summaryrefslogtreecommitdiffstats
path: root/drivers/net
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net')
-rw-r--r--drivers/net/wimax/i2400m/debug-levels.h45
-rw-r--r--drivers/net/wimax/i2400m/i2400m.h755
2 files changed, 800 insertions, 0 deletions
diff --git a/drivers/net/wimax/i2400m/debug-levels.h b/drivers/net/wimax/i2400m/debug-levels.h
new file mode 100644
index 00000000000..3183baa16a5
--- /dev/null
+++ b/drivers/net/wimax/i2400m/debug-levels.h
@@ -0,0 +1,45 @@
+/*
+ * Intel Wireless WiMAX Connection 2400m
+ * Debug levels control file for the i2400m module
+ *
+ *
+ * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
+ * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License version
+ * 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
+ * 02110-1301, USA.
+ */
+#ifndef __debug_levels__h__
+#define __debug_levels__h__
+
+/* Maximum compile and run time debug level for all submodules */
+#define D_MODULENAME i2400m
+#define D_MASTER CONFIG_WIMAX_I2400M_DEBUG_LEVEL
+
+#include <linux/wimax/debug.h>
+
+/* List of all the enabled modules */
+enum d_module {
+ D_SUBMODULE_DECLARE(control),
+ D_SUBMODULE_DECLARE(driver),
+ D_SUBMODULE_DECLARE(debugfs),
+ D_SUBMODULE_DECLARE(fw),
+ D_SUBMODULE_DECLARE(netdev),
+ D_SUBMODULE_DECLARE(rfkill),
+ D_SUBMODULE_DECLARE(rx),
+ D_SUBMODULE_DECLARE(tx),
+};
+
+
+#endif /* #ifndef __debug_levels__h__ */
diff --git a/drivers/net/wimax/i2400m/i2400m.h b/drivers/net/wimax/i2400m/i2400m.h
new file mode 100644
index 00000000000..067c871cc22
--- /dev/null
+++ b/drivers/net/wimax/i2400m/i2400m.h
@@ -0,0 +1,755 @@
+/*
+ * Intel Wireless WiMAX Connection 2400m
+ * Declarations for bus-generic internal APIs
+ *
+ *
+ * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *
+ * Intel Corporation <linux-wimax@intel.com>
+ * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
+ * Yanir Lubetkin <yanirx.lubetkin@intel.com>
+ * - Initial implementation
+ *
+ *
+ * GENERAL DRIVER ARCHITECTURE
+ *
+ * The i2400m driver is split in the following two major parts:
+ *
+ * - bus specific driver
+ * - bus generic driver (this part)
+ *
+ * The bus specific driver sets up stuff specific to the bus the
+ * device is connected to (USB, SDIO, PCI, tam-tam...non-authoritative
+ * nor binding list) which is basically the device-model management
+ * (probe/disconnect, etc), moving data from device to kernel and
+ * back, doing the power saving details and reseting the device.
+ *
+ * For details on each bus-specific driver, see it's include file,
+ * i2400m-BUSNAME.h
+ *
+ * The bus-generic functionality break up is:
+ *
+ * - Firmware upload: fw.c - takes care of uploading firmware to the
+ * device. bus-specific driver just needs to provides a way to
+ * execute boot-mode commands and to reset the device.
+ *
+ * - RX handling: rx.c - receives data from the bus-specific code and
+ * feeds it to the network or WiMAX stack or uses it to modify
+ * the driver state. bus-specific driver only has to receive
+ * frames and pass them to this module.
+ *
+ * - TX handling: tx.c - manages the TX FIFO queue and provides means
+ * for the bus-specific TX code to pull data from the FIFO
+ * queue. bus-specific code just pulls frames from this module
+ * to sends them to the device.
+ *
+ * - netdev glue: netdev.c - interface with Linux networking
+ * stack. Pass around data frames, and configure when the
+ * device is up and running or shutdown (through ifconfig up /
+ * down). Bus-generic only.
+ *
+ * - control ops: control.c - implements various commmands for
+ * controlling the device. bus-generic only.
+ *
+ * - device model glue: driver.c - implements helpers for the
+ * device-model glue done by the bus-specific layer
+ * (setup/release the driver resources), turning the device on
+ * and off, handling the device reboots/resets and a few simple
+ * WiMAX stack ops.
+ *
+ * Code is also broken up in linux-glue / device-glue.
