summaryrefslogtreecommitdiffstats
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/Makefile2
-rw-r--r--drivers/lguest/core.c46
-rw-r--r--drivers/lguest/hypercalls.c106
-rw-r--r--drivers/lguest/interrupts_and_traps.c149
-rw-r--r--drivers/lguest/lg.h154
-rw-r--r--drivers/lguest/lguest_user.c147
-rw-r--r--drivers/lguest/page_tables.c179
-rw-r--r--drivers/lguest/segments.c48
-rw-r--r--drivers/lguest/x86/core.c127
9 files changed, 513 insertions, 445 deletions
diff --git a/drivers/Makefile b/drivers/Makefile
index 9e1f808e43c..0ee9a8a4095 100644
--- a/drivers/Makefile
+++ b/drivers/Makefile
@@ -72,7 +72,7 @@ obj-$(CONFIG_ISDN) += isdn/
obj-$(CONFIG_EDAC) += edac/
obj-$(CONFIG_MCA) += mca/
obj-$(CONFIG_EISA) += eisa/
-obj-$(CONFIG_LGUEST_GUEST) += lguest/
+obj-y += lguest/
obj-$(CONFIG_CPU_FREQ) += cpufreq/
obj-$(CONFIG_CPU_IDLE) += cpuidle/
obj-$(CONFIG_MMC) += mmc/
diff --git a/drivers/lguest/core.c b/drivers/lguest/core.c
index cb4c67025d5..7743d73768d 100644
--- a/drivers/lguest/core.c
+++ b/drivers/lguest/core.c
@@ -151,43 +151,43 @@ int lguest_address_ok(const struct lguest *lg,
/* This routine copies memory from the Guest. Here we can see how useful the
* kill_lguest() routine we met in the Launcher can be: we return a random
* value (all zeroes) instead of needing to return an error. */
-void __lgread(struct lguest *lg, void *b, unsigned long addr, unsigned bytes)
+void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
{
- if (!lguest_address_ok(lg, addr, bytes)
- || copy_from_user(b, lg->mem_base + addr, bytes) != 0) {
+ if (!lguest_address_ok(cpu->lg, addr, bytes)
+ || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
/* copy_from_user should do this, but as we rely on it... */
memset(b, 0, bytes);
- kill_guest(lg, "bad read address %#lx len %u", addr, bytes);
+ kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
}
}
/* This is the write (copy into guest) version. */
-void __lgwrite(struct lguest *lg, unsigned long addr, const void *b,
+void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
unsigned bytes)
{
- if (!lguest_address_ok(lg, addr, bytes)
- || copy_to_user(lg->mem_base + addr, b, bytes) != 0)
- kill_guest(lg, "bad write address %#lx len %u", addr, bytes);
+ if (!lguest_address_ok(cpu->lg, addr, bytes)
+ || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
+ kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
}
/*:*/
/*H:030 Let's jump straight to the the main loop which runs the Guest.
* Remember, this is called by the Launcher reading /dev/lguest, and we keep
* going around and around until something interesting happens. */
-int run_guest(struct lguest *lg, unsigned long __user *user)
+int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
{
/* We stop running once the Guest is dead. */
- while (!lg->dead) {
+ while (!cpu->lg->dead) {
/* First we run any hypercalls the Guest wants done. */
- if (lg->hcall)
- do_hypercalls(lg);
+ if (cpu->hcall)
+ do_hypercalls(cpu);
/* It's possible the Guest did a NOTIFY hypercall to the
* Launcher, in which case we return from the read() now. */
- if (lg->pending_notify) {
- if (put_user(lg->pending_notify, user))
+ if (cpu->pending_notify) {
+ if (put_user(cpu->pending_notify, user))
return -EFAULT;
- return sizeof(lg->pending_notify);
+ return sizeof(cpu->pending_notify);
}
/* Check for signals */
@@ -195,13 +195,13 @@ int run_guest(struct lguest *lg, unsigned long __user *user)
return -ERESTARTSYS;
/* If Waker set break_out, return to Launcher. */
- if (lg->break_out)
+ if (cpu->break_out)
return -EAGAIN;
/* Check if there are any interrupts which can be delivered
* now: if so, this sets up the hander to be executed when we
* next run the Guest. */
- maybe_do_interrupt(lg);
+ maybe_do_interrupt(cpu);
/* All long-lived kernel loops need to check with this horrible
* thing called the freezer. If the Host is trying to suspend,
@@ -210,12 +210,12 @@ int run_guest(struct lguest *lg, unsigned long __user *user)
/* Just make absolutely sure the Guest is still alive. One of
* those hypercalls could have been fatal, for example. */
- if (lg->dead)
+ if (cpu->lg->dead)
break;
/* If the Guest asked to be stopped, we sleep. The Guest's
* clock timer or LHCALL_BREAK from the Waker will wake us. */
- if (lg->halted) {
+ if (cpu->halted) {
set_current_state(TASK_INTERRUPTIBLE);
schedule();
continue;
@@ -226,15 +226,17 @@ int run_guest(struct lguest *lg, unsigned long __user *user)
local_irq_disable();
/* Actually run the Guest until something happens. */
- lguest_arch_run_guest(lg);
+ lguest_arch_run_guest(cpu);
/* Now we're ready to be interrupted or moved to other CPUs */
local_irq_enable();
/* Now we deal with whatever happened to the Guest. */
- lguest_arch_handle_trap(lg);
+ lguest_arch_handle_trap(cpu);
}
+ if (cpu->lg->dead == ERR_PTR(-ERESTART))
+ return -ERESTART;
/* The Guest is dead => "No such file or directory" */
return -ENOENT;
}
@@ -253,7 +255,7 @@ static int __init init(void)
/* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
if (paravirt_enabled()) {
- printk("lguest is afraid of %s\n", pv_info.name);
+ printk("lguest is afraid of being a guest\n");
return -EPERM;
}
diff --git a/drivers/lguest/hypercalls.c b/drivers/lguest/hypercalls.c
index b478affe8f9..0f2cb4fd7c6 100644
--- a/drivers/lguest/hypercalls.c
+++ b/drivers/lguest/hypercalls.c
@@ -23,13 +23,14 @@
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/mm.h>
+#include <linux/ktime.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include "lg.h"
/*H:120 This is the core hypercall routine: where the Guest gets what it wants.
