max_length = 0; + + /* Use old method for Phy older than IGP */ + if (hw->phy_type == e1000_phy_m88) { + + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> + M88E1000_PSSR_CABLE_LENGTH_SHIFT; + + /* Convert the enum value to ranged values */ + switch (cable_length) { + case e1000_cable_length_50: + *min_length = 0; + *max_length = e1000_igp_cable_length_50; + break; + case e1000_cable_length_50_80: + *min_length = e1000_igp_cable_length_50; + *max_length = e1000_igp_cable_length_80; + break; + case e1000_cable_length_80_110: + *min_length = e1000_igp_cable_length_80; + *max_length = e1000_igp_cable_length_110; + break; + case e1000_cable_length_110_140: + *min_length = e1000_igp_cable_length_110; + *max_length = e1000_igp_cable_length_140; + break; + case e1000_cable_length_140: + *min_length = e1000_igp_cable_length_140; + *max_length = e1000_igp_cable_length_170; + break; + default: + return -E1000_ERR_PHY; + break; + } + } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ + u16 cur_agc_value; + u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; + u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + { IGP01E1000_PHY_AGC_A, + IGP01E1000_PHY_AGC_B, + IGP01E1000_PHY_AGC_C, + IGP01E1000_PHY_AGC_D + }; + /* Read the AGC registers for all channels */ + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + + ret_val = + e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); + if (ret_val) + return ret_val; + + cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; + + /* Value bound check. */ + if ((cur_agc_value >= + IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) + || (cur_agc_value == 0)) + return -E1000_ERR_PHY; + + agc_value += cur_agc_value; + + /* Update minimal AGC value. */ + if (min_agc_value > cur_agc_value) + min_agc_value = cur_agc_value; + } + + /* Remove the minimal AGC result for length < 50m */ + if (agc_value < + IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { + agc_value -= min_agc_value; + + /* Get the average length of the remaining 3 channels */ + agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); + } else { + /* Get the average length of all the 4 channels. */ + agc_value /= IGP01E1000_PHY_CHANNEL_NUM; + } + + /* Set the range of the calculated length. */ + *min_length = ((e1000_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) > 0) ? + (e1000_igp_cable_length_table[agc_value] - + IGP01E1000_AGC_RANGE) : 0; + *max_length = e1000_igp_cable_length_table[agc_value] + + IGP01E1000_AGC_RANGE; + } + + return E1000_SUCCESS; } -/****************************************************************************** - * Check the cable polarity - * - * hw - Struct containing variables accessed by shared code - * polarity - output parameter : 0 - Polarity is not reversed +/** + * e1000_check_polarity - Check the cable polarity + * @hw: Struct containing variables accessed by shared code + * @polarity: output parameter : 0 - Polarity is not reversed * 1 - Polarity is reversed. * * returns: - E1000_ERR_XXX @@ -4992,62 +5076,65 @@ static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will * return 0. If the link speed is 1000 Mbps the polarity status is in the * IGP01E1000_PHY_PCS_INIT_REG. - *****************************************************************************/ + */ static s32 e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity) { - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_check_polarity"); - - if (hw->phy_type == e1000_phy_m88) { - /* return the Polarity bit in the Status register. */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> - M88E1000_PSSR_REV_POLARITY_SHIFT) ? - e1000_rev_polarity_reversed : e1000_rev_polarity_normal; - - } else if (hw->phy_type == e1000_phy_igp) { - /* Read the Status register to check the speed */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to - * find the polarity status */ - if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == - IGP01E1000_PSSR_SPEED_1000MBPS) { - - /* Read the GIG initialization PCS register (0x00B4) */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, - &phy_data); - if (ret_val) - return ret_val; - - /* Check the polarity bits */ - *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? - e1000_rev_polarity_reversed : e1000_rev_polarity_normal; - } else { - /* For 10 Mbps, read the polarity bit in the status register. (for - * 100 Mbps this bit is always 0) */ - *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? - e1000_rev_polarity_reversed : e1000_rev_polarity_normal; - } - } - return E1000_SUCCESS; + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_check_polarity"); + + if (hw->phy_type == e1000_phy_m88) { + /* return the Polarity bit in the Status register. */ + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> + M88E1000_PSSR_REV_POLARITY_SHIFT) ? + e1000_rev_polarity_reversed : e1000_rev_polarity_normal; + + } else if (hw->phy_type == e1000_phy_igp) { + /* Read the Status register to check the speed */ + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to + * find the polarity status */ + if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == + IGP01E1000_PSSR_SPEED_1000MBPS) { + + /* Read the GIG initialization PCS register (0x00B4) */ + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, + &phy_data); + if (ret_val) + return ret_val; + + /* Check the polarity bits */ + *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? + e1000_rev_polarity_reversed : + e1000_rev_polarity_normal; + } else { + /* For 10 Mbps, read the polarity bit in the status register. (for + * 100 Mbps this bit is always 0) */ + *polarity = + (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? + e1000_rev_polarity_reversed : + e1000_rev_polarity_normal; + } + } + return E1000_SUCCESS; } -/****************************************************************************** - * Check if Downshift occured - * - * hw - Struct containing variables accessed by shared code - * downshift - output parameter : 0 - No Downshift ocured. - * 1 - Downshift ocured. +/** + * e1000_check_downshift - Check if Downshift occurred + * @hw: Struct containing variables accessed by shared code + * @downshift: output parameter : 0 - No Downshift occurred. + * 1 - Downshift occurred. * * returns: - E1000_ERR_XXX * E1000_SUCCESS @@ -5056,573 +5143,607 @@ static s32 e1000_check_polarity(struct e1000_hw *hw, * Specific Status register. For IGP phy's, it reads the Downgrade bit in the * Link Health register. In IGP this bit is latched high, so the driver must * read it immediately after link is established. - *****************************************************************************/ + */ static s32 e1000_check_downshift(struct e1000_hw *hw) { - s32 ret_val; - u16 phy_data; - - DEBUGFUNC("e1000_check_downshift"); - - if (hw->phy_type == e1000_phy_igp) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, - &phy_data); - if (ret_val) - return ret_val; - - hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; - } else if (hw->phy_type == e1000_phy_m88) { - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> - M88E1000_PSSR_DOWNSHIFT_SHIFT; - } + s32 ret_val; + u16 phy_data; + + DEBUGFUNC("e1000_check_downshift"); + + if (hw->phy_type == e1000_phy_igp) { + ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, + &phy_data); + if (ret_val) + return ret_val; + + hw->speed_downgraded = + (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; + } else if (hw->phy_type == e1000_phy_m88) { + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> + M88E1000_PSSR_DOWNSHIFT_SHIFT; + } - return E1000_SUCCESS; + return E1000_SUCCESS; } -/***************************************************************************** - * - * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a - * gigabit link is achieved to improve link quality. - * - * hw: Struct containing variables accessed by shared code +/** + * e1000_config_dsp_after_link_change + * @hw: Struct containing variables accessed by shared code + * @link_up: was link up at the time this was called * * returns: - E1000_ERR_PHY if fail to read/write the PHY * E1000_SUCCESS at any other case. * - ****************************************************************************/ + * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a + * gigabit link is achieved to improve link quality. + */ static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) { - s32 ret_val; - u16 phy_data, phy_saved_data, speed, duplex, i; - u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = - {IGP01E1000_PHY_AGC_PARAM_A, - IGP01E1000_PHY_AGC_PARAM_B, - IGP01E1000_PHY_AGC_PARAM_C, - IGP01E1000_PHY_AGC_PARAM_D}; - u16 min_length, max_length; - - DEBUGFUNC("e1000_config_dsp_after_link_change"); - - if (hw->phy_type != e1000_phy_igp) - return E1000_SUCCESS; - - if (link_up) { - ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); - if (ret_val) { - DEBUGOUT("Error getting link speed and duplex\n"); - return ret_val; - } - - if (speed == SPEED_1000) { - - ret_val = e1000_get_cable_length(hw, &min_length, &max_length); - if (ret_val) - return ret_val; - - if ((hw->dsp_config_state == e1000_dsp_config_enabled) && - min_length >= e1000_igp_cable_length_50) { - - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; - - ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], - phy_data); - if (ret_val) - return ret_val; - } - hw->dsp_config_state = e1000_dsp_config_activated; - } - - if ((hw->ffe_config_state == e1000_ffe_config_enabled) && - (min_length < e1000_igp_cable_length_50)) { - - u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; - u32 idle_errs = 0; - - /* clear previous idle error counts */ - ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - for (i = 0; i < ffe_idle_err_timeout; i++) { - udelay(1000); - ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, - &phy_data); - if (ret_val) - return ret_val; - - idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); - if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { - hw->ffe_config_state = e1000_ffe_config_active; - - ret_val = e1000_write_phy_reg(hw, - IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_CM_CP); - if (ret_val) - return ret_val; - break; - } - - if (idle_errs) - ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; - } - } - } - } else { - if (hw->dsp_config_state == e1000_dsp_config_activated) { - /* Save off the current value of register 0x2F5B to be restored at - * the end of the routines. */ - ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - if (ret_val) - return ret_val; - - /* Disable the PHY transmitter */ - ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - - if (ret_val) - return ret_val; - - mdelay(20); - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIGA); - if (ret_val) - return ret_val; - for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { - ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; - phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; - - ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); - if (ret_val) - return ret_val; - } - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) - return ret_val; - - mdelay(20); - - /* Now enable the transmitter */ - ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (ret_val) - return ret_val; - - hw->dsp_config_state = e1000_dsp_config_enabled; - } - - if (hw->ffe_config_state == e1000_ffe_config_active) { - /* Save off the current value of register 0x2F5B to be restored at - * the end of the routines. */ - ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); - - if (ret_val) - return ret_val; - - /* Disable the PHY transmitter */ - ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); - - if (ret_val) - return ret_val; - - mdelay(20); - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_FORCE_GIGA); - if (ret_val) - return ret_val; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, - IGP01E1000_PHY_DSP_FFE_DEFAULT); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, 0x0000, - IGP01E1000_IEEE_RESTART_AUTONEG); - if (ret_val) - return ret_val; - - mdelay(20); - - /* Now enable the transmitter */ - ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); - - if (ret_val) - return ret_val; - - hw->ffe_config_state = e1000_ffe_config_enabled; - } - } - return E1000_SUCCESS; + s32 ret_val; + u16 phy_data, phy_saved_data, speed, duplex, i; + u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = + { IGP01E1000_PHY_AGC_PARAM_A, + IGP01E1000_PHY_AGC_PARAM_B, + IGP01E1000_PHY_AGC_PARAM_C, + IGP01E1000_PHY_AGC_PARAM_D + }; + u16 min_length, max_length; + + DEBUGFUNC("e1000_config_dsp_after_link_change"); + + if (hw->phy_type != e1000_phy_igp) + return E1000_SUCCESS; + + if (link_up) { + ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); + if (ret_val) { + DEBUGOUT("Error getting link speed and duplex\n"); + return ret_val; + } + + if (speed == SPEED_1000) { + + ret_val = + e1000_get_cable_length(hw, &min_length, + &max_length); + if (ret_val) + return ret_val; + + if ((hw->dsp_config_state == e1000_dsp_config_enabled) + && min_length >= e1000_igp_cable_length_50) { + + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = + e1000_read_phy_reg(hw, + dsp_reg_array[i], + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= + ~IGP01E1000_PHY_EDAC_MU_INDEX; + + ret_val = + e1000_write_phy_reg(hw, + dsp_reg_array + [i], phy_data); + if (ret_val) + return ret_val; + } + hw->dsp_config_state = + e1000_dsp_config_activated; + } + + if ((hw->ffe_config_state == e1000_ffe_config_enabled) + && (min_length < e1000_igp_cable_length_50)) { + + u16 ffe_idle_err_timeout = + FFE_IDLE_ERR_COUNT_TIMEOUT_20; + u32 idle_errs = 0; + + /* clear previous idle error counts */ + ret_val = + e1000_read_phy_reg(hw, PHY_1000T_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + for (i = 0; i < ffe_idle_err_timeout; i++) { + udelay(1000); + ret_val = + e1000_read_phy_reg(hw, + PHY_1000T_STATUS, + &phy_data); + if (ret_val) + return ret_val; + + idle_errs += + (phy_data & + SR_1000T_IDLE_ERROR_CNT); + if (idle_errs > + SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) + { + hw->ffe_config_state = + e1000_ffe_config_active; + + ret_val = + e1000_write_phy_reg(hw, + IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_CM_CP); + if (ret_val) + return ret_val; + break; + } + + if (idle_errs) + ffe_idle_err_timeout = + FFE_IDLE_ERR_COUNT_TIMEOUT_100; + } + } + } + } else { + if (hw->dsp_config_state == e1000_dsp_config_activated) { + /* Save off the current value of register 0x2F5B to be restored at + * the end of the routines. */ + ret_val = + e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + if (ret_val) + return ret_val; + + /* Disable the PHY transmitter */ + ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); + + if (ret_val) + return ret_val; + + mdelay(20); + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIGA); + if (ret_val) + return ret_val; + for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { + ret_val = + e1000_read_phy_reg(hw, dsp_reg_array[i], + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; + phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; + + ret_val = + e1000_write_phy_reg(hw, dsp_reg_array[i], + phy_data); + if (ret_val) + return ret_val; + } + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + return ret_val; + + mdelay(20); + + /* Now enable the transmitter */ + ret_val = + e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (ret_val) + return ret_val; + + hw->dsp_config_state = e1000_dsp_config_enabled; + } + + if (hw->ffe_config_state == e1000_ffe_config_active) { + /* Save off the current value of register 0x2F5B to be restored at + * the end of the routines. */ + ret_val = + e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); + + if (ret_val) + return ret_val; + + /* Disable the PHY transmitter */ + ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); + + if (ret_val) + return ret_val; + + mdelay(20); + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_FORCE_GIGA); + if (ret_val) + return ret_val; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, + IGP01E1000_PHY_DSP_FFE_DEFAULT); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, 0x0000, + IGP01E1000_IEEE_RESTART_AUTONEG); + if (ret_val) + return ret_val; + + mdelay(20); + + /* Now enable the transmitter */ + ret_val = + e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); + + if (ret_val) + return ret_val; + + hw->ffe_config_state = e1000_ffe_config_enabled; + } + } + return E1000_SUCCESS; } -/***************************************************************************** - * Set PHY to class A mode +/** + * e1000_set_phy_mode - Set PHY to class A mode + * @hw: Struct containing variables accessed by shared code + * * Assumes the following operations will follow to enable the new class mode. * 1. Do a PHY soft reset * 2. Restart auto-negotiation or force link. - * - * hw - Struct containing variables accessed by shared code - ****************************************************************************/ + */ static s32 e1000_set_phy_mode(struct e1000_hw *hw) { - s32 ret_val; - u16 eeprom_data; - - DEBUGFUNC("e1000_set_phy_mode"); - - if ((hw->mac_type == e1000_82545_rev_3) && - (hw->media_type == e1000_media_type_copper)) { - ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); - if (ret_val) { - return ret_val; - } - - if ((eeprom_data != EEPROM_RESERVED_WORD) && - (eeprom_data & EEPROM_PHY_CLASS_A)) { - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); - if (ret_val) - return ret_val; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); - if (ret_val) - return ret_val; - - hw->phy_reset_disable = false; - } - } - - return E1000_SUCCESS; + s32 ret_val; + u16 eeprom_data; + + DEBUGFUNC("e1000_set_phy_mode"); + + if ((hw->mac_type == e1000_82545_rev_3) && + (hw->media_type == e1000_media_type_copper)) { + ret_val = + e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, + &eeprom_data); + if (ret_val) { + return ret_val; + } + + if ((eeprom_data != EEPROM_RESERVED_WORD) && + (eeprom_data & EEPROM_PHY_CLASS_A)) { + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, + 0x000B); + if (ret_val) + return ret_val; + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, + 0x8104); + if (ret_val) + return ret_val; + + hw->phy_reset_disable = false; + } + } + + return E1000_SUCCESS; } -/***************************************************************************** +/** + * e1000_set_d3_lplu_state - set d3 link power state + * @hw: Struct containing variables accessed by shared code + * @active: true to enable lplu false to disable lplu. * * This function sets the lplu state according to the active flag. When * activating lplu this function also disables smart speed and vise versa. - * lplu will not be activated unless the device autonegotiation advertisment + * lplu will not be activated unless the device autonegotiation advertisement * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. - * hw: Struct containing variables accessed by shared code - * active - true to enable lplu false to disable lplu. * * returns: - E1000_ERR_PHY if fail to read/write the PHY * E1000_SUCCESS at any other case. - * - ****************************************************************************/ - + */ static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) { - s32 ret_val; - u16 phy_data; - DEBUGFUNC("e1000_set_d3_lplu_state"); - - if (hw->phy_type != e1000_phy_igp) - return E1000_SUCCESS; - - /* During driver activity LPLU should not be used or it will attain link - * from the lowest speeds starting from 10Mbps. The capability is used for - * Dx transitions and states */ - if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); - if (ret_val) - return ret_val; - } else { - ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); - if (ret_val) - return ret_val; - } - - if (!active) { - if (hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547_rev_2) { - phy_data &= ~IGP01E1000_GMII_FLEX_SPD; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if (ret_val) - return ret_val; - } else { - phy_data &= ~IGP02E1000_PM_D3_LPLU; - ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, - phy_data); - if (ret_val) - return ret_val; - } - - /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during - * Dx states where the power conservation is most important. During - * driver activity we should enable SmartSpeed, so performance is - * maintained. */ - if (hw->smart_speed == e1000_smart_speed_on) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data |= IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } else if (hw->smart_speed == e1000_smart_speed_off) { - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, - phy_data); - if (ret_val) - return ret_val; - } - - } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || - (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { - - if (hw->mac_type == e1000_82541_rev_2 || - hw->mac_type == e1000_82547_rev_2) { - phy_data |= IGP01E1000_GMII_FLEX_SPD; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); - if (ret_val) - return ret_val; - } else { - phy_data |= IGP02E1000_PM_D3_LPLU; - ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, - phy_data); - if (ret_val) - return ret_val; - } - - /* When LPLU is enabled we should disable SmartSpeed */ - ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); - if (ret_val) - return ret_val; - - phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; - ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); - if (ret_val) - return ret_val; - - } - return E1000_SUCCESS; + s32 ret_val; + u16 phy_data; + DEBUGFUNC("e1000_set_d3_lplu_state"); + + if (hw->phy_type != e1000_phy_igp) + return E1000_SUCCESS; + + /* During driver activity LPLU should not be used or it will attain link + * from the lowest speeds starting from 10Mbps. The capability is used for + * Dx transitions and states */ + if (hw->mac_type == e1000_82541_rev_2 + || hw->mac_type == e1000_82547_rev_2) { + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); + if (ret_val) + return ret_val; + } + + if (!active) { + if (hw->mac_type == e1000_82541_rev_2 || + hw->mac_type == e1000_82547_rev_2) { + phy_data &= ~IGP01E1000_GMII_FLEX_SPD; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + phy_data); + if (ret_val) + return ret_val; + } + + /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during + * Dx states where the power conservation is most important. During + * driver activity we should enable SmartSpeed, so performance is + * maintained. */ + if (hw->smart_speed == e1000_smart_speed_on) { + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data |= IGP01E1000_PSCFR_SMART_SPEED; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + } else if (hw->smart_speed == e1000_smart_speed_off) { + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + } + } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) + || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) + || (hw->autoneg_advertised == + AUTONEG_ADVERTISE_10_100_ALL)) { + + if (hw->mac_type == e1000_82541_rev_2 || + hw->mac_type == e1000_82547_rev_2) { + phy_data |= IGP01E1000_GMII_FLEX_SPD; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, + phy_data); + if (ret_val) + return ret_val; + } + + /* When LPLU is enabled we should disable SmartSpeed */ + ret_val = + e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + &phy_data); + if (ret_val) + return ret_val; + + phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; + ret_val = + e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, + phy_data); + if (ret_val) + return ret_val; + + } + return E1000_SUCCESS; } -/****************************************************************************** - * Change VCO speed register to improve Bit Error Rate performance of SERDES. +/** + * e1000_set_vco_speed + * @hw: Struct containing variables accessed by shared code * - * hw - Struct containing variables accessed by shared code - *****************************************************************************/ + * Change VCO speed register to improve Bit Error Rate performance of SERDES. + */ static s32 e1000_set_vco_speed(struct e1000_hw *hw) { - s32 ret_val; - u16 default_page = 0; - u16 phy_data; + s32 ret_val; + u16 default_page = 0; + u16 phy_data; - DEBUGFUNC("e1000_set_vco_speed"); + DEBUGFUNC("e1000_set_vco_speed"); - switch (hw->mac_type) { - case e1000_82545_rev_3: - case e1000_82546_rev_3: - break; - default: - return E1000_SUCCESS; - } + switch (hw->mac_type) { + case e1000_82545_rev_3: + case e1000_82546_rev_3: + break; + default: + return E1000_SUCCESS; + } - /* Set PHY register 30, page 5, bit 8 to 0 */ + /* Set PHY register 30, page 5, bit 8 to 0 */ - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); - if (ret_val) - return ret_val; + ret_val = + e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); + if (ret_val) + return ret_val; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); - if (ret_val) - return ret_val; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); + if (ret_val) + return ret_val; - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) - return ret_val; + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + return ret_val; - phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) - return ret_val; + phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + return ret_val; - /* Set PHY register 30, page 4, bit 11 to 1 */ + /* Set PHY register 30, page 4, bit 11 to 1 */ - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); - if (ret_val) - return ret_val; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); + if (ret_val) + return ret_val; - ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); - if (ret_val) - return ret_val; + ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); + if (ret_val) + return ret_val; - phy_data |= M88E1000_PHY_VCO_REG_BIT11; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); - if (ret_val) - return ret_val; + phy_data |= M88E1000_PHY_VCO_REG_BIT11; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); + if (ret_val) + return ret_val; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); - if (ret_val) - return ret_val; + ret_val = + e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); + if (ret_val) + return ret_val; - return E1000_SUCCESS; + return E1000_SUCCESS; } -/****************************************************************************** - * Verifies the hardware needs to allow ARPs to be processed by the host - * - * hw - Struct containing variables accessed by shared code +/** + * e1000_enable_mng_pass_thru - check for bmc pass through + * @hw: Struct containing variables accessed by shared code * + * Verifies the hardware needs to allow ARPs to be processed by the host * returns: - true/false - * - *****************************************************************************/ + */ u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) { - u32 manc; - - if (hw->asf_firmware_present) { - manc = er32(MANC); - - if (!(manc & E1000_MANC_RCV_TCO_EN) || - !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) - return false; - if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) - return true; - } - return false; + u32 manc; + + if (hw->asf_firmware_present) { + manc = er32(MANC); + + if (!(manc & E1000_MANC_RCV_TCO_EN) || + !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) + return false; + if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) + return true; + } + return false; } static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) { - s32 ret_val; - u16 mii_status_reg; - u16 i; - - /* Polarity reversal workaround for forced 10F/10H links. */ - - /* Disable the transmitter on the PHY */ - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) - return ret_val; - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) - return ret_val; - - /* This loop will early-out if the NO link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Link Status bit - * to be clear. - */ - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; - mdelay(100); - } - - /* Recommended delay time after link has been lost */ - mdelay(1000); - - /* Now we will re-enable th transmitter on the PHY */ - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); - if (ret_val) - return ret_val; - mdelay(50); - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); - if (ret_val) - return ret_val; - mdelay(50); - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); - if (ret_val) - return ret_val; - mdelay(50); - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); - if (ret_val) - return ret_val; - - ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); - if (ret_val) - return ret_val; - - /* This loop will early-out if the link condition has been met. */ - for (i = PHY_FORCE_TIME; i > 0; i--) { - /* Read the MII Status Register and wait for Link Status bit - * to be set. - */ - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); - if (ret_val) - return ret_val; - - if (mii_status_reg & MII_SR_LINK_STATUS) break; - mdelay(100); - } - return E1000_SUCCESS; + s32 ret_val; + u16 mii_status_reg; + u16 i; + + /* Polarity reversal workaround for forced 10F/10H links. */ + + /* Disable the transmitter on the PHY */ + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + return ret_val; + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + return ret_val; + + /* This loop will early-out if the NO link condition has been met. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Link Status bit + * to be clear. + */ + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) + break; + mdelay(100); + } + + /* Recommended delay time after link has been lost */ + mdelay(1000); + + /* Now we will re-enable th transmitter on the PHY */ + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); + if (ret_val) + return ret_val; + mdelay(50); + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); + if (ret_val) + return ret_val; + mdelay(50); + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); + if (ret_val) + return ret_val; + mdelay(50); + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); + if (ret_val) + return ret_val; + + ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); + if (ret_val) + return ret_val; + + /* This loop will early-out if the link condition has been met. */ + for (i = PHY_FORCE_TIME; i > 0; i--) { + /* Read the MII Status Register and wait for Link Status bit + * to be set. + */ + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (mii_status_reg & MII_SR_LINK_STATUS) + break; + mdelay(100); + } + return E1000_SUCCESS; } -/******************************************************************************* +/** + * e1000_get_auto_rd_done + * @hw: Struct containing variables accessed by shared code * * Check for EEPROM Auto Read bit done. - * - * hw: Struct containing variables accessed by shared code - * * returns: - E1000_ERR_RESET if fail to reset MAC * E1000_SUCCESS at any other case. - * - ******************************************************************************/ + */ static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) { - DEBUGFUNC("e1000_get_auto_rd_done"); - msleep(5); - return E1000_SUCCESS; + DEBUGFUNC("e1000_get_auto_rd_done"); + msleep(5); + return E1000_SUCCESS; } -/*************************************************************************** - * Checks if the PHY configuration is done - * - * hw: Struct containing variables accessed by shared code +/** + * e1000_get_phy_cfg_done + * @hw: Struct containing variables accessed by shared code * + * Checks if the PHY configuration is done * returns: - E1000_ERR_RESET if fail to reset MAC * E1000_SUCCESS at any other case. - * - ***************************************************************************/ + */ static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) { - DEBUGFUNC("e1000_get_phy_cfg_done"); - mdelay(10); - return E1000_SUCCESS; + DEBUGFUNC("e1000_get_phy_cfg_done"); + mdelay(10); + return E1000_SUCCESS; } diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h index 1c782d2ff04..4bfdf323b58 100644 --- a/drivers/net/e1000/e1000_hw.h +++ b/drivers/net/e1000/e1000_hw.h @@ -35,7 +35,6 @@ #include "e1000_osdep.h" - /* Forward declarations of structures used by the shared code */ struct e1000_hw; struct e1000_hw_stats; @@ -43,169 +42,169 @@ struct e1000_hw_stats; /* Enumerated types specific to the e1000 hardware */ /* Media Access Controlers */ typedef enum { - e1000_undefined = 0, - e1000_82542_rev2_0, - e1000_82542_rev2_1, - e1000_82543, - e1000_82544, - e1000_82540, - e1000_82545, - e1000_82545_rev_3, - e1000_82546, - e1000_82546_rev_3, - e1000_82541, - e1000_82541_rev_2, - e1000_82547, - e1000_82547_rev_2, - e1000_num_macs + e1000_undefined = 0, + e1000_82542_rev2_0, + e1000_82542_rev2_1, + e1000_82543, + e1000_82544, + e1000_82540, + e1000_82545, + e1000_82545_rev_3, + e1000_82546, + e1000_82546_rev_3, + e1000_82541, + e1000_82541_rev_2, + e1000_82547, + e1000_82547_rev_2, + e1000_num_macs } e1000_mac_type; typedef enum { - e1000_eeprom_uninitialized = 0, - e1000_eeprom_spi, - e1000_eeprom_microwire, - e1000_eeprom_flash, - e1000_eeprom_none, /* No NVM support */ - e1000_num_eeprom_types + e1000_eeprom_uninitialized = 0, + e1000_eeprom_spi, + e1000_eeprom_microwire, + e1000_eeprom_flash, + e1000_eeprom_none, /* No NVM support */ + e1000_num_eeprom_types } e1000_eeprom_type; /* Media Types */ typedef enum { - e1000_media_type_copper = 0, - e1000_media_type_fiber = 1, - e1000_media_type_internal_serdes = 2, - e1000_num_media_types + e1000_media_type_copper = 0, + e1000_media_type_fiber = 1, + e1000_media_type_internal_serdes = 2, + e1000_num_media_types } e1000_media_type; typedef enum { - e1000_10_half = 0, - e1000_10_full = 1, - e1000_100_half = 2, - e1000_100_full = 3 + e1000_10_half = 0, + e1000_10_full = 1, + e1000_100_half = 2, + e1000_100_full = 3 } e1000_speed_duplex_type; /* Flow Control Settings */ typedef enum { - E1000_FC_NONE = 0, - E1000_FC_RX_PAUSE = 1, - E1000_FC_TX_PAUSE = 2, - E1000_FC_FULL = 3, - E1000_FC_DEFAULT = 0xFF + E1000_FC_NONE = 0, + E1000_FC_RX_PAUSE = 1, + E1000_FC_TX_PAUSE = 2, + E1000_FC_FULL = 3, + E1000_FC_DEFAULT = 0xFF } e1000_fc_type; struct e1000_shadow_ram { - u16 eeprom_word; - bool modified; + u16 eeprom_word; + bool modified; }; /* PCI bus types */ typedef enum { - e1000_bus_type_unknown = 0, - e1000_bus_type_pci, - e1000_bus_type_pcix, - e1000_bus_type_reserved + e1000_bus_type_unknown = 0, + e1000_bus_type_pci, + e1000_bus_type_pcix, + e1000_bus_type_reserved } e1000_bus_type; /* PCI bus speeds */ typedef enum { - e1000_bus_speed_unknown = 0, - e1000_bus_speed_33, - e1000_bus_speed_66, - e1000_bus_speed_100, - e1000_bus_speed_120, - e1000_bus_speed_133, - e1000_bus_speed_reserved + e1000_bus_speed_unknown = 0, + e1000_bus_speed_33, + e1000_bus_speed_66, + e1000_bus_speed_100, + e1000_bus_speed_120, + e1000_bus_speed_133, + e1000_bus_speed_reserved } e1000_bus_speed; /* PCI bus widths */ typedef enum { - e1000_bus_width_unknown = 0, - e1000_bus_width_32, - e1000_bus_width_64, - e1000_bus_width_reserved + e1000_bus_width_unknown = 0, + e1000_bus_width_32, + e1000_bus_width_64, + e1000_bus_width_reserved } e1000_bus_width; /* PHY status info structure and supporting enums */ typedef enum { - e1000_cable_length_50 = 0, - e1000_cable_length_50_80, - e1000_cable_length_80_110, - e1000_cable_length_110_140, - e1000_cable_length_140, - e1000_cable_length_undefined = 0xFF + e1000_cable_length_50 = 0, + e1000_cable_length_50_80, + e1000_cable_length_80_110, + e1000_cable_length_110_140, + e1000_cable_length_140, + e1000_cable_length_undefined = 0xFF } e1000_cable_length; typedef enum { - e1000_gg_cable_length_60 = 0, - e1000_gg_cable_length_60_115 = 1, - e1000_gg_cable_length_115_150 = 2, - e1000_gg_cable_length_150 = 4 + e1000_gg_cable_length_60 = 0, + e1000_gg_cable_length_60_115 = 1, + e1000_gg_cable_length_115_150 = 2, + e1000_gg_cable_length_150 = 4 } e1000_gg_cable_length; typedef enum { - e1000_igp_cable_length_10 = 10, - e1000_igp_cable_length_20 = 20, - e1000_igp_cable_length_30 = 30, - e1000_igp_cable_length_40 = 40, - e1000_igp_cable_length_50 = 50, - e1000_igp_cable_length_60 = 60, - e1000_igp_cable_length_70 = 70, - e1000_igp_cable_length_80 = 80, - e1000_igp_cable_length_90 = 90, - e1000_igp_cable_length_100 = 100, - e1000_igp_cable_length_110 = 110, - e1000_igp_cable_length_115 = 115, - e1000_igp_cable_length_120 = 120, - e1000_igp_cable_length_130 = 130, - e1000_igp_cable_length_140 = 140, - e1000_igp_cable_length_150 = 150, - e1000_igp_cable_length_160 = 160, - e1000_igp_cable_length_170 = 170, - e1000_igp_cable_length_180 = 180 + e1000_igp_cable_length_10 = 10, + e1000_igp_cable_length_20 = 20, + e1000_igp_cable_length_30 = 30, + e1000_igp_cable_length_40 = 40, + e1000_igp_cable_length_50 = 50, + e1000_igp_cable_length_60 = 60, + e1000_igp_cable_length_70 = 70, + e1000_igp_cable_length_80 = 80, + e1000_igp_cable_length_90 = 90, + e1000_igp_cable_length_100 = 100, + e1000_igp_cable_length_110 = 110, + e1000_igp_cable_length_115 = 115, + e1000_igp_cable_length_120 = 120, + e1000_igp_cable_length_130 = 130, + e1000_igp_cable_length_140 = 140, + e1000_igp_cable_length_150 = 150, + e1000_igp_cable_length_160 = 160, + e1000_igp_cable_length_170 = 170, + e1000_igp_cable_length_180 = 180 } e1000_igp_cable_length; typedef enum { - e1000_10bt_ext_dist_enable_normal = 0, - e1000_10bt_ext_dist_enable_lower, - e1000_10bt_ext_dist_enable_undefined = 0xFF + e1000_10bt_ext_dist_enable_normal = 0, + e1000_10bt_ext_dist_enable_lower, + e1000_10bt_ext_dist_enable_undefined = 0xFF } e1000_10bt_ext_dist_enable; typedef enum { - e1000_rev_polarity_normal = 0, - e1000_rev_polarity_reversed, - e1000_rev_polarity_undefined = 0xFF + e1000_rev_polarity_normal = 0, + e1000_rev_polarity_reversed, + e1000_rev_polarity_undefined = 0xFF } e1000_rev_polarity; typedef enum { - e1000_downshift_normal = 0, - e1000_downshift_activated, - e1000_downshift_undefined = 0xFF + e1000_downshift_normal = 0, + e1000_downshift_activated, + e1000_downshift_undefined = 0xFF } e1000_downshift; typedef enum { - e1000_smart_speed_default = 0, - e1000_smart_speed_on, - e1000_smart_speed_off + e1000_smart_speed_default = 0, + e1000_smart_speed_on, + e1000_smart_speed_off } e1000_smart_speed; typedef enum { - e1000_polarity_reversal_enabled = 0, - e1000_polarity_reversal_disabled, - e1000_polarity_reversal_undefined = 0xFF + e1000_polarity_reversal_enabled = 0, + e1000_polarity_reversal_disabled, + e1000_polarity_reversal_undefined = 0xFF } e1000_polarity_reversal; typedef enum { - e1000_auto_x_mode_manual_mdi = 0, - e1000_auto_x_mode_manual_mdix, - e1000_auto_x_mode_auto1, - e1000_auto_x_mode_auto2, - e1000_auto_x_mode_undefined = 0xFF + e1000_auto_x_mode_manual_mdi = 0, + e1000_auto_x_mode_manual_mdix, + e1000_auto_x_mode_auto1, + e1000_auto_x_mode_auto2, + e1000_auto_x_mode_undefined = 0xFF } e1000_auto_x_mode; typedef enum { - e1000_1000t_rx_status_not_ok = 0, - e1000_1000t_rx_status_ok, - e1000_1000t_rx_status_undefined = 0xFF + e1000_1000t_rx_status_not_ok = 0, + e1000_1000t_rx_status_ok, + e1000_1000t_rx_status_undefined = 0xFF } e1000_1000t_rx_status; typedef enum { @@ -215,63 +214,61 @@ typedef enum { } e1000_phy_type; typedef enum { - e1000_ms_hw_default = 0, - e1000_ms_force_master, - e1000_ms_force_slave, - e1000_ms_auto + e1000_ms_hw_default = 0, + e1000_ms_force_master, + e1000_ms_force_slave, + e1000_ms_auto } e1000_ms_type; typedef enum { - e1000_ffe_config_enabled = 0, - e1000_ffe_config_active, - e1000_ffe_config_blocked + e1000_ffe_config_enabled = 0, + e1000_ffe_config_active, + e1000_ffe_config_blocked } e1000_ffe_config; typedef enum { - e1000_dsp_config_disabled = 0, - e1000_dsp_config_enabled, - e1000_dsp_config_activated, - e1000_dsp_config_undefined = 0xFF + e1000_dsp_config_disabled = 0, + e1000_dsp_config_enabled, + e1000_dsp_config_activated, + e1000_dsp_config_undefined = 0xFF } e1000_dsp_config; struct e1000_phy_info { - e1000_cable_length cable_length; - e1000_10bt_ext_dist_enable extended_10bt_distance; - e1000_rev_polarity cable_polarity; - e1000_downshift downshift; - e1000_polarity_reversal polarity_correction; - e1000_auto_x_mode mdix_mode; - e1000_1000t_rx_status local_rx; - e1000_1000t_rx_status remote_rx; + e1000_cable_length cable_length; + e1000_10bt_ext_dist_enable extended_10bt_distance; + e1000_rev_polarity cable_polarity; + e1000_downshift downshift; + e1000_polarity_reversal polarity_correction; + e1000_auto_x_mode mdix_mode; + e1000_1000t_rx_status local_rx; + e1000_1000t_rx_status remote_rx; }; struct e1000_phy_stats { - u32 idle_errors; - u32 receive_errors; + u32 idle_errors; + u32 receive_errors; }; struct e1000_eeprom_info { - e1000_eeprom_type type; - u16 word_size; - u16 opcode_bits; - u16 address_bits; - u16 delay_usec; - u16 page_size; - bool use_eerd; - bool use_eewr; + e1000_eeprom_type type; + u16 word_size; + u16 opcode_bits; + u16 address_bits; + u16 delay_usec; + u16 page_size; + bool use_eerd; + bool use_eewr; }; /* Flex ASF Information */ #define E1000_HOST_IF_MAX_SIZE 2048 typedef enum { - e1000_byte_align = 0, - e1000_word_align = 1, - e1000_dword_align = 2 + e1000_byte_align = 0, + e1000_word_align = 1, + e1000_dword_align = 2 } e1000_align_type; - - /* Error Codes */ #define E1000_SUCCESS 0 #define E1000_ERR_EEPROM 1 @@ -300,11 +297,11 @@ s32 e1000_setup_link(struct e1000_hw *hw); s32 e1000_phy_setup_autoneg(struct e1000_hw *hw); void e1000_config_collision_dist(struct e1000_hw *hw); s32 e1000_check_for_link(struct e1000_hw *hw); -s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex); +s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 * speed, u16 * duplex); s32 e1000_force_mac_fc(struct e1000_hw *hw); /* PHY */ -s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data); +s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 * phy_data); s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 data); s32 e1000_phy_hw_reset(struct e1000_hw *hw); s32 e1000_phy_reset(struct e1000_hw *hw); @@ -318,64 +315,64 @@ s32 e1000_init_eeprom_params(struct e1000_hw *hw); u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw); #define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 -#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */ +#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */ -#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */ -#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ -#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ +#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */ +#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ +#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ #define E1000_MNG_IAMT_MODE 0x3 #define E1000_MNG_ICH_IAMT_MODE 0x2 -#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ +#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ -#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ -#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */ +#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ +#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */ #define E1000_VFTA_ENTRY_SHIFT 0x5 #define E1000_VFTA_ENTRY_MASK 0x7F #define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F struct e1000_host_mng_command_header { - u8 command_id; - u8 checksum; - u16 reserved1; - u16 reserved2; - u16 command_length; + u8 command_id; + u8 checksum; + u16 reserved1; + u16 reserved2; + u16 command_length; }; struct e1000_host_mng_command_info { - struct e1000_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ - u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658*/ + struct e1000_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ + u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658 */ }; #ifdef __BIG_ENDIAN -struct e1000_host_mng_dhcp_cookie{ - u32 signature; - u16 vlan_id; - u8 reserved0; - u8 status; - u32 reserved1; - u8 checksum; - u8 reserved3; - u16 reserved2; +struct e1000_host_mng_dhcp_cookie { + u32 signature; + u16 vlan_id; + u8 reserved0; + u8 status; + u32 reserved1; + u8 checksum; + u8 reserved3; + u16 reserved2; }; #else -struct e1000_host_mng_dhcp_cookie{ - u32 signature; - u8 status; - u8 reserved0; - u16 vlan_id; - u32 reserved1; - u16 reserved2; - u8 reserved3; - u8 checksum; +struct e1000_host_mng_dhcp_cookie { + u32 signature; + u8 status; + u8 reserved0; + u16 vlan_id; + u32 reserved1; + u16 reserved2; + u8 reserved3; + u8 checksum; }; #endif bool e1000_check_mng_mode(struct e1000_hw *hw); bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); -s32 e1000_read_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 *data); +s32 e1000_read_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data); s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw); s32 e1000_update_eeprom_checksum(struct e1000_hw *hw); -s32 e1000_write_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 *data); -s32 e1000_read_mac_addr(struct e1000_hw * hw); +s32 e1000_write_eeprom(struct e1000_hw *hw, u16 reg, u16 words, u16 * data); +s32 e1000_read_mac_addr(struct e1000_hw *hw); /* Filters (multicast, vlan, receive) */ u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 * mc_addr); @@ -395,7 +392,8 @@ s32 e1000_blink_led_start(struct e1000_hw *hw); /* Everything else */ void e1000_reset_adaptive(struct e1000_hw *hw); void e1000_update_adaptive(struct e1000_hw *hw); -void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, u32 frame_len, u8 * mac_addr); +void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, + u32 frame_len, u8 * mac_addr); void e1000_get_bus_info(struct e1000_hw *hw); void e1000_pci_set_mwi(struct e1000_hw *hw); void e1000_pci_clear_mwi(struct e1000_hw *hw); @@ -404,7 +402,6 @@ int e1000_pcix_get_mmrbc(struct e1000_hw *hw); /* Port I/O is only supported on 82544 and newer */ void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value); - #define E1000_READ_REG_IO(a, reg) \ e1000_read_reg_io((a), E1000_##reg) #define