+ *
+ * Linux glue contains functions that deal mostly with gluing with the
+ * rest of the Linux kernel.
+ *
+ * Device-glue are functions that deal mostly with the way the device
+ * does things and talk the device's language.
+ *
+ * device-glue code is licensed BSD so other open source OSes can take
+ * it to implement their drivers.
+ *
+ *
+ * APIs AND HEADER FILES
+ *
+ * This bus generic code exports three APIs:
+ *
+ * - HDI (host-device interface) definitions common to all busses
+ * (include/linux/wimax/i2400m.h); these can be also used by user
+ * space code.
+ * - internal API for the bus-generic code
+ * - external API for the bus-specific drivers
+ *
+ *
+ * LIFE CYCLE:
+ *
+ * When the bus-specific driver probes, it allocates a network device
+ * with enough space for it's data structue, that must contain a
+ * &struct i2400m at the top.
+ *
+ * On probe, it needs to fill the i2400m members marked as [fill], as
+ * well as i2400m->wimax_dev.net_dev and call i2400m_setup(). The
+ * i2400m driver will only register with the WiMAX and network stacks;
+ * the only access done to the device is to read the MAC address so we
+ * can register a network device. This calls i2400m_dev_start() to
+ * load firmware, setup communication with the device and configure it
+ * for operation.
+ *
+ * At this point, control and data communications are possible.
+ *
+ * On disconnect/driver unload, the bus-specific disconnect function
+ * calls i2400m_release() to undo i2400m_setup(). i2400m_dev_stop()
+ * shuts the firmware down and releases resources uses to communicate
+ * with the device.
+ *
+ * While the device is up, it might reset. The bus-specific driver has
+ * to catch that situation and call i2400m_dev_reset_handle() to deal
+ * with it (reset the internal driver structures and go back to square
+ * one).
+ */
+
+#ifndef __I2400M_H__
+#define __I2400M_H__
+
+#include <linux/usb.h>
+#include <linux/netdevice.h>
+#include <linux/completion.h>
+#include <linux/rwsem.h>
+#include <asm/atomic.h>
+#include <net/wimax.h>
+#include <linux/wimax/i2400m.h>
+#include <asm/byteorder.h>
+
+/* Misc constants */
+enum {
+ /* Firmware uploading */
+ I2400M_BOOT_RETRIES = 3,
+ /* Size of the Boot Mode Command buffer */
+ I2400M_BM_CMD_BUF_SIZE = 16 * 1024,
+ I2400M_BM_ACK_BUF_SIZE = 256,
+};
+
+
+/* Firmware version we request when pulling the fw image file */
+#define I2400M_FW_VERSION "1.3"
+
+
+/**
+ * i2400m_reset_type - methods to reset a device
+ *
+ * @I2400M_RT_WARM: Reset without device disconnection, device handles
+ * are kept valid but state is back to power on, with firmware
+ * re-uploaded.
+ * @I2400M_RT_COLD: Tell the device to disconnect itself from the bus
+ * and reconnect. Renders all device handles invalid.
+ * @I2400M_RT_BUS: Tells the bus to reset the device; last measure
+ * used when both types above don't work.
+ */
+enum i2400m_reset_type {
+ I2400M_RT_WARM, /* first measure */
+ I2400M_RT_COLD, /* second measure */
+ I2400M_RT_BUS, /* call in artillery */
+};
+
+struct i2400m_reset_ctx;
+
+/**
+ * struct i2400m - descriptor for an Intel 2400m
+ *
+ * Members marked with [fill] must be filled out/initialized before
+ * calling i2400m_setup().
+ *
+ * @bus_tx_block_size: [fill] SDIO imposes a 256 block size, USB 16,
+ * so we have a tx_blk_size variable that the bus layer sets to
+ * tell the engine how much of that we need.
+ *
+ * @bus_pl_size_max: [fill] Maximum payload size.
+ *
+ * @bus_dev_start: [fill] Function called by the bus-generic code
+ * [i2400m_dev_start()] to setup the bus-specific communications
+ * to the the device. See LIFE CYCLE above.
+ *
+ * NOTE: Doesn't need to upload the firmware, as that is taken
+ * care of by the bus-generic code.
+ *
+ * @bus_dev_stop: [fill] Function called by the bus-generic code
+ * [i2400m_dev_stop()] to shutdown the bus-specific communications
+ * to the the device. See LIFE CYCLE above.