* Or gets killed. Or, in the case of LHCALL_CRASH, both. */
-static void do_hcall(struct lguest *lg, struct hcall_args *args)
+static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
{
switch (args->arg0) {
case LHCALL_FLUSH_ASYNC:
@@ -39,60 +40,62 @@ static void do_hcall(struct lguest *lg, struct hcall_args *args)
case LHCALL_LGUEST_INIT:
/* You can't get here unless you're already initialized. Don't
* do that. */
- kill_guest(lg, "already have lguest_data");
+ kill_guest(cpu, "already have lguest_data");
break;
- case LHCALL_CRASH: {
- /* Crash is such a trivial hypercall that we do it in four
+ case LHCALL_SHUTDOWN: {
+ /* Shutdown is such a trivial hypercall that we do it in four
* lines right here. */
char msg[128];
/* If the lgread fails, it will call kill_guest() itself; the
* kill_guest() with the message will be ignored. */
- __lgread(lg, msg, args->arg1, sizeof(msg));
+ __lgread(cpu, msg, args->arg1, sizeof(msg));
msg[sizeof(msg)-1] = '\0';
- kill_guest(lg, "CRASH: %s", msg);
+ kill_guest(cpu, "CRASH: %s", msg);
+ if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
+ cpu->lg->dead = ERR_PTR(-ERESTART);
break;
}
case LHCALL_FLUSH_TLB:
/* FLUSH_TLB comes in two flavors, depending on the
* argument: */
if (args->arg1)
- guest_pagetable_clear_all(lg);
+ guest_pagetable_clear_all(cpu);
else
- guest_pagetable_flush_user(lg);
+ guest_pagetable_flush_user(cpu);
break;
/* All these calls simply pass the arguments through to the right
* routines. */
case LHCALL_NEW_PGTABLE:
- guest_new_pagetable(lg, args->arg1);
+ guest_new_pagetable(cpu, args->arg1);
break;
case LHCALL_SET_STACK:
- guest_set_stack(lg, args->arg1, args->arg2, args->arg3);
+ guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
break;
case LHCALL_SET_PTE:
- guest_set_pte(lg, args->arg1, args->arg2, __pte(args->arg3));
+ guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3));
break;
case LHCALL_SET_PMD:
- guest_set_pmd(lg, args->arg1, args->arg2);
+ guest_set_pmd(cpu->lg, args->arg1, args->arg2);
break;
case LHCALL_SET_CLOCKEVENT:
- guest_set_clockevent(lg, args->arg1);
+ guest_set_clockevent(cpu, args->arg1);
break;
case LHCALL_TS:
/* This sets the TS flag, as we saw used in run_guest(). */
- lg->ts = args->arg1;
+ cpu->ts = args->arg1;
break;
case LHCALL_HALT:
/* Similarly, this sets the halted flag for run_guest(). */
- lg->halted = 1;
+ cpu->halted = 1;
break;
case LHCALL_NOTIFY:
- lg->pending_notify = args->arg1;
+ cpu->pending_notify = args->arg1;
break;
default:
/* It should be an architecture-specific hypercall. */
- if (lguest_arch_do_hcall(lg, args))
- kill_guest(lg, "Bad hypercall %li\n", args->arg0);
+ if (lguest_arch_do_hcall(cpu, args))
+ kill_guest(cpu, "Bad hypercall %li\n", args->arg0);
}
}
/*:*/
@@ -104,13 +107,13 @@ static void do_hcall(struct lguest *lg, struct hcall_args *args)
* Guest put them in the ring, but we also promise the Guest that they will
* happen before any normal hypercall (which is why we check this before
* checking for a normal hcall). */
-static void do_async_hcalls(struct lguest *lg)
+static void do_async_hcalls(struct lg_cpu *cpu)
{
unsigned int i;
u8 st[LHCALL_RING_SIZE];
/* For simplicity, we copy the entire call status array in at once. */
- if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st)))
+ if (copy_from_user(&st, &cpu->lg->lguest_data->hcall_status, sizeof(st)))
return;
/* We process "struct lguest_data"s hcalls[] ring once. */
@@ -119,7 +122,7 @@ static void do_async_hcalls(struct lguest *lg)
/* We remember where we were up to from last time. This makes
* sure that the hypercalls are done in the order the Guest
* places them in the ring. */
- unsigned int n = lg->next_hcall;
+ unsigned int n = cpu->next_hcall;
/* 0xFF means there's no call here (yet). */
if (st[n] == 0xFF)
@@ -127,65 +130,65 @@ static void do_async_hcalls(struct lguest *lg)
/* OK, we have hypercall. Increment the "next_hcall" cursor,
* and wrap back to 0 if we reach the end. */