E1000_WRITE_REG_IO(a, reg, val) \ @@ -469,21 +466,20 @@ void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value); /* The sizes (in bytes) of a ethernet packet */ #define ENET_HEADER_SIZE 14 -#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */ +#define MINIMUM_ETHERNET_FRAME_SIZE 64 /* With FCS */ #define ETHERNET_FCS_SIZE 4 #define MINIMUM_ETHERNET_PACKET_SIZE \ (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) #define CRC_LENGTH ETHERNET_FCS_SIZE #define MAX_JUMBO_FRAME_SIZE 0x3F00 - /* 802.1q VLAN Packet Sizes */ -#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */ +#define VLAN_TAG_SIZE 4 /* 802.3ac tag (not DMAed) */ /* Ethertype field values */ -#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ -#define ETHERNET_IP_TYPE 0x0800 /* IP packets */ -#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */ +#define ETHERNET_IEEE_VLAN_TYPE 0x8100 /* 802.3ac packet */ +#define ETHERNET_IP_TYPE 0x0800 /* IP packets */ +#define ETHERNET_ARP_TYPE 0x0806 /* Address Resolution Protocol (ARP) */ /* Packet Header defines */ #define IP_PROTOCOL_TCP 6 @@ -525,93 +521,93 @@ void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value); /* Receive Descriptor */ struct e1000_rx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - __le16 length; /* Length of data DMAed into data buffer */ - __le16 csum; /* Packet checksum */ - u8 status; /* Descriptor status */ - u8 errors; /* Descriptor Errors */ - __le16 special; + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + __le16 length; /* Length of data DMAed into data buffer */ + __le16 csum; /* Packet checksum */ + u8 status; /* Descriptor status */ + u8 errors; /* Descriptor Errors */ + __le16 special; }; /* Receive Descriptor - Extended */ union e1000_rx_desc_extended { - struct { - __le64 buffer_addr; - __le64 reserved; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length; - __le16 vlan; /* VLAN tag */ - } upper; - } wb; /* writeback */ + struct { + __le64 buffer_addr; + __le64 reserved; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length; + __le16 vlan; /* VLAN tag */ + } upper; + } wb; /* writeback */ }; #define MAX_PS_BUFFERS 4 /* Receive Descriptor - Packet Split */ union e1000_rx_desc_packet_split { - struct { - /* one buffer for protocol header(s), three data buffers */ - __le64 buffer_addr[MAX_PS_BUFFERS]; - } read; - struct { - struct { - __le32 mrq; /* Multiple Rx Queues */ - union { - __le32 rss; /* RSS Hash */ - struct { - __le16 ip_id; /* IP id */ - __le16 csum; /* Packet Checksum */ - } csum_ip; - } hi_dword; - } lower; - struct { - __le32 status_error; /* ext status/error */ - __le16 length0; /* length of buffer 0 */ - __le16 vlan; /* VLAN tag */ - } middle; - struct { - __le16 header_status; - __le16 length[3]; /* length of buffers 1-3 */ - } upper; - __le64 reserved; - } wb; /* writeback */ + struct { + /* one buffer for protocol header(s), three data buffers */ + __le64 buffer_addr[MAX_PS_BUFFERS]; + } read; + struct { + struct { + __le32 mrq; /* Multiple Rx Queues */ + union { + __le32 rss; /* RSS Hash */ + struct { + __le16 ip_id; /* IP id */ + __le16 csum; /* Packet Checksum */ + } csum_ip; + } hi_dword; + } lower; + struct { + __le32 status_error; /* ext status/error */ + __le16 length0; /* length of buffer 0 */ + __le16 vlan; /* VLAN tag */ + } middle; + struct { + __le16 header_status; + __le16 length[3]; /* length of buffers 1-3 */ + } upper; + __le64 reserved; + } wb; /* writeback */ }; -/* Receive Decriptor bit definitions */ -#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ -#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ -#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ -#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ -#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */ -#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ -#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ -#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ -#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ -#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ -#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */ -#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ -#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ -#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ -#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ -#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ -#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ -#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ -#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ -#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ +/* Receive Descriptor bit definitions */ +#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ +#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ +#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ +#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ +#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */ +#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ +#define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ +#define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ +#define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ +#define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ +#define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */ +#define E1000_RXD_ERR_CE 0x01 /* CRC Error */ +#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ +#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ +#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE 0x40 /* IP Checksum Error */ +#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ +#define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ #define E1000_RXD_SPC_PRI_SHIFT 13 -#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ +#define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ #define E1000_RXD_SPC_CFI_SHIFT 12 #define E1000_RXDEXT_STATERR_CE 0x01000000 @@ -633,7 +629,6 @@ union e1000_rx_desc_packet_split { E1000_RXD_ERR_CXE | \ E1000_RXD_ERR_RXE) - /* Same mask, but for extended and packet split descriptors */ #define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ E1000_RXDEXT_STATERR_CE | \ @@ -642,109 +637,108 @@ union e1000_rx_desc_packet_split { E1000_RXDEXT_STATERR_CXE | \ E1000_RXDEXT_STATERR_RXE) - /* Transmit Descriptor */ struct e1000_tx_desc { - __le64 buffer_addr; /* Address of the descriptor's data buffer */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 cso; /* Checksum offset */ - u8 cmd; /* Descriptor control */ - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 css; /* Checksum start */ - __le16 special; - } fields; - } upper; + __le64 buffer_addr; /* Address of the descriptor's data buffer */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 cso; /* Checksum offset */ + u8 cmd; /* Descriptor control */ + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 css; /* Checksum start */ + __le16 special; + } fields; + } upper; }; /* Transmit Descriptor bit definitions */ -#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ -#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ -#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ -#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ -#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ -#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ -#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ -#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ -#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ -#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ -#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ -#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ -#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ -#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ -#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ -#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ -#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ -#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ -#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ -#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ +#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */ +#define E1000_TXD_DTYP_C 0x00000000 /* Context Descriptor */ +#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */ +#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */ +#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */ +#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */ +#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */ +#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */ +#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */ +#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */ +#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */ +#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */ +#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */ +#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */ +#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */ /* Offload Context Descriptor */ struct e1000_context_desc { - union { - __le32 ip_config; - struct { - u8 ipcss; /* IP checksum start */ - u8 ipcso; /* IP checksum offset */ - __le16 ipcse; /* IP checksum end */ - } ip_fields; - } lower_setup; - union { - __le32 tcp_config; - struct { - u8 tucss; /* TCP checksum start */ - u8 tucso; /* TCP checksum offset */ - __le16 tucse; /* TCP checksum end */ - } tcp_fields; - } upper_setup; - __le32 cmd_and_length; /* */ - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 hdr_len; /* Header length */ - __le16 mss; /* Maximum segment size */ - } fields; - } tcp_seg_setup; + union { + __le32 ip_config; + struct { + u8 ipcss; /* IP checksum start */ + u8 ipcso; /* IP checksum offset */ + __le16 ipcse; /* IP checksum end */ + } ip_fields; + } lower_setup; + union { + __le32 tcp_config; + struct { + u8 tucss; /* TCP checksum start */ + u8 tucso; /* TCP checksum offset */ + __le16 tucse; /* TCP checksum end */ + } tcp_fields; + } upper_setup; + __le32 cmd_and_length; /* */ + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 hdr_len; /* Header length */ + __le16 mss; /* Maximum segment size */ + } fields; + } tcp_seg_setup; }; /* Offload data descriptor */ struct e1000_data_desc { - __le64 buffer_addr; /* Address of the descriptor's buffer address */ - union { - __le32 data; - struct { - __le16 length; /* Data buffer length */ - u8 typ_len_ext; /* */ - u8 cmd; /* */ - } flags; - } lower; - union { - __le32 data; - struct { - u8 status; /* Descriptor status */ - u8 popts; /* Packet Options */ - __le16 special; /* */ - } fields; - } upper; + __le64 buffer_addr; /* Address of the descriptor's buffer address */ + union { + __le32 data; + struct { + __le16 length; /* Data buffer length */ + u8 typ_len_ext; /* */ + u8 cmd; /* */ + } flags; + } lower; + union { + __le32 data; + struct { + u8 status; /* Descriptor status */ + u8 popts; /* Packet Options */ + __le16 special; /* */ + } fields; + } upper; }; /* Filters */ -#define E1000_NUM_UNICAST 16 /* Unicast filter entries */ -#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ -#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ +#define E1000_NUM_UNICAST 16 /* Unicast filter entries */ +#define E1000_MC_TBL_SIZE 128 /* Multicast Filter Table (4096 bits) */ +#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */ /* Receive Address Register */ struct e1000_rar { - volatile __le32 low; /* receive address low */ - volatile __le32 high; /* receive address high */ + volatile __le32 low; /* receive address low */ + volatile __le32 high; /* receive address high */ }; /* Number of entries in the Multicast Table Array (MTA). */ @@ -752,8 +746,8 @@ struct e1000_rar { /* IPv4 Address Table Entry */ struct e1000_ipv4_at_entry { - volatile u32 ipv4_addr; /* IP Address (RW) */ - volatile u32 reserved; + volatile u32 ipv4_addr; /* IP Address (RW) */ + volatile u32 reserved; }; /* Four wakeup IP addresses are supported */ @@ -763,25 +757,25 @@ struct e1000_ipv4_at_entry { /* IPv6 Address Table Entry */ struct e1000_ipv6_at_entry { - volatile u8 ipv6_addr[16]; + volatile u8 ipv6_addr[16]; }; /* Flexible Filter Length Table Entry */ struct e1000_fflt_entry { - volatile u32 length; /* Flexible Filter Length (RW) */ - volatile u32 reserved; + volatile u32 length; /* Flexible Filter Length (RW) */ + volatile u32 reserved; }; /* Flexible Filter Mask Table Entry */ struct e1000_ffmt_entry { - volatile u32 mask; /* Flexible Filter Mask (RW) */ - volatile u32 reserved; + volatile u32 mask; /* Flexible Filter Mask (RW) */ + volatile u32 reserved; }; /* Flexible Filter Value Table Entry */ struct e1000_ffvt_entry { - volatile u32 value; /* Flexible Filter Value (RW) */ - volatile u32 reserved; + volatile u32 value; /* Flexible Filter Value (RW) */ + volatile u32 reserved; }; /* Four Flexible Filters are supported */ @@ -808,210 +802,211 @@ struct e1000_ffvt_entry { * R/clr - register is read only and is cleared when read * A - register array */ -#define E1000_CTRL 0x00000 /* Device Control - RW */ -#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ -#define E1000_STATUS 0x00008 /* Device Status - RO */ -#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ -#define E1000_EERD 0x00014 /* EEPROM Read - RW */ -#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ -#define E1000_FLA 0x0001C /* Flash Access - RW */ -#define E1000_MDIC 0x00020 /* MDI Control - RW */ -#define E1000_SCTL 0x00024 /* SerDes Control - RW */ -#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */ -#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ -#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ -#define E1000_FCT 0x00030 /* Flow Control Type - RW */ -#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ -#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ -#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ -#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ -#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ -#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ -#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ -#define E1000_RCTL 0x00100 /* RX Control - RW */ -#define E1000_RDTR1 0x02820 /* RX Delay Timer (1) - RW */ -#define E1000_RDBAL1 0x02900 /* RX Descriptor Base Address Low (1) - RW */ -#define E1000_RDBAH1 0x02904 /* RX Descriptor Base Address High (1) - RW */ -#define E1000_RDLEN1 0x02908 /* RX Descriptor Length (1) - RW */ -#define E1000_RDH1 0x02910 /* RX Descriptor Head (1) - RW */ -#define E1000_RDT1 0x02918 /* RX Descriptor Tail (1) - RW */ -#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ -#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ -#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */ -#define E1000_TCTL 0x00400 /* TX Control - RW */ -#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */ -#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ -#define E1000_TBT 0x00448 /* TX Burst Timer - RW */ -#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ -#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ -#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ -#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ -#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ +#define E1000_CTRL 0x00000 /* Device Control - RW */ +#define E1000_CTRL_DUP 0x00004 /* Device Control Duplicate (Shadow) - RW */ +#define E1000_STATUS 0x00008 /* Device Status - RO */ +#define E1000_EECD 0x00010 /* EEPROM/Flash Control - RW */ +#define E1000_EERD 0x00014 /* EEPROM Read - RW */ +#define E1000_CTRL_EXT 0x00018 /* Extended Device Control - RW */ +#define E1000_FLA 0x0001C /* Flash Access - RW */ +#define E1000_MDIC 0x00020 /* MDI Control - RW */ +#define E1000_SCTL 0x00024 /* SerDes Control - RW */ +#define E1000_FEXTNVM 0x00028 /* Future Extended NVM register */ +#define E1000_FCAL 0x00028 /* Flow Control Address Low - RW */ +#define E1000_FCAH 0x0002C /* Flow Control Address High -RW */ +#define E1000_FCT 0x00030 /* Flow Control Type - RW */ +#define E1000_VET 0x00038 /* VLAN Ether Type - RW */ +#define E1000_ICR 0x000C0 /* Interrupt Cause Read - R/clr */ +#define E1000_ITR 0x000C4 /* Interrupt Throttling Rate - RW */ +#define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ +#define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ +#define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ +#define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ +#define E1000_RCTL 0x00100 /* RX Control - RW */ +#define E1000_RDTR1 0x02820 /* RX Delay Timer (1) - RW */ +#define E1000_RDBAL1 0x02900 /* RX Descriptor Base Address Low (1) - RW */ +#define E1000_RDBAH1 0x02904 /* RX Descriptor Base Address High (1) - RW */ +#define E1000_RDLEN1 0x02908 /* RX Descriptor Length (1) - RW */ +#define E1000_RDH1 0x02910 /* RX Descriptor Head (1) - RW */ +#define E1000_RDT1 0x02918 /* RX Descriptor Tail (1) - RW */ +#define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ +#define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ +#define E1000_RXCW 0x00180 /* RX Configuration Word - RO */ +#define E1000_TCTL 0x00400 /* TX Control - RW */ +#define E1000_TCTL_EXT 0x00404 /* Extended TX Control - RW */ +#define E1000_TIPG 0x00410 /* TX Inter-packet gap -RW */ +#define E1000_TBT 0x00448 /* TX Burst Timer - RW */ +#define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ +#define E1000_LEDCTL 0x00E00 /* LED Control - RW */ +#define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ +#define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ +#define E1000_PHY_CTRL 0x00F10 /* PHY Control Register in CSR */ #define FEXTNVM_SW_CONFIG 0x0001 -#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ -#define E1000_PBS 0x01008 /* Packet Buffer Size */ -#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ +#define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ +#define E1000_PBS 0x01008 /* Packet Buffer Size */ +#define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ #define E1000_FLASH_UPDATES 1000 -#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ -#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ -#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ -#define E1000_FLSWCTL 0x01030 /* FLASH control register */ -#define E1000_FLSWDATA 0x01034 /* FLASH data register */ -#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ -#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ -#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ -#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ -#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ -#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ -#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ -#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ -#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ -#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */ -#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */ -#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */ -#define E1000_RDBAL0 E1000_RDBAL /* RX Desc Base Address Low (0) - RW */ -#define E1000_RDBAH0 E1000_RDBAH /* RX Desc Base Address High (0) - RW */ -#define E1000_RDLEN0 E1000_RDLEN /* RX Desc Length (0) - RW */ -#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ -#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ -#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ -#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */ -#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */ -#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ -#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ -#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ -#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ -#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ -#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ -#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ -#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ -#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */ -#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ -#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */ -#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */ -#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */ -#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */ -#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */ -#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */ -#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ -#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ -#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ -#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */ -#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */ -#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */ -#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */ -#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */ -#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */ -#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */ -#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */ -#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ -#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ -#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ -#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ -#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ -#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ -#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ -#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ -#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ -#define E1000_COLC 0x04028 /* Collision Count - R/clr */ -#define E1000_DC 0x04030 /* Defer Count - R/clr */ -#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ -#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ -#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ -#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ -#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ -#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ -#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ -#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ -#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ -#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ -#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ -#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ -#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ -#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ -#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ -#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ -#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ -#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ -#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ -#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ -#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ -#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ -#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ -#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ -#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ -#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ -#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ -#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ -#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ -#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ -#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ -#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ -#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ -#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ -#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ -#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ -#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ -#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ -#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ -#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ -#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ -#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ -#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ -#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ -#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ -#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ -#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ -#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ -#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Packet Timer Expire Count */ -#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Absolute Timer Expire Count */ -#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Packet Timer Expire Count */ -#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Absolute Timer Expire Count */ -#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ -#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Minimum Threshold Count */ -#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */ -#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ -#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ -#define E1000_RFCTL 0x05008 /* Receive Filter Control*/ -#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ -#define E1000_RA 0x05400 /* Receive Address - RW Array */ -#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ -#define E1000_WUC 0x05800 /* Wakeup Control - RW */ -#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ -#define E1000_WUS 0x05810 /* Wakeup Status - RO */ -#define E1000_MANC 0x05820 /* Management Control - RW */ -#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ -#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ -#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ -#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ -#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ -#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ -#define E1000_HOST_IF 0x08800 /* Host Interface */ -#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ -#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ - -#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */ -#define E1000_MDPHYA 0x0003C /* PHY address - RW */ -#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ - -#define E1000_GCR 0x05B00 /* PCI-Ex Control */ -#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ -#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ -#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ -#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ -#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ -#define E1000_SWSM 0x05B50 /* SW Semaphore */ -#define E1000_FWSM 0x05B54 /* FW Semaphore */ -#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ -#define E1000_HICR 0x08F00 /* Host Inteface Control */ +#define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ +#define E1000_FLASHT 0x01028 /* FLASH Timer Register */ +#define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ +#define E1000_FLSWCTL 0x01030 /* FLASH control register */ +#define E1000_FLSWDATA 0x01034 /* FLASH data register */ +#define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ +#define E1000_FLOP 0x0103C /* FLASH Opcode Register */ +#define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ +#define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ +#define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ +#define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ +#define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ +#define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ +#define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ +#define E1000_RDH 0x02810 /* RX Descriptor Head - RW */ +#define E1000_RDT 0x02818 /* RX Descriptor Tail - RW */ +#define E1000_RDTR 0x02820 /* RX Delay Timer - RW */ +#define E1000_RDBAL0 E1000_RDBAL /* RX Desc Base Address Low (0) - RW */ +#define E1000_RDBAH0 E1000_RDBAH /* RX Desc Base Address High (0) - RW */ +#define E1000_RDLEN0 E1000_RDLEN /* RX Desc Length (0) - RW */ +#define E1000_RDH0 E1000_RDH /* RX Desc Head (0) - RW */ +#define E1000_RDT0 E1000_RDT /* RX Desc Tail (0) - RW */ +#define E1000_RDTR0 E1000_RDTR /* RX Delay Timer (0) - RW */ +#define E1000_RXDCTL 0x02828 /* RX Descriptor Control queue 0 - RW */ +#define E1000_RXDCTL1 0x02928 /* RX Descriptor Control queue 1 - RW */ +#define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ +#define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ +#define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ +#define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ +#define E1000_KABGTXD 0x03004 /* AFE Band Gap Transmit Ref Data */ +#define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ +#define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ +#define E1000_TDFHS 0x03420 /* TX Data FIFO Head Saved - RW */ +#define E1000_TDFTS 0x03428 /* TX Data FIFO Tail Saved - RW */ +#define E1000_TDFPC 0x03430 /* TX Data FIFO Packet Count - RW */ +#define E1000_TDBAL 0x03800 /* TX Descriptor Base Address Low - RW */ +#define E1000_TDBAH 0x03804 /* TX Descriptor Base Address High - RW */ +#define E1000_TDLEN 0x03808 /* TX Descriptor Length - RW */ +#define E1000_TDH 0x03810 /* TX Descriptor Head - RW */ +#define E1000_TDT 0x03818 /* TX Descripotr Tail - RW */ +#define E1000_TIDV 0x03820 /* TX Interrupt Delay Value - RW */ +#define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ +#define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ +#define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ +#define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */ +#define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */ +#define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */ +#define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */ +#define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */ +#define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */ +#define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */ +#define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */ +#define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ +#define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ +#define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ +#define E1000_RXERRC 0x0400C /* Receive Error Count - R/clr */ +#define E1000_MPC 0x04010 /* Missed Packet Count - R/clr */ +#define E1000_SCC 0x04014 /* Single Collision Count - R/clr */ +#define E1000_ECOL 0x04018 /* Excessive Collision Count - R/clr */ +#define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */ +#define E1000_LATECOL 0x04020 /* Late Collision Count - R/clr */ +#define E1000_COLC 0x04028 /* Collision Count - R/clr */ +#define E1000_DC 0x04030 /* Defer Count - R/clr */ +#define E1000_TNCRS 0x04034 /* TX-No CRS - R/clr */ +#define E1000_SEC 0x04038 /* Sequence Error Count - R/clr */ +#define E1000_CEXTERR 0x0403C /* Carrier Extension Error Count - R/clr */ +#define E1000_RLEC 0x04040 /* Receive Length Error Count - R/clr */ +#define E1000_XONRXC 0x04048 /* XON RX Count - R/clr */ +#define E1000_XONTXC 0x0404C /* XON TX Count - R/clr */ +#define E1000_XOFFRXC 0x04050 /* XOFF RX Count - R/clr */ +#define E1000_XOFFTXC 0x04054 /* XOFF TX Count - R/clr */ +#define E1000_FCRUC 0x04058 /* Flow Control RX Unsupported Count- R/clr */ +#define E1000_PRC64 0x0405C /* Packets RX (64 bytes) - R/clr */ +#define E1000_PRC127 0x04060 /* Packets RX (65-127 bytes) - R/clr */ +#define E1000_PRC255 0x04064 /* Packets RX (128-255 bytes) - R/clr */ +#define E1000_PRC511 0x04068 /* Packets RX (255-511 bytes) - R/clr */ +#define E1000_PRC1023 0x0406C /* Packets RX (512-1023 bytes) - R/clr */ +#define E1000_PRC1522 0x04070 /* Packets RX (1024-1522 bytes) - R/clr */ +#define E1000_GPRC 0x04074 /* Good Packets RX Count - R/clr */ +#define E1000_BPRC 0x04078 /* Broadcast Packets RX Count - R/clr */ +#define E1000_MPRC 0x0407C /* Multicast Packets RX Count - R/clr */ +#define E1000_GPTC 0x04080 /* Good Packets TX Count - R/clr */ +#define E1000_GORCL 0x04088 /* Good Octets RX Count Low - R/clr */ +#define E1000_GORCH 0x0408C /* Good Octets RX Count High - R/clr */ +#define E1000_GOTCL 0x04090 /* Good Octets TX Count Low - R/clr */ +#define E1000_GOTCH 0x04094 /* Good Octets TX Count High - R/clr */ +#define E1000_RNBC 0x040A0 /* RX No Buffers Count - R/clr */ +#define E1000_RUC 0x040A4 /* RX Undersize Count - R/clr */ +#define E1000_RFC 0x040A8 /* RX Fragment Count - R/clr */ +#define E1000_ROC 0x040AC /* RX Oversize Count - R/clr */ +#define E1000_RJC 0x040B0 /* RX Jabber Count - R/clr */ +#define E1000_MGTPRC 0x040B4 /* Management Packets RX Count - R/clr */ +#define E1000_MGTPDC 0x040B8 /* Management Packets Dropped Count - R/clr */ +#define E1000_MGTPTC 0x040BC /* Management Packets TX Count - R/clr */ +#define E1000_TORL 0x040C0 /* Total Octets RX Low - R/clr */ +#define E1000_TORH 0x040C4 /* Total Octets RX High - R/clr */ +#define E1000_TOTL 0x040C8 /* Total Octets TX Low - R/clr */ +#define E1000_TOTH 0x040CC /* Total Octets TX High - R/clr */ +#define E1000_TPR 0x040D0 /* Total Packets RX - R/clr */ +#define E1000_TPT 0x040D4 /* Total Packets TX - R/clr */ +#define E1000_PTC64 0x040D8 /* Packets TX (64 bytes) - R/clr */ +#define E1000_PTC127 0x040DC /* Packets TX (65-127 bytes) - R/clr */ +#define E1000_PTC255 0x040E0 /* Packets TX (128-255 bytes) - R/clr */ +#define E1000_PTC511 0x040E4 /* Packets TX (256-511 bytes) - R/clr */ +#define E1000_PTC1023 0x040E8 /* Packets TX (512-1023 bytes) - R/clr */ +#define E1000_PTC1522 0x040EC /* Packets TX (1024-1522 Bytes) - R/clr */ +#define E1000_MPTC 0x040F0 /* Multicast Packets TX Count - R/clr */ +#define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ +#define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ +#define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ +#define E1000_IAC 0x04100 /* Interrupt Assertion Count */ +#define E1000_ICRXPTC 0x04104 /* Interrupt Cause Rx Packet Timer Expire Count */ +#define E1000_ICRXATC 0x04108 /* Interrupt Cause Rx Absolute Timer Expire Count */ +#define E1000_ICTXPTC 0x0410C /* Interrupt Cause Tx Packet Timer Expire Count */ +#define E1000_ICTXATC 0x04110 /* Interrupt Cause Tx Absolute Timer Expire Count */ +#define E1000_ICTXQEC 0x04118 /* Interrupt Cause Tx Queue Empty Count */ +#define E1000_ICTXQMTC 0x0411C /* Interrupt Cause Tx Queue Minimum Threshold Count */ +#define E1000_ICRXDMTC 0x04120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */ +#define E1000_ICRXOC 0x04124 /* Interrupt Cause Receiver Overrun Count */ +#define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ +#define E1000_RFCTL 0x05008 /* Receive Filter Control */ +#define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ +#define E1000_RA 0x05400 /* Receive Address - RW Array */ +#define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ +#define E1000_WUC 0x05800 /* Wakeup Control - RW */ +#define E1000_WUFC 0x05808 /* Wakeup Filter Control - RW */ +#define E1000_WUS 0x05810 /* Wakeup Status - RO */ +#define E1000_MANC 0x05820 /* Management Control - RW */ +#define E1000_IPAV 0x05838 /* IP Address Valid - RW */ +#define E1000_IP4AT 0x05840 /* IPv4 Address Table - RW Array */ +#define E1000_IP6AT 0x05880 /* IPv6 Address Table - RW Array */ +#define E1000_WUPL 0x05900 /* Wakeup Packet Length - RW */ +#define E1000_WUPM 0x05A00 /* Wakeup Packet Memory - RO A */ +#define E1000_FFLT 0x05F00 /* Flexible Filter Length Table - RW Array */ +#define E1000_HOST_IF 0x08800 /* Host Interface */ +#define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ +#define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ + +#define E1000_KUMCTRLSTA 0x00034 /* MAC-PHY interface - RW */ +#define E1000_MDPHYA 0x0003C /* PHY address - RW */ +#define E1000_MANC2H 0x05860 /* Managment Control To Host - RW */ +#define E1000_SW_FW_SYNC 0x05B5C /* Software-Firmware Synchronization - RW */ + +#define E1000_GCR 0x05B00 /* PCI-Ex Control */ +#define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ +#define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ +#define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ +#define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ +#define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ +#define E1000_SWSM 0x05B50 /* SW Semaphore */ +#define E1000_FWSM 0x05B54 /* FW Semaphore */ +#define E1000_FFLT_DBG 0x05F04 /* Debug Register */ +#define E1000_HICR 0x08F00 /* Host Interface Control */ /* RSS registers */ -#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ -#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ -#define E1000_RETA 0x05C00 /* Redirection Table - RW Array */ -#define E1000_RSSRK 0x05C80 /* RSS Random Key - RW Array */ -#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ -#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ +#define E1000_CPUVEC 0x02C10 /* CPU Vector Register - RW */ +#define E1000_MRQC 0x05818 /* Multiple Receive Control - RW */ +#define E1000_RETA 0x05C00 /* Redirection Table - RW Array */ +#define E1000_RSSRK 0x05C80 /* RSS Random Key - RW Array */ +#define E1000_RSSIM 0x05864 /* RSS Interrupt Mask */ +#define E1000_RSSIR 0x05868 /* RSS Interrupt Request */ /* Register Set (82542) * * Some of the 82542 registers are located at different offsets than they are @@ -1051,19 +1046,19 @@ struct e1000_ffvt_entry { #define E1000_82542_RDLEN0 E1000_82542_RDLEN #define E1000_82542_RDH0 E1000_82542_RDH #define E1000_82542_RDT0 E1000_82542_RDT -#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication - * RX Control - RW */ +#define E1000_82542_SRRCTL(_n) (0x280C + ((_n) << 8)) /* Split and Replication + * RX Control - RW */ #define E1000_82542_DCA_RXCTRL(_n) (0x02814 + ((_n) << 8)) -#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */ -#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */ -#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */ -#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */ -#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */ -#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */ -#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */ -#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */ -#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */ -#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */ +#define E1000_82542_RDBAH3 0x02B04 /* RX Desc Base High Queue 3 - RW */ +#define E1000_82542_RDBAL3 0x02B00 /* RX Desc Low Queue 3 - RW */ +#define E1000_82542_RDLEN3 0x02B08 /* RX Desc Length Queue 3 - RW */ +#define E1000_82542_RDH3 0x02B10 /* RX Desc Head Queue 3 - RW */ +#define E1000_82542_RDT3 0x02B18 /* RX Desc Tail Queue 3 - RW */ +#define E1000_82542_RDBAL2 0x02A00 /* RX Desc Base Low Queue 2 - RW */ +#define E1000_82542_RDBAH2 0x02A04 /* RX Desc Base High Queue 2 - RW */ +#define E1000_82542_RDLEN2 0x02A08 /* RX Desc Length Queue 2 - RW */ +#define E1000_82542_RDH2 0x02A10 /* RX Desc Head Queue 2 - RW */ +#define E1000_82542_RDT2 0x02A18 /* RX Desc Tail Queue 2 - RW */ #define E1000_82542_RDTR1 0x00130 #define E1000_82542_RDBAL1 0x00138 #define E1000_82542_RDBAH1 0x0013C @@ -1233,279 +1228,278 @@ struct e1000_ffvt_entry { /* Statistics counters collected by the MAC */ struct e1000_hw_stats { - u64 crcerrs; - u64 algnerrc; - u64 symerrs; - u64 rxerrc; - u64 txerrc; - u64 mpc; - u64 scc; - u64 ecol; - u64 mcc; - u64 latecol; - u64 colc; - u64 dc; - u64 tncrs; - u64 sec; - u64 cexterr; - u64 rlec; - u64 xonrxc; - u64 xontxc; - u64 xoffrxc; - u64 xofftxc; - u64 fcruc; - u64 prc64; - u64 prc127; - u64 prc255; - u64 prc511; - u64 prc1023; - u64 prc1522; - u64 gprc; - u64 bprc; - u64 mprc; - u64 gptc; - u64 gorcl; - u64 gorch; - u64 gotcl; - u64 gotch; - u64 rnbc; - u64 ruc; - u64 rfc; - u64 roc; - u64 rlerrc; - u64 rjc; - u64 mgprc; - u64 mgpdc; - u64 mgptc; - u64 torl; - u64 torh; - u64 totl; - u64 toth; - u64 tpr; - u64 tpt; - u64 ptc64; - u64 ptc127; - u64 ptc255; - u64 ptc511; - u64 ptc1023; - u64 ptc1522; - u64 mptc; - u64 bptc; - u64 tsctc; - u64 tsctfc; - u64 iac; - u64 icrxptc; - u64 icrxatc; - u64 ictxptc; - u64 ictxatc; - u64 ictxqec; - u64 ictxqmtc; - u64 icrxdmtc; - u64 icrxoc; + u64 crcerrs; + u64 algnerrc; + u64 symerrs; + u64 rxerrc; + u64 txerrc; + u64 mpc; + u64 scc; + u64 ecol; + u64 mcc; + u64 latecol; + u64 colc; + u64 dc; + u64 tncrs; + u64 sec; + u64 cexterr; + u64 rlec; + u64 xonrxc; + u64 xontxc; + u64 xoffrxc; + u64 xofftxc; + u64 fcruc; + u64 prc64; + u64 prc127; + u64 prc255; + u64 prc511; + u64 prc1023; + u64 prc1522; + u64 gprc; + u64 bprc; + u64 mprc; + u64 gptc; + u64 gorcl; + u64 gorch; + u64 gotcl; + u64 gotch; + u64 rnbc; + u64 ruc; + u64 rfc; + u64 roc; + u64 rlerrc; + u64 rjc; + u64 mgprc; + u64 mgpdc; + u64 mgptc; + u64 torl; + u64 torh; + u64 totl; + u64 toth; + u64 tpr; + u64 tpt; + u64 ptc64; + u64 ptc127; + u64 ptc255; + u64 ptc511; + u64 ptc1023; + u64 ptc1522; + u64 mptc; + u64 bptc; + u64 tsctc; + u64 tsctfc; + u64 iac; + u64 icrxptc; + u64 icrxatc; + u64 ictxptc; + u64 ictxatc; + u64 ictxqec; + u64 ictxqmtc; + u64 icrxdmtc; + u64 icrxoc; }; /* Structure containing variables used by the shared code (e1000_hw.c) */ struct e1000_hw { - u8 __iomem *hw_addr; - u8 __iomem *flash_address; - e1000_mac_type mac_type; - e1000_phy_type phy_type; - u32 phy_init_script; - e1000_media_type media_type; - void *back; - struct e1000_shadow_ram *eeprom_shadow_ram; - u32 flash_bank_size; - u32 flash_base_addr; - e1000_fc_type fc; - e1000_bus_speed bus_speed; - e1000_bus_width bus_width; - e1000_bus_type bus_type; + u8 __iomem *hw_addr; + u8 __iomem *flash_address; + e1000_mac_type mac_type; + e1000_phy_type phy_type; + u32 phy_init_script; + e1000_media_type media_type; + void *back; + struct e1000_shadow_ram *eeprom_shadow_ram; + u32 flash_bank_size; + u32 flash_base_addr; + e1000_fc_type fc; + e1000_bus_speed bus_speed; + e1000_bus_width bus_width; + e1000_bus_type bus_type; struct e1000_eeprom_info eeprom; - e1000_ms_type master_slave; - e1000_ms_type original_master_slave; - e1000_ffe_config ffe_config_state; - u32 asf_firmware_present; - u32 eeprom_semaphore_present; - unsigned long io_base; - u32 phy_id; - u32 phy_revision; - u32 phy_addr; - u32 original_fc; - u32 txcw; - u32 autoneg_failed; - u32 max_frame_size; - u32 min_frame_size; - u32 mc_filter_type; - u32 num_mc_addrs; - u32 collision_delta; - u32 tx_packet_delta; - u32 ledctl_default; - u32 ledctl_mode1; - u32 ledctl_mode2; - bool tx_pkt_filtering; + e1000_ms_type master_slave; + e1000_ms_type original_master_slave; + e1000_ffe_config ffe_config_state; + u32 asf_firmware_present; + u32 eeprom_semaphore_present; + unsigned long io_base; + u32 phy_id; + u32 phy_revision; + u32 phy_addr; + u32 original_fc; + u32 txcw; + u32 autoneg_failed; + u32 max_frame_size; + u32 min_frame_size; + u32 mc_filter_type; + u32 num_mc_addrs; + u32 collision_delta; + u32 tx_packet_delta; + u32 ledctl_default; + u32 ledctl_mode1; + u32 ledctl_mode2; + bool tx_pkt_filtering; struct e1000_host_mng_dhcp_cookie mng_cookie; - u16 phy_spd_default; - u16 autoneg_advertised; - u16 pci_cmd_word; - u16 fc_high_water; - u16 fc_low_water; - u16 fc_pause_time; - u16 current_ifs_val; - u16 ifs_min_val; - u16 ifs_max_val; - u16 ifs_step_size; - u16 ifs_ratio; - u16 device_id; - u16 vendor_id; - u16 subsystem_id; - u16 subsystem_vendor_id; - u8 revision_id; - u8 autoneg; - u8 mdix; - u8 forced_speed_duplex; - u8 wait_autoneg_complete; - u8 dma_fairness; - u8 mac_addr[NODE_ADDRESS_SIZE]; - u8 perm_mac_addr[NODE_ADDRESS_SIZE]; - bool disable_polarity_correction; - bool speed_downgraded; - e1000_smart_speed smart_speed; - e1000_dsp_config dsp_config_state; - bool get_link_status; - bool serdes_has_link; - bool tbi_compatibility_en; - bool tbi_compatibility_on; - bool laa_is_present; - bool phy_reset_disable; - bool initialize_hw_bits_disable; - bool fc_send_xon; - bool fc_strict_ieee; - bool report_tx_early; - bool adaptive_ifs; - bool ifs_params_forced; - bool in_ifs_mode; - bool mng_reg_access_disabled; - bool leave_av_bit_off; - bool bad_tx_carr_stats_fd; - bool has_smbus; + u16 phy_spd_default; + u16 autoneg_advertised; + u16 pci_cmd_word; + u16 fc_high_water; + u16 fc_low_water; + u16 fc_pause_time; + u16 current_ifs_val; + u16 ifs_min_val; + u16 ifs_max_val; + u16 ifs_step_size; + u16 ifs_ratio; + u16 device_id; + u16 vendor_id; + u16 subsystem_id; + u16 subsystem_vendor_id; + u8 revision_id; + u8 autoneg; + u8 mdix; + u8 forced_speed_duplex; + u8 wait_autoneg_complete; + u8 dma_fairness; + u8 mac_addr[NODE_ADDRESS_SIZE]; + u8 perm_mac_addr[NODE_ADDRESS_SIZE]; + bool disable_polarity_correction; + bool speed_downgraded; + e1000_smart_speed smart_speed; + e1000_dsp_config dsp_config_state; + bool get_link_status; + bool serdes_has_link; + bool tbi_compatibility_en; + bool tbi_compatibility_on; + bool laa_is_present; + bool phy_reset_disable; + bool initialize_hw_bits_disable; + bool fc_send_xon; + bool fc_strict_ieee; + bool report_tx_early; + bool adaptive_ifs; + bool ifs_params_forced; + bool in_ifs_mode; + bool mng_reg_access_disabled; + bool leave_av_bit_off; + bool bad_tx_carr_stats_fd; + bool has_smbus; }; - -#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ -#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ -#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */ -#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ -#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */ -#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ -#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */ -#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */ +#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ +#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ +#define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */ +#define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ +#define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */ +#define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ +#define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */ +#define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */ /* Register Bit Masks */ /* Device Control */ -#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ -#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ -#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ -#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ -#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ -#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ -#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ -#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ -#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ -#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ -#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ -#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ -#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ -#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ -#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ -#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ -#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ -#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */ -#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */ -#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */ -#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */ -#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ -#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ -#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ -#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ -#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ -#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ -#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ -#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ -#define E1000_CTRL_RST 0x04000000 /* Global reset */ -#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ -#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ -#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ -#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ -#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ -#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */ +#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ +#define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ +#define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ +#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ +#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ +#define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ +#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */ +#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */ +#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */ +#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */ +#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */ +#define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ +#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ +#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ +#define E1000_CTRL_D_UD_EN 0x00002000 /* Dock/Undock enable */ +#define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */ +#define E1000_CTRL_FORCE_PHY_RESET 0x00008000 /* Reset both PHY ports, through PHYRST_N pin */ +#define E1000_CTRL_EXT_LINK_EN 0x00010000 /* enable link status from external LINK_0 and LINK_1 pins */ +#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ +#define E1000_CTRL_SWDPIN3 0x00200000 /* SWDPIN 3 value */ +#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */ +#define E1000_CTRL_SWDPIO1 0x00800000 /* SWDPIN 1 input or output */ +#define E1000_CTRL_SWDPIO2 0x01000000 /* SWDPIN 2 input or output */ +#define E1000_CTRL_SWDPIO3 0x02000000 /* SWDPIN 3 input or output */ +#define E1000_CTRL_RST 0x04000000 /* Global reset */ +#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */ +#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */ +#define E1000_CTRL_RTE 0x20000000 /* Routing tag enable */ +#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */ +#define E1000_CTRL_SW2FW_INT 0x02000000 /* Initiate an interrupt to manageability engine */ /* Device Status */ -#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ -#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ -#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ +#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ +#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ #define E1000_STATUS_FUNC_SHIFT 2 -#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ -#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ -#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ -#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ +#define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ +#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ +#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ +#define E1000_STATUS_TBIMODE 0x00000020 /* TBI mode */ #define E1000_STATUS_SPEED_MASK 0x000000C0 -#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ -#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ -#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ -#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion - by EEPROM/Flash */ -#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ -#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ -#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ -#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ -#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ -#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ -#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ -#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ -#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */ -#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */ -#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */ -#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */ -#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution disabled */ -#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */ +#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ +#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion + by EEPROM/Flash */ +#define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ +#define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ +#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ +#define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ +#define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ +#define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ +#define E1000_STATUS_PCIX_MODE 0x00002000 /* PCI-X mode */ +#define E1000_STATUS_PCIX_SPEED 0x0000C000 /* PCI-X bus speed */ +#define E1000_STATUS_BMC_SKU_0 0x00100000 /* BMC USB redirect disabled */ +#define E1000_STATUS_BMC_SKU_1 0x00200000 /* BMC SRAM disabled */ +#define E1000_STATUS_BMC_SKU_2 0x00400000 /* BMC SDRAM disabled */ +#define E1000_STATUS_BMC_CRYPTO 0x00800000 /* BMC crypto disabled */ +#define E1000_STATUS_BMC_LITE 0x01000000 /* BMC external code execution disabled */ +#define E1000_STATUS_RGMII_ENABLE 0x02000000 /* RGMII disabled */ #define E1000_STATUS_FUSE_8 0x04000000 #define E1000_STATUS_FUSE_9 0x08000000 -#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */ -#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */ +#define E1000_STATUS_SERDES0_DIS 0x10000000 /* SERDES disabled on port 0 */ +#define E1000_STATUS_SERDES1_DIS 0x20000000 /* SERDES disabled on port 1 */ -/* Constants used to intrepret the masked PCI-X bus speed. */ -#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ -#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ -#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ +/* Constants used to interpret the masked PCI-X bus speed. */ +#define E1000_STATUS_PCIX_SPEED_66 0x00000000 /* PCI-X bus speed 50-66 MHz */ +#define E1000_STATUS_PCIX_SPEED_100 0x00004000 /* PCI-X bus speed 66-100 MHz */ +#define E1000_STATUS_PCIX_SPEED_133 0x00008000 /* PCI-X bus speed 100-133 MHz */ /* EEPROM/Flash Control */ -#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */ -#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */ -#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */ -#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */ +#define E1000_EECD_SK 0x00000001 /* EEPROM Clock */ +#define E1000_EECD_CS 0x00000002 /* EEPROM Chip Select */ +#define E1000_EECD_DI 0x00000004 /* EEPROM Data In */ +#define E1000_EECD_DO 0x00000008 /* EEPROM Data Out */ #define E1000_EECD_FWE_MASK 0x00000030 -#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ -#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ +#define E1000_EECD_FWE_DIS 0x00000010 /* Disable FLASH writes */ +#define E1000_EECD_FWE_EN 0x00000020 /* Enable FLASH writes */ #define E1000_EECD_FWE_SHIFT 4 -#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */ -#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */ -#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */ -#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */ -#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type - * (0-small, 1-large) */ -#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */ +#define E1000_EECD_REQ 0x00000040 /* EEPROM Access Request */ +#define E1000_EECD_GNT 0x00000080 /* EEPROM Access Grant */ +#define E1000_EECD_PRES 0x00000100 /* EEPROM Present */ +#define E1000_EECD_SIZE 0x00000200 /* EEPROM Size (0=64 word 1=256 word) */ +#define E1000_EECD_ADDR_BITS 0x00000400 /* EEPROM Addressing bits based on type + * (0-small, 1-large) */ +#define E1000_EECD_TYPE 0x00002000 /* EEPROM Type (1-SPI, 0-Microwire) */ #ifndef E1000_EEPROM_GRANT_ATTEMPTS -#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ +#define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ #endif -#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */ -#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */ +#define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */ +#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */ #define E1000_EECD_SIZE_EX_SHIFT 11 -#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ -#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ -#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ -#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ -#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ -#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ -#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ +#define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ +#define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ +#define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ +#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ +#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ +#define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ +#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ #define E1000_EECD_SECVAL_SHIFT 22 #define E1000_STM_OPCODE 0xDB00 #define E1000_HICR_FW_RESET 0xC0 @@ -1515,12 +1509,12 @@ struct e1000_hw { #define E1000_ICH_NVM_SIG_MASK 0xC0 /* EEPROM Read */ -#define E1000_EERD_START 0x00000001 /* Start Read */ -#define E1000_EERD_DONE 0x00000010 /* Read Done */ +#define E1000_EERD_START 0x00000001 /* Start Read */ +#define E1000_EERD_DONE 0x00000010 /* Read Done */ #define E1000_EERD_ADDR_SHIFT 8 -#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */ +#define E1000_EERD_ADDR_MASK 0x0000FF00 /* Read Address */ #define E1000_EERD_DATA_SHIFT 16 -#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */ +#define E1000_EERD_DATA_MASK 0xFFFF0000 /* Read Data */ /* SPI EEPROM Status Register */ #define EEPROM_STATUS_RDY_SPI 0x01 @@ -1530,25 +1524,25 @@ struct e1000_hw { #define EEPROM_STATUS_WPEN_SPI 0x80 /* Extended Device Control */ -#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ -#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ +#define E1000_CTRL_EXT_GPI0_EN 0x00000001 /* Maps SDP4 to GPI0 */ +#define E1000_CTRL_EXT_GPI1_EN 0x00000002 /* Maps SDP5 to GPI1 */ #define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN -#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ -#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ -#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */ -#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */ +#define E1000_CTRL_EXT_GPI2_EN 0x00000004 /* Maps SDP6 to GPI2 */ +#define E1000_CTRL_EXT_GPI3_EN 0x00000008 /* Maps SDP7 to GPI3 */ +#define E1000_CTRL_EXT_SDP4_DATA 0x00000010 /* Value of SW Defineable Pin 4 */ +#define E1000_CTRL_EXT_SDP5_DATA 0x00000020 /* Value of SW Defineable Pin 5 */ #define E1000_CTRL_EXT_PHY_INT E1000_CTRL_EXT_SDP5_DATA -#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */ -#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ -#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ -#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ -#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ -#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ -#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ -#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ -#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ -#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ -#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ +#define E1000_CTRL_EXT_SDP6_DATA 0x00000040 /* Value of SW Defineable Pin 6 */ +#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */ +#define E1000_CTRL_EXT_SDP4_DIR 0x00000100 /* Direction of SDP4 0=in 1=out */ +#define E1000_CTRL_EXT_SDP5_DIR 0x00000200 /* Direction of SDP5 0=in 1=out */ +#define E1000_CTRL_EXT_SDP6_DIR 0x00000400 /* Direction of SDP6 0=in 1=out */ +#define E1000_CTRL_EXT_SDP7_DIR 0x00000800 /* Direction of SDP7 0=in 1=out */ +#define E1000_CTRL_EXT_ASDCHK 0x00001000 /* Initiate an ASD sequence */ +#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */ +#define E1000_CTRL_EXT_IPS 0x00004000 /* Invert Power State */ +#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */ +#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */ #define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 #define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 #define E1000_CTRL_EXT_LINK_MODE_TBI 0x00C00000 @@ -1560,11 +1554,11 @@ struct e1000_hw { #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 -#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ -#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ -#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ -#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error detection enabled */ -#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity error detection enable */ +#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */ +#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ +#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ +#define E1000_CRTL_EXT_PB_PAREN 0x01000000 /* packet buffer parity error detection enabled */ +#define E1000_CTRL_EXT_DF_PAREN 0x02000000 /* descriptor FIFO parity error detection enable */ #define E1000_CTRL_EXT_GHOST_PAREN 0x40000000 /* MDI Control */ @@ -1664,167 +1658,167 @@ struct e1000_hw { #define E1000_LEDCTL_MODE_LED_OFF 0xF /* Receive Address */ -#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ +#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */ /* Interrupt Cause Read */ -#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ -#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ -#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ -#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ -#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ -#define E1000_ICR_RXO 0x00000040 /* rx overrun */ -#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ -#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ -#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ -#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ -#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ -#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ -#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ +#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */ +#define E1000_ICR_TXQE 0x00000002 /* Transmit Queue empty */ +#define E1000_ICR_LSC 0x00000004 /* Link Status Change */ +#define E1000_ICR_RXSEQ 0x00000008 /* rx sequence error */ +#define E1000_ICR_RXDMT0 0x00000010 /* rx desc min. threshold (0) */ +#define E1000_ICR_RXO 0x00000040 /* rx overrun */ +#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */ +#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */ +#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */ +#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */ +#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */ +#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */ +#define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ #define E1000_ICR_TXD_LOW 0x00008000 #define E1000_ICR_SRPD 0x00010000 -#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ -#define E1000_ICR_MNG 0x00040000 /* Manageability event */ -#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ -#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ -#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity error */ -#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */ -#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ -#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ -#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */ -#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */ -#define E1000_ICR_EPRST 0x00100000 /* ME handware reset occurs */ +#define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ +#define E1000_ICR_MNG 0x00040000 /* Manageability event */ +#define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ +#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ +#define E1000_ICR_RXD_FIFO_PAR0 0x00100000 /* queue 0 Rx descriptor FIFO parity error */ +#define E1000_ICR_TXD_FIFO_PAR0 0x00200000 /* queue 0 Tx descriptor FIFO parity error */ +#define E1000_ICR_HOST_ARB_PAR 0x00400000 /* host arb read buffer parity error */ +#define E1000_ICR_PB_PAR 0x00800000 /* packet buffer parity error */ +#define E1000_ICR_RXD_FIFO_PAR1 0x01000000 /* queue 1 Rx descriptor FIFO parity error */ +#define E1000_ICR_TXD_FIFO_PAR1 0x02000000 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_ICR_ALL_PARITY 0x03F00000 /* all parity error bits */ +#define E1000_ICR_DSW 0x00000020 /* FW changed the status of DISSW bit in the FWSM */ +#define E1000_ICR_PHYINT 0x00001000 /* LAN connected device generates an interrupt */ +#define E1000_ICR_EPRST 0x00100000 /* ME hardware reset occurs */ /* Interrupt Cause Set */ -#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_ICS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_ICS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_ICS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_ICS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_ICS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ #define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW #define E1000_ICS_SRPD E1000_ICR_SRPD -#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */ -#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ -#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ -#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */ +#define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */ +#define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */ +#define E1000_ICS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ +#define E1000_ICS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ +#define E1000_ICS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ +#define E1000_ICS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ +#define E1000_ICS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ +#define E1000_ICS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ #define E1000_ICS_DSW E1000_ICR_DSW #define E1000_ICS_PHYINT E1000_ICR_PHYINT #define E1000_ICS_EPRST E1000_ICR_EPRST /* Interrupt Mask Set */ -#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMS_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMS_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMS_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMS_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ #define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW #define E1000_IMS_SRPD E1000_ICR_SRPD -#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */ -#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ -#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ -#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */ +#define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */ +#define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */ +#define E1000_IMS_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ +#define E1000_IMS_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ +#define E1000_IMS_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ +#define E1000_IMS_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ +#define E1000_IMS_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ +#define E1000_IMS_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ #define E1000_IMS_DSW E1000_ICR_DSW #define E1000_IMS_PHYINT E1000_ICR_PHYINT #define E1000_IMS_EPRST E1000_ICR_EPRST /* Interrupt Mask Clear */ -#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ -#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ -#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */ -#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ -#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ -#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */ -#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */ -#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */ -#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ -#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ -#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ -#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ -#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ +#define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ +#define E1000_IMC_TXQE E1000_ICR_TXQE /* Transmit Queue empty */ +#define E1000_IMC_LSC E1000_ICR_LSC /* Link Status Change */ +#define E1000_IMC_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */ +#define E1000_IMC_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */ +#define E1000_IMC_RXO E1000_ICR_RXO /* rx overrun */ +#define E1000_IMC_RXT0 E1000_ICR_RXT0 /* rx timer intr */ +#define E1000_IMC_MDAC E1000_ICR_MDAC /* MDIO access complete */ +#define E1000_IMC_RXCFG E1000_ICR_RXCFG /* RX /c/ ordered set */ +#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0 /* GP Int 0 */ +#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1 /* GP Int 1 */ +#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2 /* GP Int 2 */ +#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ #define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW #define E1000_IMC_SRPD E1000_ICR_SRPD -#define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */ -#define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */ -#define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */ -#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ -#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ -#define E1000_IMC_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ -#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ -#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ -#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ +#define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */ +#define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */ +#define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */ +#define E1000_IMC_RXD_FIFO_PAR0 E1000_ICR_RXD_FIFO_PAR0 /* queue 0 Rx descriptor FIFO parity error */ +#define E1000_IMC_TXD_FIFO_PAR0 E1000_ICR_TXD_FIFO_PAR0 /* queue 0 Tx descriptor FIFO parity error */ +#define E1000_IMC_HOST_ARB_PAR E1000_ICR_HOST_ARB_PAR /* host arb read buffer parity error */ +#define E1000_IMC_PB_PAR E1000_ICR_PB_PAR /* packet buffer parity error */ +#define E1000_IMC_RXD_FIFO_PAR1 E1000_ICR_RXD_FIFO_PAR1 /* queue 1 Rx descriptor FIFO parity error */ +#define E1000_IMC_TXD_FIFO_PAR1 E1000_ICR_TXD_FIFO_PAR1 /* queue 1 Tx descriptor FIFO parity error */ #define E1000_IMC_DSW E1000_ICR_DSW #define E1000_IMC_PHYINT E1000_ICR_PHYINT #define E1000_IMC_EPRST E1000_ICR_EPRST /* Receive Control */ -#define E1000_RCTL_RST 0x00000001 /* Software reset */ -#define E1000_RCTL_EN 0x00000002 /* enable */ -#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ -#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ -#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ -#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ -#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ -#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ -#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ -#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ -#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ -#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ -#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ -#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ -#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ -#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ -#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ -#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ -#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ -#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ -#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ +#define E1000_RCTL_RST 0x00000001 /* Software reset */ +#define E1000_RCTL_EN 0x00000002 /* enable */ +#define E1000_RCTL_SBP 0x00000004 /* store bad packet */ +#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */ +#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */ +#define E1000_RCTL_LPE 0x00000020 /* long packet enable */ +#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */ +#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ +#define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ +#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ +#define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ +#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ +#define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ +#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */ +#define E1000_RCTL_MO_0 0x00000000 /* multicast offset 11:0 */ +#define E1000_RCTL_MO_1 0x00001000 /* multicast offset 12:1 */ +#define E1000_RCTL_MO_2 0x00002000 /* multicast offset 13:2 */ +#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */ +#define E1000_RCTL_MDR 0x00004000 /* multicast desc ring 0 */ +#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */ /* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ -#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ -#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ -#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ -#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ +#define E1000_RCTL_SZ_2048 0x00000000 /* rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024 0x00010000 /* rx buffer size 1024 */ +#define E1000_RCTL_SZ_512 0x00020000 /* rx buffer size 512 */ +#define E1000_RCTL_SZ_256 0x00030000 /* rx buffer size 256 */ /* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ -#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ -#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ -#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ -#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ -#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ -#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ -#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ -#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ -#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ -#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ -#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */ -#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */ +#define E1000_RCTL_SZ_16384 0x00010000 /* rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192 0x00020000 /* rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096 0x00030000 /* rx buffer size 4096 */ +#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */ +#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */ +#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */ +#define E1000_RCTL_DPF 0x00400000 /* discard pause frames */ +#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ +#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ +#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ +#define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */ +#define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */ /* Use byte values for the following shift parameters * Usage: @@ -1847,10 +1841,10 @@ struct e1000_hw { #define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 #define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 -#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ -#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ -#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ -#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ +#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ +#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ +#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ +#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ /* SW_W_SYNC definitions */ #define E1000_SWFW_EEP_SM 0x0001 @@ -1859,17 +1853,17 @@ struct e1000_hw { #define E1000_SWFW_MAC_CSR_SM 0x0008 /* Receive Descriptor */ -#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ -#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */ -#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */ -#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */ -#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */ +#define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ +#define E1000_RDT_FPDB 0x80000000 /* Flush descriptor block */ +#define E1000_RDLEN_LEN 0x0007ff80 /* descriptor length */ +#define E1000_RDH_RDH 0x0000ffff /* receive descriptor head */ +#define E1000_RDT_RDT 0x0000ffff /* receive descriptor tail */ /* Flow Control */ -#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ -#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ -#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ -#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ +#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */ +#define E1000_FCRTH_XFCE 0x80000000 /* External Flow Control Enable */ +#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ /* Header split receive */ #define E1000_RFCTL_ISCSI_DIS 0x00000001 @@ -1889,64 +1883,64 @@ struct e1000_hw { #define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 /* Receive Descriptor Control */ -#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ -#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ -#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */ -#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ +#define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ +#define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ +#define E1000_RXDCTL_WTHRESH 0x003F0000 /* RXDCTL Writeback Threshold */ +#define E1000_RXDCTL_GRAN 0x01000000 /* RXDCTL Granularity */ /* Transmit Descriptor Control */ -#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ -#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ -#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ -#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ -#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ -#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ -#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc. - still to be processed. */ +#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ +#define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ +#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ +#define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc. + still to be processed. */ /* Transmit Configuration Word */ -#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ -#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ -#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ -#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ -#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ -#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ -#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ -#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ -#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ -#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ +#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ +#define E1000_TXCW_HD 0x00000040 /* TXCW half duplex */ +#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */ +#define E1000_TXCW_RF 0x00003000 /* TXCW remote fault */ +#define E1000_TXCW_NP 0x00008000 /* TXCW next page */ +#define E1000_TXCW_CW 0x0000ffff /* TxConfigWord mask */ +#define E1000_TXCW_TXC 0x40000000 /* Transmit Config control */ +#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */ /* Receive Configuration Word */ -#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ -#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ -#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ -#define E1000_RXCW_CC 0x10000000 /* Receive config change */ -#define E1000_RXCW_C 0x20000000 /* Receive config */ -#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ -#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ +#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */ +#define E1000_RXCW_NC 0x04000000 /* Receive config no carrier */ +#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */ +#define E1000_RXCW_CC 0x10000000 /* Receive config change */ +#define E1000_RXCW_C 0x20000000 /* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */ +#define E1000_RXCW_ANC 0x80000000 /* Auto-neg complete */ /* Transmit Control */ -#define E1000_TCTL_RST 0x00000001 /* software reset */ -#define E1000_TCTL_EN 0x00000002 /* enable tx */ -#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ -#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ -#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ -#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ -#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ -#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ -#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ -#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ -#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ +#define E1000_TCTL_RST 0x00000001 /* software reset */ +#define E1000_TCTL_EN 0x00000002 /* enable tx */ +#define E1000_TCTL_BCE 0x00000004 /* busy check enable */ +#define E1000_TCTL_PSP 0x00000008 /* pad short packets */ +#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */ +#define E1000_TCTL_COLD 0x003ff000 /* collision distance */ +#define E1000_TCTL_SWXOFF 0x00400000 /* SW Xoff transmission */ +#define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ +#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ +#define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ +#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ /* Extended Transmit Control */ -#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */ -#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ +#define E1000_TCTL_EXT_BST_MASK 0x000003FF /* Backoff Slot Time */ +#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */ /* Receive Checksum Control */ -#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ -#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ -#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ -#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ -#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ -#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ +#define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ +#define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ +#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ +#define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ +#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ +#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ /* Multiple Receive Queue Control */ #define E1000_MRQC_ENABLE_MASK 0x00000003 @@ -1962,141 +1956,141 @@ struct e1000_hw { /* Definitions for power management and wakeup registers */ /* Wake Up Control */ -#define E1000_WUC_APME 0x00000001 /* APM Enable */ -#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ -#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ -#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ -#define E1000_WUC_SPM 0x80000000 /* Enable SPM */ +#define E1000_WUC_APME 0x00000001 /* APM Enable */ +#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */ +#define E1000_WUC_PME_STATUS 0x00000004 /* PME Status */ +#define E1000_WUC_APMPME 0x00000008 /* Assert PME on APM Wakeup */ +#define E1000_WUC_SPM 0x80000000 /* Enable SPM */ /* Wake Up Filter Control */ -#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ -#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ -#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ -#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ -#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ -#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ -#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ -#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ -#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */ -#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ -#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ -#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ -#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ -#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ -#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ -#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ +#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ +#define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ +#define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ +#define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */ +#define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ +#define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ +#define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ +#define E1000_WUFC_FLX3 0x00080000 /* Flexible Filter 3 Enable */ +#define E1000_WUFC_ALL_FILTERS 0x000F00FF /* Mask for all wakeup filters */ +#define E1000_WUFC_FLX_OFFSET 16 /* Offset to the Flexible Filters bits */ +#define E1000_WUFC_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ /* Wake Up Status */ -#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */ -#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */ -#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */ -#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */ -#define E1000_WUS_BC 0x00000010 /* Broadcast Received */ -#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */ -#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */ -#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */ -#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */ -#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */ -#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */ -#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */ -#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ +#define E1000_WUS_LNKC 0x00000001 /* Link Status Changed */ +#define E1000_WUS_MAG 0x00000002 /* Magic Packet Received */ +#define E1000_WUS_EX 0x00000004 /* Directed Exact Received */ +#define E1000_WUS_MC 0x00000008 /* Directed Multicast Received */ +#define E1000_WUS_BC 0x00000010 /* Broadcast Received */ +#define E1000_WUS_ARP 0x00000020 /* ARP Request Packet Received */ +#define E1000_WUS_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Received */ +#define E1000_WUS_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Received */ +#define E1000_WUS_FLX0 0x00010000 /* Flexible Filter 0 Match */ +#define E1000_WUS_FLX1 0x00020000 /* Flexible Filter 1 Match */ +#define E1000_WUS_FLX2 0x00040000 /* Flexible Filter 2 Match */ +#define E1000_WUS_FLX3 0x00080000 /* Flexible Filter 3 Match */ +#define E1000_WUS_FLX_FILTERS 0x000F0000 /* Mask for the 4 flexible filters */ /* Management Control */ -#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ -#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ -#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ -#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ -#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ -#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ -#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ -#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ -#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ -#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery - * Filtering */ -#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */ -#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ -#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ -#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ -#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */ -#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ -#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address - * filtering */ -#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host - * memory */ -#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address - * filtering */ -#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */ -#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */ -#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ -#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ -#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ -#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ -#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ -#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ - -#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ -#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ +#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */ +#define E1000_MANC_R_ON_FORCE 0x00000004 /* Reset on Force TCO - RO */ +#define E1000_MANC_RMCP_EN 0x00000100 /* Enable RCMP 026Fh Filtering */ +#define E1000_MANC_0298_EN 0x00000200 /* Enable RCMP 0298h Filtering */ +#define E1000_MANC_IPV4_EN 0x00000400 /* Enable IPv4 */ +#define E1000_MANC_IPV6_EN 0x00000800 /* Enable IPv6 */ +#define E1000_MANC_SNAP_EN 0x00001000 /* Accept LLC/SNAP */ +#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ +#define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery + * Filtering */ +#define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */ +#define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ +#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ +#define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ +#define E1000_MANC_RCV_ALL 0x00080000 /* Receive All Enabled */ +#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ +#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address + * filtering */ +#define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host + * memory */ +#define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address + * filtering */ +#define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */ +#define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */ +#define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ +#define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ +#define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ +#define E1000_MANC_SMB_DATA_IN 0x08000000 /* SMBus Data In */ +#define E1000_MANC_SMB_DATA_OUT 0x10000000 /* SMBus Data Out */ +#define E1000_MANC_SMB_CLK_OUT 0x20000000 /* SMBus Clock Out */ + +#define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ +#define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ /* SW Semaphore Register */ -#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ -#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ -#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ -#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ +#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ +#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ +#define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ +#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ /* FW Semaphore Register */ -#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */ +#define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */ #define E1000_FWSM_MODE_SHIFT 1 -#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ +#define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ -#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */ -#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */ -#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */ +#define E1000_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI reset */ +#define E1000_FWSM_DISSW 0x10000000 /* FW disable SW Write Access */ +#define E1000_FWSM_SKUSEL_MASK 0x60000000 /* LAN SKU select */ #define E1000_FWSM_SKUEL_SHIFT 29 -#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */ -#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */ -#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */ -#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */ +#define E1000_FWSM_SKUSEL_EMB 0x0 /* Embedded SKU */ +#define E1000_FWSM_SKUSEL_CONS 0x1 /* Consumer SKU */ +#define E1000_FWSM_SKUSEL_PERF_100 0x2 /* Perf & Corp 10/100 SKU */ +#define E1000_FWSM_SKUSEL_PERF_GBE 0x3 /* Perf & Copr GbE SKU */ /* FFLT Debug Register */ -#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ +#define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ typedef enum { - e1000_mng_mode_none = 0, - e1000_mng_mode_asf, - e1000_mng_mode_pt, - e1000_mng_mode_ipmi, - e1000_mng_mode_host_interface_only + e1000_mng_mode_none = 0, + e1000_mng_mode_asf, + e1000_mng_mode_pt, + e1000_mng_mode_ipmi, + e1000_mng_mode_host_interface_only } e1000_mng_mode; -/* Host Inteface Control Register */ -#define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */ -#define E1000_HICR_C 