+ *
+ * This function does not need to reset the device, just tear down
+ * all the host resources created to handle communication with
+ * the device.
+ *
+ * @bus_tx_kick: [fill] Function called by the bus-generic code to let
+ * the bus-specific code know that there is data available in the
+ * TX FIFO for transmission to the device.
+ *
+ * This function cannot sleep.
+ *
+ * @bus_reset: [fill] Function called by the bus-generic code to reset
+ * the device in in various ways. Doesn't need to wait for the
+ * reset to finish.
+ *
+ * If warm or cold reset fail, this function is expected to do a
+ * bus-specific reset (eg: USB reset) to get the device to a
+ * working state (even if it implies device disconecction).
+ *
+ * Note the warm reset is used by the firmware uploader to
+ * reinitialize the device.
+ *
+ * IMPORTANT: this is called very early in the device setup
+ * process, so it cannot rely on common infrastructure being laid
+ * out.
+ *
+ * @bus_bm_cmd_send: [fill] Function called to send a boot-mode
+ * command. Flags are defined in 'enum i2400m_bm_cmd_flags'. This
+ * is synchronous and has to return 0 if ok or < 0 errno code in
+ * any error condition.
+ *
+ * @bus_bm_wait_for_ack: [fill] Function called to wait for a
+ * boot-mode notification (that can be a response to a previously
+ * issued command or an asynchronous one). Will read until all the
+ * indicated size is read or timeout. Reading more or less data
+ * than asked for is an error condition. Return 0 if ok, < 0 errno
+ * code on error.
+ *
+ * The caller to this function will check if the response is a
+ * barker that indicates the device going into reset mode.
+ *
+ * @bus_fw_name: [fill] name of the firmware image (in most cases,
+ * they are all the same for a single release, except that they
+ * have the type of the bus embedded in the name (eg:
+ * i2400m-fw-X-VERSION.sbcf, where X is the bus name).
+ *
+ * @bus_bm_mac_addr_impaired: [fill] Set to true if the device's MAC
+ * address provided in boot mode is kind of broken and needs to
+ * be re-read later on.
+ *
+ *
+ * @wimax_dev: WiMAX generic device for linkage into the kernel WiMAX
+ * stack. Due to the way a net_device is allocated, we need to
+ * force this to be the first field so that we can get from
+ * netdev_priv() the right pointer.
+ *
+ * @state: device's state (as reported by it)
+ *
+ * @state_wq: waitqueue that is woken up whenever the state changes
+ *
+ * @tx_lock: spinlock to protect TX members
+ *
+ * @tx_buf: FIFO buffer for TX; we queue data here
+ *
+ * @tx_in: FIFO index for incoming data. Note this doesn't wrap around
+ * and it is always greater than @tx_out.
+ *
+ * @tx_out: FIFO index for outgoing data
+ *
+ * @tx_msg: current TX message that is active in the FIFO for
+ * appending payloads.
+ *
+ * @tx_sequence: current sequence number for TX messages from the
+ * device to the host.
+ *
+ * @tx_msg_size: size of the current message being transmitted by the
+ * bus-specific code.
+ *
+ * @tx_pl_num: total number of payloads sent
+ *
+ * @tx_pl_max: maximum number of payloads sent in a TX message
+ *
+ * @tx_pl_min: minimum number of payloads sent in a TX message
+ *
+ * @tx_num: number of TX messages sent
+ *
+ * @tx_size_acc: number of bytes in all TX messages sent
+ * (this is different to net_dev's statistics as it also counts
+ * control messages).
+ *
+ * @tx_size_min: smallest TX message sent.
+ *
+ * @tx_size_max: biggest TX message sent.
+ *
+ * @rx_lock: spinlock to protect RX members
+ *
+ * @rx_pl_num: total number of payloads received
+ *
+ * @rx_pl_max: maximum number of payloads received in a RX message
+ *
+ * @rx_pl_min: minimum number of payloads received in a RX message
+ *
+ * @rx_num: number of RX messages received
+ *
+ * @rx_size_acc: number of bytes in all RX messages received
+ * (this is different to net_dev's statistics as it also counts
+ * control messages).
+ *
+ * @rx_size_min: smallest RX message received.
+ *
+ * @rx_size_max: buggest RX message received.