- if (++lg->next_hcall == LHCALL_RING_SIZE)
- lg->next_hcall = 0;
+ if (++cpu->next_hcall == LHCALL_RING_SIZE)
+ cpu->next_hcall = 0;
/* Copy the hypercall arguments into a local copy of
* the hcall_args struct. */
- if (copy_from_user(&args, &lg->lguest_data->hcalls[n],
+ if (copy_from_user(&args, &cpu->lg->lguest_data->hcalls[n],
sizeof(struct hcall_args))) {
- kill_guest(lg, "Fetching async hypercalls");
+ kill_guest(cpu, "Fetching async hypercalls");
break;
}
/* Do the hypercall, same as a normal one. */
- do_hcall(lg, &args);
+ do_hcall(cpu, &args);
/* Mark the hypercall done. */
- if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) {
- kill_guest(lg, "Writing result for async hypercall");
+ if (put_user(0xFF, &cpu->lg->lguest_data->hcall_status[n])) {
+ kill_guest(cpu, "Writing result for async hypercall");
break;
}
/* Stop doing hypercalls if they want to notify the Launcher:
* it needs to service this first. */
- if (lg->pending_notify)
+ if (cpu->pending_notify)
break;
}
}
/* Last of all, we look at what happens first of all. The very first time the
* Guest makes a hypercall, we end up here to set things up: */
-static void initialize(struct lguest *lg)
+static void initialize(struct lg_cpu *cpu)
{
/* You can't do anything until you're initialized. The Guest knows the
* rules, so we're unforgiving here. */
- if (lg->hcall->arg0 != LHCALL_LGUEST_INIT) {
- kill_guest(lg, "hypercall %li before INIT", lg->hcall->arg0);
+ if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
+ kill_guest(cpu, "hypercall %li before INIT", cpu->hcall->arg0);
return;
}
- if (lguest_arch_init_hypercalls(lg))
- kill_guest(lg, "bad guest page %p", lg->lguest_data);
+ if (lguest_arch_init_hypercalls(cpu))
+ kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
/* The Guest tells us where we're not to deliver interrupts by putting
* the range of addresses into "struct lguest_data". */
- if (get_user(lg->noirq_start, &lg->lguest_data->noirq_start)
- || get_user(lg->noirq_end, &lg->lguest_data->noirq_end))
- kill_guest(lg, "bad guest page %p", lg->lguest_data);
+ if (get_user(cpu->lg->noirq_start, &cpu->lg->lguest_data->noirq_start)
+ || get_user(cpu->lg->noirq_end, &cpu->lg->lguest_data->noirq_end))
+ kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
/* We write the current time into the Guest's data page once so it can
* set its clock. */
- write_timestamp(lg);
+ write_timestamp(cpu);
/* page_tables.c will also do some setup. */
- page_table_guest_data_init(lg);
+ page_table_guest_data_init(cpu);
/* This is the one case where the above accesses might have been the
* first write to a Guest page. This may have caused a copy-on-write
* fault, but the old page might be (read-only) in the Guest
* pagetable. */
- guest_pagetable_clear_all(lg);
+ guest_pagetable_clear_all(cpu);
}
/*H:100
@@ -194,27 +197,27 @@ static void initialize(struct lguest *lg)
* Remember from the Guest, hypercalls come in two flavors: normal and
* asynchronous. This file handles both of types.
*/
-void do_hypercalls(struct lguest *lg)
+void do_hypercalls(struct lg_cpu *cpu)
{
/* Not initialized yet? This hypercall must do it. */
- if (unlikely(!lg->lguest_data)) {
+ if (unlikely(!cpu->lg->lguest_data)) {
/* Set up the "struct lguest_data" */
- initialize(lg);
+ initialize(cpu);
/* Hcall is done. */
- lg->hcall = NULL;
+ cpu->hcall = NULL;
return;
}
/* The Guest has initialized.
*
* Look in the hypercall ring for the async hypercalls: */
- do_async_hcalls(lg);
+ do_async_hcalls(cpu);
/* If we stopped reading the hypercall ring because the Guest did a
* NOTIFY to the Launcher, we want to return now. Otherwise we do
* the hypercall. */
- if (!lg->pending_notify) {
- do_hcall(lg, lg->hcall);
+ if (!cpu->pending_notify) {
+ do_hcall(cpu, cpu->hcall);
/* Tricky point: we reset the hcall pointer to mark the
* hypercall as "done". We use the hcall pointer rather than
* the trap number to indicate a hypercall is pending.