0x00000002 /* Driver sets this bit when done - * to put command in RAM */ -#define E1000_HICR_SV 0x00000004 /* Status Validity */ -#define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */ +/* Host Interface Control Register */ +#define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */ +#define E1000_HICR_C 0x00000002 /* Driver sets this bit when done + * to put command in RAM */ +#define E1000_HICR_SV 0x00000004 /* Status Validity */ +#define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */ /* Host Interface Command Interface - Address range 0x8800-0x8EFF */ -#define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */ -#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */ -#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */ -#define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */ +#define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */ +#define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */ +#define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */ +#define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */ struct e1000_host_command_header { - u8 command_id; - u8 command_length; - u8 command_options; /* I/F bits for command, status for return */ - u8 checksum; + u8 command_id; + u8 command_length; + u8 command_options; /* I/F bits for command, status for return */ + u8 checksum; }; struct e1000_host_command_info { - struct e1000_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ - u8 command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */ + struct e1000_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ + u8 command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */ }; /* Host SMB register #0 */ -#define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */ -#define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */ -#define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */ -#define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */ +#define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */ +#define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */ +#define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */ +#define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */ /* Host SMB register #1 */ #define E1000_HSMC1R_CLKIN E1000_HSMC0R_CLKIN @@ -2105,10 +2099,10 @@ struct e1000_host_command_info { #define E1000_HSMC1R_CLKOUT E1000_HSMC0R_CLKOUT /* FW Status Register */ -#define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */ +#define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */ /* Wake Up Packet Length */ -#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ +#define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ #define E1000_MDALIGN 4096 @@ -2162,24 +2156,24 @@ struct e1000_host_command_info { #define PCI_EX_LINK_WIDTH_SHIFT 4 /* EEPROM Commands - Microwire */ -#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ -#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ -#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */ -#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */ -#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erast/write disable */ +#define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ +#define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ +#define EEPROM_ERASE_OPCODE_MICROWIRE 0x7 /* EEPROM erase opcode */ +#define EEPROM_EWEN_OPCODE_MICROWIRE 0x13 /* EEPROM erase/write enable */ +#define EEPROM_EWDS_OPCODE_MICROWIRE 0x10 /* EEPROM erase/write disable */ /* EEPROM Commands - SPI */ -#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ -#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */ -#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */ -#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ -#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */ -#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */ -#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */ -#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */ -#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */ -#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */ -#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */ +#define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ +#define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */ +#define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */ +#define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ +#define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */ +#define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */ +#define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */ +#define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */ +#define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */ +#define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */ +#define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */ /* EEPROM Size definitions */ #define EEPROM_WORD_SIZE_SHIFT 6 @@ -2190,7 +2184,7 @@ struct e1000_host_command_info { #define EEPROM_COMPAT 0x0003 #define EEPROM_ID_LED_SETTINGS 0x0004 #define EEPROM_VERSION 0x0005 -#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */ +#define EEPROM_SERDES_AMPLITUDE 0x0006 /* For SERDES output amplitude adjustment. */ #define EEPROM_PHY_CLASS_WORD 0x0007 #define EEPROM_INIT_CONTROL1_REG 0x000A #define EEPROM_INIT_CONTROL2_REG 0x000F @@ -2203,8 +2197,8 @@ struct e1000_host_command_info { #define EEPROM_FLASH_VERSION 0x0032 #define EEPROM_CHECKSUM_REG 0x003F -#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */ -#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */ +#define E1000_EEPROM_CFG_DONE 0x00040000 /* MNG config cycle done */ +#define E1000_EEPROM_CFG_DONE_PORT_1 0x00080000 /* ...for second port */ /* Word definitions for ID LED Settings */ #define ID_LED_RESERVED_0000 0x0000 @@ -2227,7 +2221,6 @@ struct e1000_host_command_info { #define IGP_ACTIVITY_LED_ENABLE 0x0300 #define IGP_LED3_MODE 0x07000000 - /* Mask bits for SERDES amplitude adjustment in Word 6 of the EEPROM */ #define EEPROM_SERDES_AMPLITUDE_MASK 0x000F @@ -2332,9 +2325,9 @@ struct e1000_host_command_info { #define E1000_EXTCNF_CTRL_SWFLAG 0x00000020 /* PBA constants */ -#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */ -#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ -#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ +#define E1000_PBA_8K 0x0008 /* 8KB, default Rx allocation */ +#define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ +#define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ #define E1000_PBA_20K 0x0014 #define E1000_PBA_22K 0x0016 #define E1000_PBA_24K 0x0018 @@ -2343,7 +2336,7 @@ struct e1000_host_command_info { #define E1000_PBA_34K 0x0022 #define E1000_PBA_38K 0x0026 #define E1000_PBA_40K 0x0028 -#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ +#define E1000_PBA_48K 0x0030 /* 48KB, default RX allocation */ #define E1000_PBS_16K E1000_PBA_16K @@ -2353,9 +2346,9 @@ struct e1000_host_command_info { #define FLOW_CONTROL_TYPE 0x8808 /* The historical defaults for the flow control values are given below. */ -#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */ -#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */ -#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */ +#define FC_DEFAULT_HI_THRESH (0x8000) /* 32KB */ +#define FC_DEFAULT_LO_THRESH (0x4000) /* 16KB */ +#define FC_DEFAULT_TX_TIMER (0x100) /* ~130 us */ /* PCIX Config space */ #define PCIX_COMMAND_REGISTER 0xE6 @@ -2369,7 +2362,6 @@ struct e1000_host_command_info { #define PCIX_STATUS_HI_MMRBC_4K 0x3 #define PCIX_STATUS_HI_MMRBC_2K 0x2 - /* Number of bits required to shift right the "pause" bits from the * EEPROM (bits 13:12) to the "pause" (bits 8:7) field in the TXCW register. */ @@ -2390,7 +2382,6 @@ struct e1000_host_command_info { */ #define ILOS_SHIFT 3 - #define RECEIVE_BUFFER_ALIGN_SIZE (256) /* Number of milliseconds we wait for auto-negotiation to complete */ @@ -2443,7 +2434,6 @@ struct e1000_host_command_info { (((length) > (adapter)->min_frame_size) && \ ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1))))) - /* Structures, enums, and macros for the PHY */ /* Bit definitions for the Management Data IO (MDIO) and Management Data @@ -2460,49 +2450,49 @@ struct e1000_host_command_info { /* PHY 1000 MII Register/Bit Definitions */ /* PHY Registers defined by IEEE */ -#define PHY_CTRL 0x00 /* Control Register */ -#define PHY_STATUS 0x01 /* Status Regiser */ -#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ -#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ -#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ -#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ -#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ -#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */ -#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ -#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ -#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ -#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ - -#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ -#define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */ +#define PHY_CTRL 0x00 /* Control Register */ +#define PHY_STATUS 0x01 /* Status Register */ +#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */ +#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */ +#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */ +#define PHY_NEXT_PAGE_TX 0x07 /* Next Page TX */ +#define PHY_LP_NEXT_PAGE 0x08 /* Link Partner Next Page */ +#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */ + +#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */ +#define MAX_PHY_MULTI_PAGE_REG 0xF /* Registers equal on all pages */ /* M88E1000 Specific Registers */ -#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ -#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ -#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ -#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ -#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ -#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ - -#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ -#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ -#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ -#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ -#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ +#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */ +#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */ +#define M88E1000_INT_ENABLE 0x12 /* Interrupt Enable Register */ +#define M88E1000_INT_STATUS 0x13 /* Interrupt Status Register */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */ +#define M88E1000_RX_ERR_CNTR 0x15 /* Receive Error Counter */ + +#define M88E1000_PHY_EXT_CTRL 0x1A /* PHY extend control register */ +#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */ +#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */ +#define M88E1000_PHY_VCO_REG_BIT8 0x100 /* Bits 8 & 11 are adjusted for */ +#define M88E1000_PHY_VCO_REG_BIT11 0x800 /* improved BER performance */ #define IGP01E1000_IEEE_REGS_PAGE 0x0000 #define IGP01E1000_IEEE_RESTART_AUTONEG 0x3300 #define IGP01E1000_IEEE_FORCE_GIGA 0x0140 /* IGP01E1000 Specific Registers */ -#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */ -#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */ -#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */ -#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ -#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ -#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ +#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* PHY Specific Port Config Register */ +#define IGP01E1000_PHY_PORT_STATUS 0x11 /* PHY Specific Status Register */ +#define IGP01E1000_PHY_PORT_CTRL 0x12 /* PHY Specific Control Register */ +#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ +#define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ +#define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ #define IGP02E1000_PHY_POWER_MGMT 0x19 -#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ +#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ /* IGP01E1000 AGC Registers - stores the cable length values*/ #define IGP01E1000_PHY_AGC_A 0x1172 @@ -2546,118 +2536,118 @@ struct e1000_host_command_info { #define IGP01E1000_ANALOG_REGS_PAGE 0x20C0 /* PHY Control Register */ -#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ -#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ -#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ -#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ -#define MII_CR_POWER_DOWN 0x0800 /* Power down */ -#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ -#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ -#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ -#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ +#define MII_CR_SPEED_SELECT_MSB 0x0040 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_COLL_TEST_ENABLE 0x0080 /* Collision test enable */ +#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */ +#define MII_CR_ISOLATE 0x0400 /* Isolate PHY from MII */ +#define MII_CR_POWER_DOWN 0x0800 /* Power down */ +#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */ +#define MII_CR_SPEED_SELECT_LSB 0x2000 /* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */ +#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */ /* PHY Status Register */ -#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ -#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ -#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ -#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ -#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ -#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ -#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ -#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ -#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ -#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ -#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ -#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ -#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ -#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ -#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ +#define MII_SR_EXTENDED_CAPS 0x0001 /* Extended register capabilities */ +#define MII_SR_JABBER_DETECT 0x0002 /* Jabber Detected */ +#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */ +#define MII_SR_AUTONEG_CAPS 0x0008 /* Auto Neg Capable */ +#define MII_SR_REMOTE_FAULT 0x0010 /* Remote Fault Detect */ +#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */ +#define MII_SR_PREAMBLE_SUPPRESS 0x0040 /* Preamble may be suppressed */ +#define MII_SR_EXTENDED_STATUS 0x0100 /* Ext. status info in Reg 0x0F */ +#define MII_SR_100T2_HD_CAPS 0x0200 /* 100T2 Half Duplex Capable */ +#define MII_SR_100T2_FD_CAPS 0x0400 /* 100T2 Full Duplex Capable */ +#define MII_SR_10T_HD_CAPS 0x0800 /* 10T Half Duplex Capable */ +#define MII_SR_10T_FD_CAPS 0x1000 /* 10T Full Duplex Capable */ +#define MII_SR_100X_HD_CAPS 0x2000 /* 100X Half Duplex Capable */ +#define MII_SR_100X_FD_CAPS 0x4000 /* 100X Full Duplex Capable */ +#define MII_SR_100T4_CAPS 0x8000 /* 100T4 Capable */ /* Autoneg Advertisement Register */ -#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ -#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ -#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ -#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ -#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ -#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ -#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ -#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ -#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ -#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ +#define NWAY_AR_SELECTOR_FIELD 0x0001 /* indicates IEEE 802.3 CSMA/CD */ +#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */ +#define NWAY_AR_100T4_CAPS 0x0200 /* 100T4 Capable */ +#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */ +#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */ +#define NWAY_AR_REMOTE_FAULT 0x2000 /* Remote Fault detected */ +#define NWAY_AR_NEXT_PAGE 0x8000 /* Next Page ability supported */ /* Link Partner Ability Register (Base Page) */ -#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ -#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ -#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ -#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ -#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ -#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ -#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ -#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ -#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ -#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ -#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ +#define NWAY_LPAR_SELECTOR_FIELD 0x0000 /* LP protocol selector field */ +#define NWAY_LPAR_10T_HD_CAPS 0x0020 /* LP is 10T Half Duplex Capable */ +#define NWAY_LPAR_10T_FD_CAPS 0x0040 /* LP is 10T Full Duplex Capable */ +#define NWAY_LPAR_100TX_HD_CAPS 0x0080 /* LP is 100TX Half Duplex Capable */ +#define NWAY_LPAR_100TX_FD_CAPS 0x0100 /* LP is 100TX Full Duplex Capable */ +#define NWAY_LPAR_100T4_CAPS 0x0200 /* LP is 100T4 Capable */ +#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */ +#define NWAY_LPAR_REMOTE_FAULT 0x2000 /* LP has detected Remote Fault */ +#define NWAY_LPAR_ACKNOWLEDGE 0x4000 /* LP has rx'd link code word */ +#define NWAY_LPAR_NEXT_PAGE 0x8000 /* Next Page ability supported */ /* Autoneg Expansion Register */ -#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ -#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ -#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ -#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ -#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ +#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */ +#define NWAY_ER_PAGE_RXD 0x0002 /* LP is 10T Half Duplex Capable */ +#define NWAY_ER_NEXT_PAGE_CAPS 0x0004 /* LP is 10T Full Duplex Capable */ +#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008 /* LP is 100TX Half Duplex Capable */ +#define NWAY_ER_PAR_DETECT_FAULT 0x0010 /* LP is 100TX Full Duplex Capable */ /* Next Page TX Register */ -#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ -#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges - * of different NP - */ -#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg - * 0 = cannot comply with msg - */ -#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ -#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow - * 0 = sending last NP - */ +#define NPTX_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ +#define NPTX_TOGGLE 0x0800 /* Toggles between exchanges + * of different NP + */ +#define NPTX_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg + * 0 = cannot comply with msg + */ +#define NPTX_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ +#define NPTX_NEXT_PAGE 0x8000 /* 1 = addition NP will follow + * 0 = sending last NP + */ /* Link Partner Next Page Register */ -#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ -#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges - * of different NP - */ -#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg - * 0 = cannot comply with msg - */ -#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ -#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */ -#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow - * 0 = sending last NP - */ +#define LP_RNPR_MSG_CODE_FIELD 0x0001 /* NP msg code or unformatted data */ +#define LP_RNPR_TOGGLE 0x0800 /* Toggles between exchanges + * of different NP + */ +#define LP_RNPR_ACKNOWLDGE2 0x1000 /* 1 = will comply with msg + * 0 = cannot comply with msg + */ +#define LP_RNPR_MSG_PAGE 0x2000 /* formatted(1)/unformatted(0) pg */ +#define LP_RNPR_ACKNOWLDGE 0x4000 /* 1 = ACK / 0 = NO ACK */ +#define LP_RNPR_NEXT_PAGE 0x8000 /* 1 = addition NP will follow + * 0 = sending last NP + */ /* 1000BASE-T Control Register */ -#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ -#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ -#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ -#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ - /* 0=DTE device */ -#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ - /* 0=Configure PHY as Slave */ -#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ - /* 0=Automatic Master/Slave config */ -#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ -#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ -#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ -#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ -#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ +#define CR_1000T_ASYM_PAUSE 0x0080 /* Advertise asymmetric pause bit */ +#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */ +#define CR_1000T_REPEATER_DTE 0x0400 /* 1=Repeater/switch device port */ + /* 0=DTE device */ +#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */ + /* 0=Configure PHY as Slave */ +#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */ + /* 0=Automatic Master/Slave config */ +#define CR_1000T_TEST_MODE_NORMAL 0x0000 /* Normal Operation */ +#define CR_1000T_TEST_MODE_1 0x2000 /* Transmit Waveform test */ +#define CR_1000T_TEST_MODE_2 0x4000 /* Master Transmit Jitter test */ +#define CR_1000T_TEST_MODE_3 0x6000 /* Slave Transmit Jitter test */ +#define CR_1000T_TEST_MODE_4 0x8000 /* Transmitter Distortion test */ /* 1000BASE-T Status Register */ -#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ -#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ -#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ -#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ -#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ -#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ -#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */ -#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ +#define SR_1000T_IDLE_ERROR_CNT 0x00FF /* Num idle errors since last read */ +#define SR_1000T_ASYM_PAUSE_DIR 0x0100 /* LP asymmetric pause direction bit */ +#define SR_1000T_LP_HD_CAPS 0x0400 /* LP is 1000T HD capable */ +#define SR_1000T_LP_FD_CAPS 0x0800 /* LP is 1000T FD capable */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */ +#define SR_1000T_MS_CONFIG_RES 0x4000 /* 1=Local TX is Master, 0=Slave */ +#define SR_1000T_MS_CONFIG_FAULT 0x8000 /* Master/Slave config fault */ #define SR_1000T_REMOTE_RX_STATUS_SHIFT 12 #define SR_1000T_LOCAL_RX_STATUS_SHIFT 13 #define SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT 5 @@ -2665,64 +2655,64 @@ struct e1000_host_command_info { #define FFE_IDLE_ERR_COUNT_TIMEOUT_100 100 /* Extended Status Register */ -#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */ -#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */ -#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */ -#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */ +#define IEEE_ESR_1000T_HD_CAPS 0x1000 /* 1000T HD capable */ +#define IEEE_ESR_1000T_FD_CAPS 0x2000 /* 1000T FD capable */ +#define IEEE_ESR_1000X_HD_CAPS 0x4000 /* 1000X HD capable */ +#define IEEE_ESR_1000X_FD_CAPS 0x8000 /* 1000X FD capable */ -#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */ -#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */ +#define PHY_TX_POLARITY_MASK 0x0100 /* register 10h bit 8 (polarity bit) */ +#define PHY_TX_NORMAL_POLARITY 0 /* register 10h bit 8 (normal polarity) */ -#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */ - /* (0=enable, 1=disable) */ +#define AUTO_POLARITY_DISABLE 0x0010 /* register 11h bit 4 */ + /* (0=enable, 1=disable) */ /* M88E1000 PHY Specific Control Register */ -#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ -#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ -#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ -#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low, - * 0=CLK125 toggling - */ -#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ - /* Manual MDI configuration */ -#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ -#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, - * 100BASE-TX/10BASE-T: - * MDI Mode - */ -#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled - * all speeds. - */ +#define M88E1000_PSCR_JABBER_DISABLE 0x0001 /* 1=Jabber Function disabled */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */ +#define M88E1000_PSCR_SQE_TEST 0x0004 /* 1=SQE Test enabled */ +#define M88E1000_PSCR_CLK125_DISABLE 0x0010 /* 1=CLK125 low, + * 0=CLK125 toggling + */ +#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */ + /* Manual MDI configuration */ +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */ +#define M88E1000_PSCR_AUTO_X_1000T 0x0040 /* 1000BASE-T: Auto crossover, + * 100BASE-TX/10BASE-T: + * MDI Mode + */ +#define M88E1000_PSCR_AUTO_X_MODE 0x0060 /* Auto crossover enabled + * all speeds. + */ #define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080 - /* 1=Enable Extended 10BASE-T distance - * (Lower 10BASE-T RX Threshold) - * 0=Normal 10BASE-T RX Threshold */ + /* 1=Enable Extended 10BASE-T distance + * (Lower 10BASE-T RX Threshold) + * 0=Normal 10BASE-T RX Threshold */ #define M88E1000_PSCR_MII_5BIT_ENABLE 0x0100 - /* 1=5-Bit interface in 100BASE-TX - * 0=MII interface in 100BASE-TX */ -#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ -#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ -#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ + /* 1=5-Bit interface in 100BASE-TX + * 0=MII interface in 100BASE-TX */ +#define M88E1000_PSCR_SCRAMBLER_DISABLE 0x0200 /* 1=Scrambler disable */ +#define M88E1000_PSCR_FORCE_LINK_GOOD 0x0400 /* 1=Force link good */ +#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */ #define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT 1 #define M88E1000_PSCR_AUTO_X_MODE_SHIFT 5 #define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7 /* M88E1000 PHY Specific Status Register */ -#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ -#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ -#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ -#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ -#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; - * 3=110-140M;4=>140M */ -#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ -#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ -#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ -#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ -#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ -#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ -#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ -#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ +#define M88E1000_PSSR_JABBER 0x0001 /* 1=Jabber */ +#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */ +#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */ +#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */ +#define M88E1000_PSSR_CABLE_LENGTH 0x0380 /* 0=<50M;1=50-80M;2=80-110M; + * 3=110-140M;4=>140M */ +#define M88E1000_PSSR_LINK 0x0400 /* 1=Link up, 0=Link down */ +#define M88E1000_PSSR_SPD_DPLX_RESOLVED 0x0800 /* 1=Speed & Duplex resolved */ +#define M88E1000_PSSR_PAGE_RCVD 0x1000 /* 1=Page received */ +#define M88E1000_PSSR_DPLX 0x2000 /* 1=Duplex 0=Half Duplex */ +#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */ +#define M88E1000_PSSR_10MBS 0x0000 /* 00=10Mbs */ +#define M88E1000_PSSR_100MBS 0x4000 /* 01=100Mbs */ +#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */ #define M88E1000_PSSR_REV_POLARITY_SHIFT 1 #define M88E1000_PSSR_DOWNSHIFT_SHIFT 5 @@ -2730,12 +2720,12 @@ struct e1000_host_command_info { #define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 /* M88E1000 Extended PHY Specific Control Register */ -#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ -#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled. - * Will assert lost lock and bring - * link down if idle not seen - * within 1ms in 1000BASE-T - */ +#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000 /* 1=Fiber loopback */ +#define M88E1000_EPSCR_DOWN_NO_IDLE 0x8000 /* 1=Lost lock detect enabled. + * Will assert lost lock and bring + * link down if idle not seen + * within 1ms in 1000BASE-T + */ /* Number of times we will attempt to autonegotiate before downshifting if we * are the master */ #define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 @@ -2750,9 +2740,9 @@ struct e1000_host_command_info { #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100 #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X 0x0200 #define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X 0x0300 -#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ -#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_2_5 0x0060 /* 2.5 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_0 0x0000 /* NO TX_CLK */ /* M88EC018 Rev 2 specific DownShift settings */ #define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00 @@ -2774,18 +2764,18 @@ struct e1000_host_command_info { #define IGP01E1000_PSCFR_DISABLE_TRANSMIT 0x2000 /* IGP01E1000 Specific Port Status Register - R/O */ -#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */ +#define IGP01E1000_PSSR_AUTONEG_FAILED 0x0001 /* RO LH SC */ #define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002 #define IGP01E1000_PSSR_CABLE_LENGTH 0x007C #define IGP01E1000_PSSR_FULL_DUPLEX 0x0200 #define IGP01E1000_PSSR_LINK_UP 0x0400 #define IGP01E1000_PSSR_MDIX 0x0800 -#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */ +#define IGP01E1000_PSSR_SPEED_MASK 0xC000 /* speed bits mask */ #define IGP01E1000_PSSR_SPEED_10MBPS 0x4000 #define IGP01E1000_PSSR_SPEED_100MBPS 0x8000 #define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000 -#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */ -#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */ +#define IGP01E1000_PSSR_CABLE_LENGTH_SHIFT 0x0002 /* shift right 2 */ +#define IGP01E1000_PSSR_MDIX_SHIFT 0x000B /* shift right 11 */ /* IGP01E1000 Specific Port Control Register - R/W */ #define IGP01E1000_PSCR_TP_LOOPBACK 0x0010 @@ -2793,16 +2783,16 @@ struct e1000_host_command_info { #define IGP01E1000_PSCR_TEN_CRS_SELECT 0x0400 #define IGP01E1000_PSCR_FLIP_CHIP 0x0800 #define IGP01E1000_PSCR_AUTO_MDIX 0x1000 -#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */ +#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0-MDI, 1-MDIX */ /* IGP01E1000 Specific Port Link Health Register */ #define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000 #define IGP01E1000_PLHR_GIG_SCRAMBLER_ERROR 0x4000 #define IGP01E1000_PLHR_MASTER_FAULT 0x2000 #define IGP01E1000_PLHR_MASTER_RESOLUTION 0x1000 -#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */ -#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */ -#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */ +#define IGP01E1000_PLHR_GIG_REM_RCVR_NOK 0x0800 /* LH */ +#define IGP01E1000_PLHR_IDLE_ERROR_CNT_OFLOW 0x0400 /* LH */ +#define IGP01E1000_PLHR_DATA_ERR_1 0x0200 /* LH */ #define IGP01E1000_PLHR_DATA_ERR_0 0x0100 #define IGP01E1000_PLHR_AUTONEG_FAULT 0x0040 #define IGP01E1000_PLHR_AUTONEG_ACTIVE 0x0010 @@ -2817,9 +2807,9 @@ struct e1000_host_command_info { #define IGP01E1000_MSE_CHANNEL_B 0x0F00 #define IGP01E1000_MSE_CHANNEL_A 0xF000 -#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ -#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */ -#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */ +#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ +#define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */ +#define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */ /* IGP01E1000 DSP reset macros */ #define DSP_RESET_ENABLE 0x0 @@ -2828,8 +2818,8 @@ struct e1000_host_command_info { /* IGP01E1000 & IGP02E1000 AGC Registers */ -#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ -#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */ +#define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ +#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */ /* IGP02E1000 AGC Register Length 9-bit mask */ #define IGP02E1000_AGC_LENGTH_MASK 0x7F @@ -2847,9 +2837,9 @@ struct e1000_host_command_info { #define IGP01E1000_PHY_POLARITY_MASK 0x0078 /* IGP01E1000 GMII FIFO Register */ -#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed - * on Link-Up */ -#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */ +#define IGP01E1000_GMII_FLEX_SPD 0x10 /* Enable flexible speed + * on Link-Up */ +#define IGP01E1000_GMII_SPD 0x20 /* Enable SPD */ /* IGP01E1000 Analog Register */ #define IGP01E1000_ANALOG_SPARE_FUSE_STATUS 0x20D1 @@ -2883,7 +2873,6 @@ struct e1000_host_command_info { #define M88E1111_I_PHY_ID 0x01410CC0 #define L1LXT971A_PHY_ID 0x001378E0 - /* Bits... * 15-5: page * 4-0: register offset @@ -2893,41 +2882,41 @@ struct e1000_host_command_info { (((page) << PHY_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS)) #define IGP3_PHY_PORT_CTRL \ - PHY_REG(769, 17) /* Port General Configuration */ + PHY_REG(769, 17) /* Port General Configuration */ #define IGP3_PHY_RATE_ADAPT_CTRL \ - PHY_REG(769, 25) /* Rate Adapter Control Register */ + PHY_REG(769, 25) /* Rate Adapter Control Register */ #define IGP3_KMRN_FIFO_CTRL_STATS \ - PHY_REG(770, 16) /* KMRN FIFO's control/status register */ + PHY_REG(770, 16) /* KMRN FIFO's control/status register */ #define IGP3_KMRN_POWER_MNG_CTRL \ - PHY_REG(770, 17) /* KMRN Power Management Control Register */ + PHY_REG(770, 17) /* KMRN Power Management Control Register */ #define IGP3_KMRN_INBAND_CTRL \ - PHY_REG(770, 18) /* KMRN Inband Control Register */ + PHY_REG(770, 18) /* KMRN Inband Control Register */ #define IGP3_KMRN_DIAG \ - PHY_REG(770, 19) /* KMRN Diagnostic register */ -#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */ + PHY_REG(770, 19) /* KMRN Diagnostic register */ +#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 /* RX PCS is not synced */ #define IGP3_KMRN_ACK_TIMEOUT \ - PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */ + PHY_REG(770, 20) /* KMRN Acknowledge Timeouts register */ #define IGP3_VR_CTRL \ - PHY_REG(776, 18) /* Voltage regulator control register */ -#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */ -#define IGP3_VR_CTRL_MODE_MASK 0x0300 /* Shutdown VR Mask */ + PHY_REG(776, 18) /* Voltage regulator control register */ +#define IGP3_VR_CTRL_MODE_SHUT 0x0200 /* Enter powerdown, shutdown VRs */ +#define IGP3_VR_CTRL_MODE_MASK 0x0300 /* Shutdown VR Mask */ #define IGP3_CAPABILITY \ - PHY_REG(776, 19) /* IGP3 Capability Register */ + PHY_REG(776, 19) /* IGP3 Capability Register */ /* Capabilities for SKU Control */ -#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */ -#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */ -#define IGP3_CAP_ASF 0x0004 /* Support ASF */ -#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */ -#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */ -#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */ -#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */ -#define IGP3_CAP_RSS 0x0080 /* Support RSS */ -#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */ -#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */ +#define IGP3_CAP_INITIATE_TEAM 0x0001 /* Able to initiate a team */ +#define IGP3_CAP_WFM 0x0002 /* Support WoL and PXE */ +#define IGP3_CAP_ASF 0x0004 /* Support ASF */ +#define IGP3_CAP_LPLU 0x0008 /* Support Low Power Link Up */ +#define IGP3_CAP_DC_AUTO_SPEED 0x0010 /* Support AC/DC Auto Link Speed */ +#define IGP3_CAP_SPD 0x0020 /* Support Smart Power Down */ +#define IGP3_CAP_MULT_QUEUE 0x0040 /* Support 2 tx & 2 rx queues */ +#define IGP3_CAP_RSS 0x0080 /* Support RSS */ +#define IGP3_CAP_8021PQ 0x0100 /* Support 802.1Q & 802.1p */ +#define IGP3_CAP_AMT_CB 0x0200 /* Support active manageability and circuit breaker */ #define IGP3_PPC_JORDAN_EN 0x0001 #define IGP3_PPC_JORDAN_GIGA_SPEED 0x0002 @@ -2937,69 +2926,69 @@ struct e1000_host_command_info { #define IGP3_KMRN_PMC_K0S_MODE1_EN_GIGA 0x0020 #define IGP3_KMRN_PMC_K0S_MODE1_EN_100 0x0040 -#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */ -#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */ +#define IGP3E1000_PHY_MISC_CTRL 0x1B /* Misc. Ctrl register */ +#define IGP3_PHY_MISC_DUPLEX_MANUAL_SET 0x1000 /* Duplex Manual Set */ #define IGP3_KMRN_EXT_CTRL PHY_REG(770, 18) #define IGP3_KMRN_EC_DIS_INBAND 0x0080 #define IGP03E1000_E_PHY_ID 0x02A80390 -#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */ +#define IFE_E_PHY_ID 0x02A80330 /* 10/100 PHY */ #define IFE_PLUS_E_PHY_ID 0x02A80320 #define IFE_C_E_PHY_ID 0x02A80310 -#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */ -#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */ -#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */ -#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnet Counter */ -#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */ -#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */ -#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */ -#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */ -#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */ -#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */ -#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */ -#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */ -#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */ - -#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Defaut 1 = Disable auto reduced power down */ -#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */ -#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */ -#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */ -#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */ -#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */ -#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */ +#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10 /* 100BaseTx Extended Status, Control and Address */ +#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY special control register */ +#define IFE_PHY_RCV_FALSE_CARRIER 0x13 /* 100BaseTx Receive False Carrier Counter */ +#define IFE_PHY_RCV_DISCONNECT 0x14 /* 100BaseTx Receive Disconnect Counter */ +#define IFE_PHY_RCV_ERROT_FRAME 0x15 /* 100BaseTx Receive Error Frame Counter */ +#define IFE_PHY_RCV_SYMBOL_ERR 0x16 /* Receive Symbol Error Counter */ +#define IFE_PHY_PREM_EOF_ERR 0x17 /* 100BaseTx Receive Premature End Of Frame Error Counter */ +#define IFE_PHY_RCV_EOF_ERR 0x18 /* 10BaseT Receive End Of Frame Error Counter */ +#define IFE_PHY_TX_JABBER_DETECT 0x19 /* 10BaseT Transmit Jabber Detect Counter */ +#define IFE_PHY_EQUALIZER 0x1A /* PHY Equalizer Control and Status */ +#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY special control and LED configuration */ +#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control register */ +#define IFE_PHY_HWI_CONTROL 0x1D /* Hardware Integrity Control (HWI) */ + +#define IFE_PESC_REDUCED_POWER_DOWN_DISABLE 0x2000 /* Default 1 = Disable auto reduced power down */ +#define IFE_PESC_100BTX_POWER_DOWN 0x0400 /* Indicates the power state of 100BASE-TX */ +#define IFE_PESC_10BTX_POWER_DOWN 0x0200 /* Indicates the power state of 10BASE-T */ +#define IFE_PESC_POLARITY_REVERSED 0x0100 /* Indicates 10BASE-T polarity */ +#define IFE_PESC_PHY_ADDR_MASK 0x007C /* Bit 6:2 for sampled PHY address */ +#define IFE_PESC_SPEED 0x0002 /* Auto-negotiation speed result 1=100Mbs, 0=10Mbs */ +#define IFE_PESC_DUPLEX 0x0001 /* Auto-negotiation duplex result 1=Full, 0=Half */ #define IFE_PESC_POLARITY_REVERSED_SHIFT 8 -#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dyanmic Power Down disabled */ -#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */ -#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */ -#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */ +#define IFE_PSC_DISABLE_DYNAMIC_POWER_DOWN 0x0100 /* 1 = Dynamic Power Down disabled */ +#define IFE_PSC_FORCE_POLARITY 0x0020 /* 1=Reversed Polarity, 0=Normal */ +#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010 /* 1=Auto Polarity Disabled, 0=Enabled */ +#define IFE_PSC_JABBER_FUNC_DISABLE 0x0001 /* 1=Jabber Disabled, 0=Normal Jabber Operation */ #define IFE_PSC_FORCE_POLARITY_SHIFT 5 #define IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT 4 -#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */ -#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */ -#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ -#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorithm is completed */ +#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable MDI/MDI-X feature, default 0=disabled */ +#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDIX-X, 0=force MDI */ +#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */ +#define IFE_PMC_AUTO_MDIX_COMPLETE 0x0010 /* Resolution algorithm is completed */ #define IFE_PMC_MDIX_MODE_SHIFT 6 -#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */ - -#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */ -#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */ -#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */ -#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */ -#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */ -#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */ -#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */ -#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */ -#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */ -#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ -#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ - -#define ICH_FLASH_COMMAND_TIMEOUT 5000 /* 5000 uSecs - adjusted */ -#define ICH_FLASH_ERASE_TIMEOUT 3000000 /* Up to 3 seconds - worst case */ -#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles */ +#define IFE_PHC_MDIX_RESET_ALL_MASK 0x0000 /* Disable auto MDI-X */ + +#define IFE_PHC_HWI_ENABLE 0x8000 /* Enable the HWI feature */ +#define IFE_PHC_ABILITY_CHECK 0x4000 /* 1= Test Passed, 0=failed */ +#define IFE_PHC_TEST_EXEC 0x2000 /* PHY launch test pulses on the wire */ +#define IFE_PHC_HIGHZ 0x0200 /* 1 = Open Circuit */ +#define IFE_PHC_LOWZ 0x0400 /* 1 = Short Circuit */ +#define IFE_PHC_LOW_HIGH_Z_MASK 0x0600 /* Mask for indication type of problem on the line */ +#define IFE_PHC_DISTANCE_MASK 0x01FF /* Mask for distance to the cable problem, in 80cm granularity */ +#define IFE_PHC_RESET_ALL_MASK 0x0000 /* Disable HWI */ +#define IFE_PSCL_PROBE_MODE 0x0020 /* LED Probe mode */ +#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */ +#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */ + +#define ICH_FLASH_COMMAND_TIMEOUT 5000 /* 5000 uSecs - adjusted */ +#define ICH_FLASH_ERASE_TIMEOUT 3000000 /* Up to 3 seconds - worst case */ +#define ICH_FLASH_CYCLE_REPEAT_COUNT 10 /* 10 cycles */ #define ICH_FLASH_SEG_SIZE_256 256 #define ICH_FLASH_SEG_SIZE_4K 4096 #define ICH_FLASH_SEG_SIZE_64K 65536 @@ -3043,10 +3032,10 @@ struct e1000_host_command_info { #define MII_CR_SPEED_100 0x2000 #define MII_CR_SPEED_10 0x0000 #define E1000_PHY_ADDRESS 0x01 -#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */ -#define PHY_FORCE_TIME 20 /* 2.0 Seconds */ +#define PHY_AUTO_NEG_TIME 45 /* 4.5 Seconds */ +#define PHY_FORCE_TIME 20 /* 2.0 Seconds */ #define PHY_REVISION_MASK 0xFFFFFFF0 -#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */ +#define DEVICE_SPEED_MASK 0x00000300 /* Device Ctrl Reg Speed Mask */ #define REG4_SPEED_MASK 0x01E0 #define REG9_SPEED_MASK 0x0300 #define ADVERTISE_10_HALF 0x0001 @@ -3055,8 +3044,8 @@ struct e1000_host_command_info { #define ADVERTISE_100_FULL 0x0008 #define ADVERTISE_1000_HALF 0x0010 #define ADVERTISE_1000_FULL 0x0020 -#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */ -#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds*/ -#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds*/ +#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F /* Everything but 1000-Half */ +#define AUTONEG_ADVERTISE_10_100_ALL 0x000F /* All 10/100 speeds */ +#define AUTONEG_ADVERTISE_10_ALL 0x0003 /* 10Mbps Full & Half speeds */ #endif /* _E1000_HW_H_ */ diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c index d7dea6946e8..8302e1881b8 100644 --- a/drivers/net/e1000/e1000_main.c +++ b/drivers/net/e1000/e1000_main.c @@ -2255,7 +2255,6 @@ static bool e1000_has_link(struct e1000_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; bool link_active = false; - s32 ret_val = 0; /* get_link_status is set on LSC (link status) interrupt or * rx sequence error interrupt. get_link_status will stay @@ -2265,18 +2264,18 @@ static bool e1000_has_link(struct e1000_adapter *adapter) switch (hw->media_type) { case e1000_media_type_copper: if (hw->get_link_status) { - ret_val = e1000_check_for_link(hw); + e1000_check_for_link(hw); link_active = !hw->get_link_status; } else { link_active = true; } break; case e1000_media_type_fiber: - ret_val = e1000_check_for_link(hw); + e1000_check_for_link(hw); link_active = !!(er32(STATUS) & E1000_STATUS_LU); break; case e1000_media_type_internal_serdes: - ret_val = e1000_check_for_link(hw); + e1000_check_for_link(hw); link_active = hw->serdes_has_link; break; default: @@ -4405,8 +4404,7 @@ static void e1000_vlan_rx_register(struct net_device *netdev, ew32(RCTL, rctl); if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { - e1000_vlan_rx_kill_vid(netdev, - adapter->mng_vlan_id); + e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; } } @@ -4679,7 +4677,7 @@ static void e1000_netpoll(struct net_device *netdev) /** * e1000_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device - * @state: The current pci conneection state + * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. |