+ *
+ * @init_mutex: Mutex used for serializing the device bringup
+ * sequence; this way if the device reboots in the middle, we
+ * don't try to do a bringup again while we are tearing down the
+ * one that failed.
+ *
+ * Can't reuse @msg_mutex because from within the bringup sequence
+ * we need to send messages to the device and thus use @msg_mutex.
+ *
+ * @msg_mutex: mutex used to send control commands to the device (we
+ * only allow one at a time, per host-device interface design).
+ *
+ * @msg_completion: used to wait for an ack to a control command sent
+ * to the device.
+ *
+ * @ack_skb: used to store the actual ack to a control command if the
+ * reception of the command was successful. Otherwise, a ERR_PTR()
+ * errno code that indicates what failed with the ack reception.
+ *
+ * Only valid after @msg_completion is woken up. Only updateable
+ * if @msg_completion is armed. Only touched by
+ * i2400m_msg_to_dev().
+ *
+ * Protected by @rx_lock. In theory the command execution flow is
+ * sequential, but in case the device sends an out-of-phase or
+ * very delayed response, we need to avoid it trampling current
+ * execution.
+ *
+ * @bm_cmd_buf: boot mode command buffer for composing firmware upload
+ * commands.
+ *
+ * USB can't r/w to stack, vmalloc, etc...as well, we end up
+ * having to alloc/free a lot to compose commands, so we use these
+ * for stagging and not having to realloc all the time.
+ *
+ * This assumes the code always runs serialized. Only one thread
+ * can call i2400m_bm_cmd() at the same time.
+ *
+ * @bm_ack_buf: boot mode acknoledge buffer for staging reception of
+ * responses to commands.
+ *
+ * See @bm_cmd_buf.
+ *
+ * @work_queue: work queue for processing device reports. This
+ * workqueue cannot be used for processing TX or RX to the device,
+ * as from it we'll process device reports, which might require
+ * further communication with the device.
+ *
+ * @debugfs_dentry: hookup for debugfs files.
+ * These have to be in a separate directory, a child of
+ * (wimax_dev->debugfs_dentry) so they can be removed when the
+ * module unloads, as we don't keep each dentry.
+ */
+struct i2400m {
+ struct wimax_dev wimax_dev; /* FIRST! See doc */
+
+ unsigned updown:1; /* Network device is up or down */
+ unsigned boot_mode:1; /* is the device in boot mode? */
+ unsigned sboot:1; /* signed or unsigned fw boot */
+ unsigned ready:1; /* all probing steps done */
+ u8 trace_msg_from_user; /* echo rx msgs to 'trace' pipe */
+ /* typed u8 so debugfs/u8 can tweak */
+ enum i2400m_system_state state;
+ wait_queue_head_t state_wq; /* Woken up when on state updates */
+
+ size_t bus_tx_block_size;
+ size_t bus_pl_size_max;
+ int (*bus_dev_start)(struct i2400m *);
+ void (*bus_dev_stop)(struct i2400m *);
+ void (*bus_tx_kick)(struct i2400m *);
+ int (*bus_reset)(struct i2400m *, enum i2400m_reset_type);
+ ssize_t (*bus_bm_cmd_send)(struct i2400m *,
+ const struct i2400m_bootrom_header *,
+ size_t, int flags);
+ ssize_t (*bus_bm_wait_for_ack)(struct i2400m *,
+ struct i2400m_bootrom_header *, size_t);
+ const char *bus_fw_name;
+ unsigned bus_bm_mac_addr_impaired:1;
+
+ spinlock_t tx_lock; /* protect TX state */
+ void *tx_buf;
+ size_t tx_in, tx_out;
+ struct i2400m_msg_hdr *tx_msg;
+ size_t tx_sequence, tx_msg_size;
+ /* TX stats */
+ unsigned tx_pl_num, tx_pl_max, tx_pl_min,
+ tx_num, tx_size_acc, tx_size_min, tx_size_max;
+
+ /* RX stats */
+ spinlock_t rx_lock; /* protect RX state */
+ unsigned rx_pl_num, rx_pl_max, rx_pl_min,
+ rx_num, rx_size_acc, rx_size_min, rx_size_max;
+
+ struct mutex msg_mutex; /* serialize command execution */
+ struct completion msg_completion;
+ struct sk_buff *ack_skb; /* protected by rx_lock */
+
+ void *bm_ack_buf; /* for receiving acks over USB */
+ void *bm_cmd_buf; /* for issuing commands over USB */
+
+ struct workqueue_struct *work_queue;
+
+ struct mutex init_mutex; /* protect bringup seq */
+ struct i2400m_reset_ctx *reset_ctx; /* protected by init_mutex */
+
+ struct work_struct wake_tx_ws;
+ struct sk_buff *wake_tx_skb;
+
+ struct dentry *debugfs_dentry;
+};
+
+
+/*
+ * Initialize a 'struct i2400m' from all zeroes
+ *
+ * This is a bus-generic API call.