@@ -225,16 +228,17 @@ void do_hypercalls(struct lguest *lg)
* Launcher, the run_guest() loop will exit without running the
* Guest. When it comes back it would try to re-run the
* hypercall. */
- lg->hcall = NULL;
+ cpu->hcall = NULL;
}
}
/* This routine supplies the Guest with time: it's used for wallclock time at
* initial boot and as a rough time source if the TSC isn't available. */
-void write_timestamp(struct lguest *lg)
+void write_timestamp(struct lg_cpu *cpu)
{
struct timespec now;
ktime_get_real_ts(&now);
- if (copy_to_user(&lg->lguest_data->time, &now, sizeof(struct timespec)))
- kill_guest(lg, "Writing timestamp");
+ if (copy_to_user(&cpu->lg->lguest_data->time,
+ &now, sizeof(struct timespec)))
+ kill_guest(cpu, "Writing timestamp");
}
diff --git a/drivers/lguest/interrupts_and_traps.c b/drivers/lguest/interrupts_and_traps.c
index 2b66f79c208..32e97c1858e 100644
--- a/drivers/lguest/interrupts_and_traps.c
+++ b/drivers/lguest/interrupts_and_traps.c
@@ -41,11 +41,11 @@ static int idt_present(u32 lo, u32 hi)
/* We need a helper to "push" a value onto the Guest's stack, since that's a
* big part of what delivering an interrupt does. */
-static void push_guest_stack(struct lguest *lg, unsigned long *gstack, u32 val)
+static void push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
{
/* Stack grows upwards: move stack then write value. */
*gstack -= 4;
- lgwrite(lg, *gstack, u32, val);
+ lgwrite(cpu, *gstack, u32, val);
}
/*H:210 The set_guest_interrupt() routine actually delivers the interrupt or
@@ -60,7 +60,7 @@ static void push_guest_stack(struct lguest *lg, unsigned long *gstack, u32 val)
* We set up the stack just like the CPU does for a real interrupt, so it's
* identical for the Guest (and the standard "iret" instruction will undo
* it). */
-static void set_guest_interrupt(struct lguest *lg, u32 lo, u32 hi, int has_err)
+static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi, int has_err)
{
unsigned long gstack, origstack;
u32 eflags, ss, irq_enable;
@@ -69,59 +69,59 @@ static void set_guest_interrupt(struct lguest *lg, u32 lo, u32 hi, int has_err)
/* There are two cases for interrupts: one where the Guest is already
* in the kernel, and a more complex one where the Guest is in
* userspace. We check the privilege level to find out. */
- if ((lg->regs->ss&0x3) != GUEST_PL) {
+ if ((cpu->regs->ss&0x3) != GUEST_PL) {
/* The Guest told us their kernel stack with the SET_STACK
* hypercall: both the virtual address and the segment */
- virtstack = lg->esp1;
- ss = lg->ss1;
+ virtstack = cpu->esp1;
+ ss = cpu->ss1;
- origstack = gstack = guest_pa(lg, virtstack);
+ origstack = gstack = guest_pa(cpu, virtstack);
/* We push the old stack segment and pointer onto the new
* stack: when the Guest does an "iret" back from the interrupt
* handler the CPU will notice they're dropping privilege
* levels and expect these here. */
- push_guest_stack(lg, &gstack, lg->regs->ss);
- push_guest_stack(lg, &gstack, lg->regs->esp);
+ push_guest_stack(cpu, &gstack, cpu->regs->ss);
+ push_guest_stack(cpu, &gstack, cpu->regs->esp);
} else {
/* We're staying on the same Guest (kernel) stack. */
- virtstack = lg->regs->esp;
- ss = lg->regs->ss;
+ virtstack = cpu->regs->esp;
+ ss = cpu->regs->ss;
- origstack = gstack = guest_pa(lg, virtstack);
+ origstack = gstack = guest_pa(cpu, virtstack);
}
/* Remember that we never let the Guest actually disable interrupts, so
* the "Interrupt Flag" bit is always set. We copy that bit from the
* Guest's "irq_enabled" field into the eflags word: we saw the Guest
* copy it back in "lguest_iret". */
- eflags = lg->regs->eflags;
- if (get_user(irq_enable, &lg->lguest_data->irq_enabled) == 0
+ eflags = cpu->regs->eflags;
+ if (get_user(irq_enable, &cpu->lg->lguest_data->irq_enabled) == 0
&& !(irq_enable & X86_EFLAGS_IF))
eflags &= ~X86_EFLAGS_IF;
/* An interrupt is expected to push three things on the stack: the old
* "eflags" word, the old code segment, and the old instruction
* pointer. */
- push_guest_stack(lg, &gstack, eflags);
- push_guest_stack(lg, &gstack, lg->regs->cs);
- push_guest_stack(lg, &gstack, lg->regs->eip);
+ push_guest_stack(cpu, &gstack, eflags);
+ push_guest_stack(cpu, &gstack, cpu->regs->cs);
+ push_guest_stack(cpu, &gstack, cpu->regs->eip);
/* For the six traps which supply an error code, we push that, too. */
if (has_err)
- push_guest_stack(lg, &gstack, lg->regs->errcode);
+ push_guest_stack(cpu, &gstack, cpu->regs->errcode);
/* Now we've pushed all the old state, we change the stack, the code
* segment and the address to execute. */
- lg->regs->ss = ss;
- lg->regs->esp = virtstack + (gstack - origstack);
- lg->regs->cs = (__KERNEL_CS|GUEST_PL);
- lg->regs->eip = idt_address(lo, hi);
+ cpu->regs->ss = ss;
+ cpu->regs->esp = virtstack + (gstack - origstack);
+ cpu->regs->cs = (__KERNEL_CS|GUEST_PL);
+ cpu->regs->eip = idt_address(lo, hi);
/* There are two kinds of interrupt handlers: 0xE is an "interrupt
* gate" which expects interrupts to be disabled on entry. */
if (idt_type(lo, hi) == 0xE)
- if (put_user(0, &lg->lguest_data->irq_enabled))
- kill_guest(lg, "Disabling interrupts");
+ if (put_user(0, &cpu->lg->lguest_data->irq_enabled))
+ kill_guest(cpu, "Disabling interrupts");
}
/*H:205
@@ -129,23 +129,23 @@ static void set_guest_interrupt(struct lguest *lg, u32 lo, u32 hi, int has_err)
*
* maybe_do_interrupt() gets called before every entry to the Guest, to see if
* we should divert the Guest to running an interrupt handler. */
-void maybe_do_interrupt(struct lguest *lg)
+void maybe_do_interrupt(struct lg_cpu *cpu)
{
unsigned int irq;
DECLARE_BITMAP(blk, LGUEST_IRQS);
struct desc_struct *idt;
/* If the Guest hasn't even initialized yet, we can do nothing. */
- if (!lg->lguest_data)
+ if (!cpu->lg->lguest_data)
return;
/* Take our "irqs_pending" array and remove any interrupts the Guest
* wants blocked: the result ends up in "blk". */
- if (copy_from_user(&blk, lg->lguest_data->blocked_interrupts,
+ if (copy_from_user(&blk, cpu->lg->lguest_data->blocked_interrupts,
sizeof(blk)))
return;
- bitmap_andnot(blk, lg->irqs_pending, blk, LGUEST_IRQS);
+ bitmap_andnot(blk, cpu->irqs_pending, blk, LGUEST_IRQS);
/* Find the first interrupt. */
irq = find_first_bit(blk, LGUEST_IRQS);
@@ -155,19 +155,20 @@ void maybe_do_interrupt(struct lguest *lg)
/* They may be in the middle of an iret, where they asked us never to
* deliver interrupts. */
- if (lg->regs->eip >= lg->noirq_start && lg->regs->eip < lg->noirq_end)
+ if (cpu->regs->eip >= cpu->lg->noirq_start &&
+ (cpu->regs->eip < cpu->lg->noirq_end))
return;
/* If they're halted, interrupts restart them. */
- if (lg->halted) {
+ if (cpu->halted) {
/* Re-enable interrupts. */
- if (put_user(X86_EFLAGS_IF, &lg->lguest_data->irq_enabled))
- kill_guest(lg, "Re-enabling interrupts");
- lg->halted = 0;
+ if (put_user(X86_EFLAGS_IF, &cpu->lg->lguest_data->irq_enabled))
+ kill_guest(cpu, "Re-enabling interrupts");
+ cpu->halted = 0;
} else {
/* Otherwise we check if they have interrupts disabled. */
u32 irq_enabled;
- if (get_user(irq_enabled, &lg->lguest_data->irq_enabled))
+ if (get_user(irq_enabled, &cpu->lg->lguest_data->irq_enabled))
irq_enabled = 0;
if (!irq_enabled)
return;
@@ -176,15 +177,15 @@ void maybe_do_interrupt(struct lguest *lg)
/* Look at the IDT entry the Guest gave us for this interrupt. The
* first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip
* over them. */
- idt = &lg->arch.idt[FIRST_EXTERNAL_VECTOR+irq];
+ idt = &cpu->arch.idt[FIRST_EXTERNAL_VECTOR+irq];
/* If they don't have a handler (yet?), we just ignore it */
if (idt_present(idt->a, idt->b)) {
/* OK, mark it no longer pending and deliver it. */
- clear_bit(irq, lg->irqs_pending);
+ clear_bit(irq, cpu->irqs_pending);
/* set_guest_interrupt() takes the interrupt descriptor and a
* flag to say whether this interrupt pushes an error code onto
* the stack as well: virtual interrupts never do. */
- set_guest_interrupt(lg, idt->a, idt->b, 0);
+ set_guest_interrupt(cpu, idt->a, idt->b, 0);
}
/* Every time we deliver an interrupt, we update the timestamp in the
@@ -192,7 +193,7 @@ void maybe_do_interrupt(struct lguest *lg)
* did this more often, but it can actually be quite slow: doing it
* here is a compromise which means at least it gets updated every
* timer interrupt. */
- write_timestamp(lg);
+ write_timestamp(cpu);
}
/*:*/
@@ -245,19 +246,19 @@ static int has_err(unsigned int trap)
}
/* deliver_trap() returns true if it could deliver the trap. */
-int deliver_trap(struct lguest *lg, unsigned int num)
+int deliver_trap(struct lg_cpu *cpu, unsigned int num)
{
/* Trap numbers are always 8 bit, but we set an impossible trap number
* for traps inside the Switcher, so check that here. */
- if (num >= ARRAY_SIZE(lg->arch.idt))
+ if (num >= ARRAY_SIZE(cpu->arch.idt))
return 0;
/* Early on the Guest hasn't set the IDT entries (or maybe it put a
* bogus one in): if we fail here, the Guest will be killed. */
- if (!idt_present(lg->arch.idt[num].a, lg->arch.idt[num].b))
+ if (!idt_present(cpu->arch.idt[num].a, cpu->arch.idt[num].b))
return 0;
- set_guest_interrupt(lg, lg->arch.idt[num].a, lg->arch.idt[num].b,
- has_err(num));
+ set_guest_interrupt(cpu, cpu->arch.idt[num].a,
+ cpu->arch.idt[num].b, has_err(num));
return 1;
}
@@ -309,18 +310,18 @@ static int direct_trap(unsigned int num)
* the Guest.