+ */
+static inline
+void i2400m_init(struct i2400m *i2400m)
+{
+ wimax_dev_init(&i2400m->wimax_dev);
+
+ i2400m->boot_mode = 1;
+ init_waitqueue_head(&i2400m->state_wq);
+
+ spin_lock_init(&i2400m->tx_lock);
+ i2400m->tx_pl_min = UINT_MAX;
+ i2400m->tx_size_min = UINT_MAX;
+
+ spin_lock_init(&i2400m->rx_lock);
+ i2400m->rx_pl_min = UINT_MAX;
+ i2400m->rx_size_min = UINT_MAX;
+
+ mutex_init(&i2400m->msg_mutex);
+ init_completion(&i2400m->msg_completion);
+
+ mutex_init(&i2400m->init_mutex);
+ /* wake_tx_ws is initialized in i2400m_tx_setup() */
+}
+
+
+/*
+ * Bus-generic internal APIs
+ * -------------------------
+ */
+
+static inline
+struct i2400m *wimax_dev_to_i2400m(struct wimax_dev *wimax_dev)
+{
+ return container_of(wimax_dev, struct i2400m, wimax_dev);
+}
+
+static inline
+struct i2400m *net_dev_to_i2400m(struct net_device *net_dev)
+{
+ return wimax_dev_to_i2400m(netdev_priv(net_dev));
+}
+
+/*
+ * Boot mode support
+ */
+
+/**
+ * i2400m_bm_cmd_flags - flags to i2400m_bm_cmd()
+ *
+ * @I2400M_BM_CMD_RAW: send the command block as-is, without doing any
+ * extra processing for adding CRC.
+ */
+enum i2400m_bm_cmd_flags {
+ I2400M_BM_CMD_RAW = 1 << 2,
+};
+
+/**
+ * i2400m_bri - Boot-ROM indicators
+ *
+ * Flags for i2400m_bootrom_init() and i2400m_dev_bootstrap() [which
+ * are passed from things like i2400m_setup()]. Can be combined with
+ * |.
+ *
+ * @I2400M_BRI_SOFT: The device rebooted already and a reboot
+ * barker received, proceed directly to ack the boot sequence.
+ * @I2400M_BRI_NO_REBOOT: Do not reboot the device and proceed
+ * directly to wait for a reboot barker from the device.
+ * @I2400M_BRI_MAC_REINIT: We need to reinitialize the boot
+ * rom after reading the MAC adress. This is quite a dirty hack,
+ * if you ask me -- the device requires the bootrom to be
+ * intialized after reading the MAC address.