*
* Which is deeply unfair, because (literally!) it wasn't the Guests' fault. */
-void pin_stack_pages(struct lguest *lg)
+void pin_stack_pages(struct lg_cpu *cpu)
{
unsigned int i;
/* Depending on the CONFIG_4KSTACKS option, the Guest can have one or
* two pages of stack space. */
- for (i = 0; i < lg->stack_pages; i++)
+ for (i = 0; i < cpu->lg->stack_pages; i++)
/* The stack grows *upwards*, so the address we're given is the
* start of the page after the kernel stack. Subtract one to
* get back onto the first stack page, and keep subtracting to
* get to the rest of the stack pages. */
- pin_page(lg, lg->esp1 - 1 - i * PAGE_SIZE);
+ pin_page(cpu, cpu->esp1 - 1 - i * PAGE_SIZE);
}
/* Direct traps also mean that we need to know whenever the Guest wants to use
@@ -331,21 +332,21 @@ void pin_stack_pages(struct lguest *lg)
*
* In Linux each process has its own kernel stack, so this happens a lot: we
* change stacks on each context switch. */
-void guest_set_stack(struct lguest *lg, u32 seg, u32 esp, unsigned int pages)
+void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages)
{
/* You are not allowed have a stack segment with privilege level 0: bad
* Guest! */
if ((seg & 0x3) != GUEST_PL)
- kill_guest(lg, "bad stack segment %i", seg);
+ kill_guest(cpu, "bad stack segment %i", seg);
/* We only expect one or two stack pages. */
if (pages > 2)
- kill_guest(lg, "bad stack pages %u", pages);
+ kill_guest(cpu, "bad stack pages %u", pages);
/* Save where the stack is, and how many pages */
- lg->ss1 = seg;
- lg->esp1 = esp;
- lg->stack_pages = pages;
+ cpu->ss1 = seg;
+ cpu->esp1 = esp;
+ cpu->lg->stack_pages = pages;
/* Make sure the new stack pages are mapped */
- pin_stack_pages(lg);
+ pin_stack_pages(cpu);
}
/* All this reference to mapping stacks leads us neatly into the other complex
@@ -353,7 +354,7 @@ void guest_set_stack(struct lguest *lg, u32 seg, u32 esp, unsigned int pages)
/*H:235 This is the routine which actually checks the Guest's IDT entry and
* transfers it into the entry in "struct lguest": */
-static void set_trap(struct lguest *lg, struct desc_struct *trap,
+static void set_trap(struct lg_cpu *cpu, struct desc_struct *trap,
unsigned int num, u32 lo, u32 hi)
{
u8 type = idt_type(lo, hi);
@@ -366,7 +367,7 @@ static void set_trap(struct lguest *lg, struct desc_struct *trap,
/* We only support interrupt and trap gates. */
if (type != 0xE && type != 0xF)
- kill_guest(lg, "bad IDT type %i", type);
+ kill_guest(cpu, "bad IDT type %i", type);
/* We only copy the handler address, present bit, privilege level and
* type. The privilege level controls where the trap can be triggered
@@ -383,7 +384,7 @@ static void set_trap(struct lguest *lg, struct desc_struct *trap,
*
* We saw the Guest setting Interrupt Descriptor Table (IDT) entries with the
* LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here. */
-void load_guest_idt_entry(struct lguest *lg, unsigned int num, u32 lo, u32 hi)
+void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int num, u32 lo, u32 hi)
{
/* Guest never handles: NMI, doublefault, spurious interrupt or
* hypercall. We ignore when it tries to set them. */
@@ -392,13 +393,13 @@ void load_guest_idt_entry(struct lguest *lg, unsigned int num, u32 lo, u32 hi)
/* Mark the IDT as changed: next time the Guest runs we'll know we have
* to copy this again. */
- lg->changed |= CHANGED_IDT;
+ cpu->changed |= CHANGED_IDT;
/* Check that the Guest doesn't try to step outside the bounds. */
- if (num >= ARRAY_SIZE(lg->arch.idt))
- kill_guest(lg, "Setting idt entry %u", num);
+ if (num >= ARRAY_SIZE(cpu->arch.idt))
+ kill_guest(cpu, "Setting idt entry %u", num);
else
- set_trap(lg, &lg->arch.idt[num], num, lo, hi);
+ set_trap(cpu, &cpu->arch.idt[num], num, lo, hi);
}
/* The default entry for each interrupt points into the Switcher routines which
@@ -434,14 +435,14 @@ void setup_default_idt_entries(struct lguest_ro_state *state,
/*H:240 We don't use the IDT entries in the "struct lguest" directly, instead
* we copy them into the IDT which we've set up for Guests on this CPU, just
* before we run the Guest. This routine does that copy. */
-void copy_traps(const struct lguest *lg, struct desc_struct *idt,
+void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
const unsigned long *def)
{
unsigned int i;
/* We can simply copy the direct traps, otherwise we use the default
* ones in the Switcher: they will return to the Host. */
- for (i = 0; i < ARRAY_SIZE(lg->arch.idt); i++) {
+ for (i = 0; i < ARRAY_SIZE(cpu->arch.idt); i++) {
/* If no Guest can ever override this trap, leave it alone. */
if (!direct_trap(i))
continue;
@@ -450,8 +451,8 @@ void copy_traps(const struct lguest *lg, struct desc_struct *idt,
* Interrupt gates (type 14) disable interrupts as they are
* entered, which we never let the Guest do. Not present
* entries (type 0x0) also can't go direct, of course. */
- if (idt_type(lg->arch.idt[i].a, lg->arch.idt[i].b) == 0xF)
- idt[i] = lg->arch.idt[i];
+ if (idt_type(cpu->arch.idt[i].a, cpu->arch.idt[i].b) == 0xF)
+ idt[i] = cpu->arch.idt[i];
else
/* Reset it to the default. */
default_idt_entry(&idt[i], i, def[i]);
@@ -470,13 +471,13 @@ void copy_traps(const struct lguest *lg, struct desc_struct *idt,
* infrastructure to set a callback at that time.
*
* 0 means "turn off the clock". */
-void guest_set_clockevent(struct lguest *lg, unsigned long delta)
+void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta)
{
ktime_t expires;
if (unlikely(delta == 0)) {
/* Clock event device is shutting down. */
- hrtimer_cancel(&lg->hrt);
+ hrtimer_cancel(&cpu->hrt);
return;
}
@@ -484,25 +485,25 @@ void guest_set_clockevent(struct lguest *lg, unsigned long delta)
* all the time between now and the timer interrupt it asked for. This
* is almost always the right thing to do. */
expires = ktime_add_ns(ktime_get_real(), delta);
- hrtimer_start(&lg->hrt, expires, HRTIMER_MODE_ABS);
+ hrtimer_start(&cpu->hrt, expires, HRTIMER_MODE_ABS);
}
/* This is the function called when the Guest's timer expires. */
static enum hrtimer_restart clockdev_fn(struct hrtimer *timer)
{
- struct lguest *lg = container_of(timer, struct lguest, hrt);
+ struct lg_cpu *cpu = container_of(timer, struct lg_cpu, hrt);
/* Remember the first interrupt is the timer interrupt. */
- set_bit(0, lg->irqs_pending);
+ set_bit(0, cpu->irqs_pending);
/* If the Guest is actually stopped, we need to wake it up. */
- if (lg->halted)
- wake_up_process(lg->tsk);
+ if (cpu->halted)
+ wake_up_process(cpu->tsk);
return HRTIMER_NORESTART;
}
/* This sets up the timer for this Guest. */
-void init_clockdev(struct lguest *lg)
+void init_clockdev(struct lg_cpu *cpu)
{
- hrtimer_init(&lg->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
- lg->hrt.function = clockdev_fn;
+ hrtimer_init(&cpu->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
+ cpu->hrt.function = clockdev_fn;
}
diff --git a/drivers/lguest/lg.h b/drivers/lguest/lg.h
index 86924891b5e..2337e1a06f0 100644
--- a/drivers/lguest/lg.h
+++ b/drivers/lguest/lg.h
@@ -8,6 +8,7 @@
#include <linux/lguest.h>
#include <linux/lguest_launcher.h>
#include <linux/wait.h>
+#include <linux/hrtimer.h>
#include <linux/err.h>
#include <asm/semaphore.h>
@@ -38,58 +39,72 @@ struct lguest_pages
#define CHANGED_GDT_TLS 4 /* Actually a subset of CHANGED_GDT */
#define CHANGED_ALL 3
-/* The private info the thread maintains about the guest. */
-struct lguest
-{
- /* At end of a page shared mapped over lguest_pages in guest. */
- unsigned long regs_page;
- struct lguest_regs *regs;
- struct lguest_data __user *lguest_data;
+struct lguest;
+
+struct lg_cpu {
+ unsigned int id;
+ struct lguest *lg;
struct task_struct *tsk;
struct mm_struct *mm; /* == tsk->mm, but that becomes NULL on exit */
- u32 pfn_limit;
- /* This provides the offset to the base of guest-physical
- * memory in the Launcher. */
- void __user *mem_base;
- unsigned long kernel_address;
+
u32 cr2;
- int halted;
int ts;
- u32 next_hcall;
u32 esp1;
u8 ss1;
+ /* Bitmap of what has changed: see CHANGED_* above. */
+ int changed;
+
+ unsigned long pending_notify; /* pfn from LHCALL_NOTIFY */
+
+ /* At end of a page shared mapped over lguest_pages in guest. */
+ unsigned long regs_page;
+ struct lguest_regs *regs;
+
+ struct lguest_pages *last_pages;
+
+ int cpu_pgd; /* which pgd this cpu is currently using */
+
/* If a hypercall was asked for, this points to the arguments. */
struct hcall_args *hcall;
+ u32 next_hcall;
+
+ /* Virtual clock device */
+ struct hrtimer hrt;
/* Do we need to stop what we're doing and return to userspace? */
int break_out;
wait_queue_head_t break_wq;
+ int halted;
- /* Bitmap of what has changed: see CHANGED_* above. */
- int changed;
- struct lguest_pages *last_pages;
+ /* Pending virtual interrupts */
+ DECLARE_BITMAP(irqs_pending, LGUEST_IRQS);
+
+ struct lg_cpu_arch arch;
+};
+
+/* The private info the thread maintains about the guest. */
+struct lguest
+{
+ struct lguest_data __user *lguest_data;
+ struct lg_cpu cpus[NR_CPUS];
+ unsigned int nr_cpus;
+
+ u32 pfn_limit;
+ /* This provides the offset to the base of guest-physical
+ * memory in the Launcher. */
+ void __user *mem_base;
+ unsigned long kernel_address;
- /* We keep a small number of these. */
- u32 pgdidx;
struct pgdir pgdirs[4];
unsigned long noirq_start, noirq_end;
- unsigned long pending_notify; /* pfn from LHCALL_NOTIFY */
unsigned int stack_pages;
u32 tsc_khz;
/* Dead? */
const char *dead;
-
- struct lguest_arch arch;
-
- /* Virtual clock device */
- struct hrtimer hrt;
-
- /* Pending virtual interrupts */
- DECLARE_BITMAP(irqs_pending, LGUEST_IRQS);
};
extern struct mutex lguest_lock;
@@ -97,26 +112,26 @@ extern struct mutex lguest_lock;
/* core.c: */
int lguest_address_ok(const struct lguest *lg,
unsigned long addr, unsigned long len);
-void __lgread(struct lguest *, void *, unsigned long, unsigned);
-void __lgwrite(struct lguest *, unsigned long, const void *, unsigned);
+void __lgread(struct lg_cpu *, void *, unsigned long, unsigned);
+void __lgwrite(struct lg_cpu *, unsigned long, const void *, unsigned);
/*H:035 Using memory-copy operations like that is usually inconvient, so we
* have the following helper macros which read and write a specific type (often
* an unsigned long).