+ */
+enum i2400m_bri {
+ I2400M_BRI_SOFT = 1 << 1,
+ I2400M_BRI_NO_REBOOT = 1 << 2,
+ I2400M_BRI_MAC_REINIT = 1 << 3,
+};
+
+extern void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *);
+extern int i2400m_dev_bootstrap(struct i2400m *, enum i2400m_bri);
+extern int i2400m_read_mac_addr(struct i2400m *);
+extern int i2400m_bootrom_init(struct i2400m *, enum i2400m_bri);
+
+/* Make/grok boot-rom header commands */
+
+static inline
+__le32 i2400m_brh_command(enum i2400m_brh_opcode opcode, unsigned use_checksum,
+ unsigned direct_access)
+{
+ return cpu_to_le32(
+ I2400M_BRH_SIGNATURE
+ | (direct_access ? I2400M_BRH_DIRECT_ACCESS : 0)
+ | I2400M_BRH_RESPONSE_REQUIRED /* response always required */
+ | (use_checksum ? I2400M_BRH_USE_CHECKSUM : 0)
+ | (opcode & I2400M_BRH_OPCODE_MASK));
+}
+
+static inline
+void i2400m_brh_set_opcode(struct i2400m_bootrom_header *hdr,
+ enum i2400m_brh_opcode opcode)
+{
+ hdr->command = cpu_to_le32(
+ (le32_to_cpu(hdr->command) & ~I2400M_BRH_OPCODE_MASK)
+ | (opcode & I2400M_BRH_OPCODE_MASK));
+}
+
+static inline
+unsigned i2400m_brh_get_opcode(const struct i2400m_bootrom_header *hdr)
+{
+ return le32_to_cpu(hdr->command) & I2400M_BRH_OPCODE_MASK;
+}
+
+static inline
+unsigned i2400m_brh_get_response(const struct i2400m_bootrom_header *hdr)
+{
+ return (le32_to_cpu(hdr->command) & I2400M_BRH_RESPONSE_MASK)
+ >> I2400M_BRH_RESPONSE_SHIFT;
+}
+
+static inline
+unsigned i2400m_brh_get_use_checksum(const struct i2400m_bootrom_header *hdr)
+{
+ return le32_to_cpu(hdr->command) & I2400M_BRH_USE_CHECKSUM;
+}
+
+static inline
+unsigned i2400m_brh_get_response_required(
+ const struct i2400m_bootrom_header *hdr)
+{
+ return le32_to_cpu(hdr->command) & I2400M_BRH_RESPONSE_REQUIRED;
+}
+
+static inline
+unsigned i2400m_brh_get_direct_access(const struct i2400m_bootrom_header *hdr)
+{
+ return le32_to_cpu(hdr->command) & I2400M_BRH_DIRECT_ACCESS;
+}
+
+static inline
+unsigned i2400m_brh_get_signature(const struct i2400m_bootrom_header *hdr)
+{
+ return (le32_to_cpu(hdr->command) & I2400M_BRH_SIGNATURE_MASK)
+ >> I2400M_BRH_SIGNATURE_SHIFT;
+}
+
+
+/*
+ * Driver / device setup and internal functions
+ */
+extern void i2400m_netdev_setup(struct net_device *net_dev);
+extern int i2400m_tx_setup(struct i2400m *);
+extern void i2400m_wake_tx_work(struct work_struct *);
+extern void i2400m_tx_release(struct i2400m *);
+
+extern void i2400m_net_rx(struct i2400m *, struct sk_buff *, unsigned,
+ const void *, int);
+enum i2400m_pt;
+extern int i2400m_tx(struct i2400m *, const void *, size_t, enum i2400m_pt);
+
+#ifdef CONFIG_DEBUG_FS
+extern int i2400m_debugfs_add(struct i2400m *);
+extern void i2400m_debugfs_rm(struct i2400m *);
+#else
+static inline int i2400m_debugfs_add(struct i2400m *i2400m)
+{
+ return 0;
+}
+static inline void i2400m_debugfs_rm(struct i2400m *i2400m) {}
+#endif
+
+/* Called by _dev_start()/_dev_stop() to initialize the device itself */
+extern int i2400m_dev_initialize(struct i2400m *);
+extern void i2400m_dev_shutdown(struct i2400m *);
+
+extern struct attribute_group i2400m_dev_attr_group;
+
+extern int i2400m_schedule_work(struct i2400m *,
+ void (*)(struct work_struct *), gfp_t);
+
+/* HDI message's payload description handling */
+
+static inline
+size_t i2400m_pld_size(const struct i2400m_pld *pld)
+{
+ return I2400M_PLD_SIZE_MASK & le32_to_cpu(pld->val);
+}
+
+static inline
+enum i2400m_pt i2400m_pld_type(const struct i2400m_pld *pld)
+{
+ return (I2400M_PLD_TYPE_MASK & le32_to_cpu(pld->val))
+ >> I2400M_PLD_TYPE_SHIFT;
+}
+
+static inline
+void i2400m_pld_set(struct i2400m_pld *pld, size_t size,
+ enum i2400m_pt type)
+{
+ pld->val = cpu_to_le32(
+ ((type << I2400M_PLD_TYPE_SHIFT) & I2400M_PLD_TYPE_MASK)
+ | (size & I2400M_PLD_SIZE_MASK));
+}
+
+
+/*
+ * API for the bus-specific drivers
+ * --------------------------------
+ */
+
+static inline
+struct i2400m *i2400m_get(struct i2400m *i2400m)
+{
+ dev_hold(i2400m->wimax_dev.net_dev);
+ return i2400m;
+}
+
+static inline
+void i2400m_put(struct i2400m *i2400m)
+{
+ dev_put(i2400m->wimax_dev.net_dev);
+}
+
+extern int i2400m_dev_reset_handle(struct i2400m *);
+
+/*
+ * _setup()/_release() are called by the probe/disconnect functions of
+ * the bus-specific drivers.
+ */
+extern int i2400m_setup(struct i2400m *, enum i2400m_bri bm_flags);
+extern void i2400m_release(struct i2400m *);
+
+extern int i2400m_rx(struct i2400m *, struct sk_buff *);
+extern struct i2400m_msg_hdr *i2400m_tx_msg_get(struct i2400m *, size_t *);
+extern void i2400m_tx_msg_sent(struct i2400m *);
+
+static const __le32 i2400m_NBOOT_BARKER[4] = {
+ __constant_cpu_to_le32(I2400M_NBOOT_BARKER),
+ __constant_cpu_to_le32(I2400M_NBOOT_BARKER),
+ __constant_cpu_to_le32(I2400M_NBOOT_BARKER),
+ __constant_cpu_to_le32(I2400M_NBOOT_BARKER)
+};
+
+static const __le32 i2400m_SBOOT_BARKER[4] = {
+ __constant_cpu_to_le32(I2400M_SBOOT_BARKER),
+ __constant_cpu_to_le32(I2400M_SBOOT_BARKER),
+ __constant_cpu_to_le32(I2400M_SBOOT_BARKER),
+ __constant_cpu_to_le32(I2400M_SBOOT_BARKER)
+};
+
+
+/*
+ * Utility functions
+ */
+
+static inline
+struct device *i2400m_dev(struct i2400m *i2400m)
+{
+ return i2400m->wimax_dev.net_dev->dev.parent;
+}
+
+/*
+ * Helper for scheduling simple work functions
+ *
+ * This struct can get any kind of payload attached (normally in the
+ * form of a struct where you pack the stuff you want to pass to the
+ * _work function).
+ */
+struct i2400m_work {
+ struct work_struct ws;
+ struct i2400m *i2400m;
+ u8 pl[0];
+};
+extern int i2400m_queue_work(struct i2400m *,
+ void (*)(struct work_struct *), gfp_t,
+ const void *, size_t);
+
+extern int i2400m_msg_check_status(const struct i2400m_l3l4_hdr *,
+ char *, size_t);
+extern int i2400m_msg_size_check(struct i2400m *,
+ const struct i2400m_l3l4_hdr *, size_t);
+extern struct sk_buff *i2400m_msg_to_dev(struct i2400m *, const void *, size_t);
+extern void i2400m_msg_to_dev_cancel_wait(struct i2400m *, int);
+extern void i2400m_msg_ack_hook(struct i2400m *,
+ const struct i2400m_l3l4_hdr *, size_t);
+extern void i2400m_report_hook(struct i2400m *,
+ const struct i2400m_l3l4_hdr *, size_t);
+extern int i2400m_cmd_enter_powersave(struct i2400m *);
+extern int i2400m_cmd_get_state(struct i2400m *);
+extern int i2400m_cmd_exit_idle(struct i2400m *);
+extern struct sk_buff *i2400m_get_device_info(struct i2400m *);
+extern int i2400m_firmware_check(struct i2400m *);
+extern int i2400m_set_init_config(struct i2400m *,
+ const struct i2400m_tlv_hdr **, size_t);
+
+static inline
+struct usb_endpoint_descriptor *usb_get_epd(struct usb_interface *iface, int ep)
+{
+ return &iface->cur_altsetting->endpoint[ep].desc;
+}
+
+extern int i2400m_op_rfkill_sw_toggle(struct wimax_dev *,
+ enum wimax_rf_state);
+extern void i2400m_report_tlv_rf_switches_status(
+ struct i2400m *, const struct i2400m_tlv_rf_switches_status *);
+
+
+/*
+ * Do a millisecond-sleep for allowing wireshark to dump all the data
+ * packets. Used only for debugging.
+ */
+static inline
+void __i2400m_msleep(unsigned ms)
+{
+#if 1
+#else
+ msleep(ms);
+#endif
+}
+
+/* Module parameters */
+
+extern int i2400m_idle_mode_disabled;
+
+
+#endif /* #ifndef __I2400M_H__ */