*
* This reads into a variable of the given type then returns that. */
-#define lgread(lg, addr, type) \
- ({ type _v; __lgread((lg), &_v, (addr), sizeof(_v)); _v; })
+#define lgread(cpu, addr, type) \
+ ({ type _v; __lgread((cpu), &_v, (addr), sizeof(_v)); _v; })
/* This checks that the variable is of the given type, then writes it out. */
-#define lgwrite(lg, addr, type, val) \
+#define lgwrite(cpu, addr, type, val) \
do { \
typecheck(type, val); \
- __lgwrite((lg), (addr), &(val), sizeof(val)); \
+ __lgwrite((cpu), (addr), &(val), sizeof(val)); \
} while(0)
/* (end of memory access helper routines) :*/
-int run_guest(struct lguest *lg, unsigned long __user *user);
+int run_guest(struct lg_cpu *cpu, unsigned long __user *user);
/* Helper macros to obtain the first 12 or the last 20 bits, this is only the
* first step in the migration to the kernel types. pte_pfn is already defined
@@ -126,52 +141,53 @@ int run_guest(struct lguest *lg, unsigned long __user *user);
#define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
/* interrupts_and_traps.c: */
-void maybe_do_interrupt(struct lguest *lg);
-int deliver_trap(struct lguest *lg, unsigned int num);
-void load_guest_idt_entry(struct lguest *lg, unsigned int i, u32 low, u32 hi);
-void guest_set_stack(struct lguest *lg, u32 seg, u32 esp, unsigned int pages);
-void pin_stack_pages(struct lguest *lg);
+void maybe_do_interrupt(struct lg_cpu *cpu);
+int deliver_trap(struct lg_cpu *cpu, unsigned int num);
+void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int i,
+ u32 low, u32 hi);
+void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages);
+void pin_stack_pages(struct lg_cpu *cpu);
void setup_default_idt_entries(struct lguest_ro_state *state,
const unsigned long *def);
-void copy_traps(const struct lguest *lg, struct desc_struct *idt,
+void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
const unsigned long *def);
-void guest_set_clockevent(struct lguest *lg, unsigned long delta);
-void init_clockdev(struct lguest *lg);
+void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta);
+void init_clockdev(struct lg_cpu *cpu);
bool check_syscall_vector(struct lguest *lg);
int init_interrupts(void);
void free_interrupts(void);
/* segments.c: */
void setup_default_gdt_entries(struct lguest_ro_state *state);
-void setup_guest_gdt(struct lguest *lg);
-void load_guest_gdt(struct lguest *lg, unsigned long table, u32 num);
-void guest_load_tls(struct lguest *lg, unsigned long tls_array);
-void copy_gdt(const struct lguest *lg, struct desc_struct *gdt);
-void copy_gdt_tls(const struct lguest *lg, struct desc_struct *gdt);
+void setup_guest_gdt(struct lg_cpu *cpu);
+void load_guest_gdt(struct lg_cpu *cpu, unsigned long table, u32 num);
+void guest_load_tls(struct lg_cpu *cpu, unsigned long tls_array);
+void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt);
+void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt);
/* page_tables.c: */
int init_guest_pagetable(struct lguest *lg, unsigned long pgtable);
void free_guest_pagetable(struct lguest *lg);
-void guest_new_pagetable(struct lguest *lg, unsigned long pgtable);
+void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable);
void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i);
-void guest_pagetable_clear_all(struct lguest *lg);
-void guest_pagetable_flush_user(struct lguest *lg);
-void guest_set_pte(struct lguest *lg, unsigned long gpgdir,
+void guest_pagetable_clear_all(struct lg_cpu *cpu);
+void guest_pagetable_flush_user(struct lg_cpu *cpu);
+void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir,
unsigned long vaddr, pte_t val);
-void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages);
-int demand_page(struct lguest *info, unsigned long cr2, int errcode);
-void pin_page(struct lguest *lg, unsigned long vaddr);
-unsigned long guest_pa(struct lguest *lg, unsigned long vaddr);
-void page_table_guest_data_init(struct lguest *lg);
+void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages);
+int demand_page(struct lg_cpu *cpu, unsigned long cr2, int errcode);
+void pin_page(struct lg_cpu *cpu, unsigned long vaddr);
+unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr);
+void page_table_guest_data_init(struct lg_cpu *cpu);
/* <arch>/core.c: */
void lguest_arch_host_init(void);
void lguest_arch_host_fini(void);
-void lguest_arch_run_guest(struct lguest *lg);
-void lguest_arch_handle_trap(struct lguest *lg);
-int lguest_arch_init_hypercalls(struct lguest *lg);
-int lguest_arch_do_hcall(struct lguest *lg, struct hcall_args *args);
-void lguest_arch_setup_regs(struct lguest *lg, unsigned long start);
+void lguest_arch_run_guest(struct lg_cpu *cpu);
+void lguest_arch_handle_trap(struct lg_cpu *cpu);
+int lguest_arch_init_hypercalls(struct lg_cpu *cpu);
+int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args);
+void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start);
/* <arch>/switcher.S: */
extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
@@ -181,8 +197,8 @@ int lguest_device_init(void);
void lguest_device_remove(void);
/* hypercalls.c: */
-void do_hypercalls(struct lguest *lg);
-void write_timestamp(struct lguest *lg);
+void do_hypercalls(struct lg_cpu *cpu);
+void write_timestamp(struct lg_cpu *cpu);
/*L:035
* Let's step aside for the moment, to study one important routine that's used
@@ -208,12 +224,12 @@ void write_timestamp(struct lguest *lg);
* Like any macro which uses an "if", it is safely wrapped in a run-once "do {
* } while(0)".
*/
-#define kill_guest(lg, fmt...) \
+#define kill_guest(cpu, fmt...) \
do { \
- if (!(lg)->dead) { \
- (lg)->dead = kasprintf(GFP_ATOMIC, fmt); \
- if (!(lg)->dead) \
- (lg)->dead = ERR_PTR(-ENOMEM); \
+ if (!(cpu)->lg->dead) { \
+ (cpu)->lg->dead = kasprintf(GFP_ATOMIC, fmt); \
+ if (!(cpu)->lg->dead) \
+ (cpu)->lg->dead = ERR_PTR(-ENOMEM); \
} \
} while(0)
/* (End of aside) :*/
diff --git a/drivers/lguest/lguest_user.c b/drivers/lguest/lguest_user.c
index 3b92a61ba8d..85d42d3d01a 100644
--- a/drivers/lguest/lguest_user.c
+++ b/drivers/lguest/lguest_user.c
@@ -6,6 +6,7 @@
#include <linux/uaccess.h>
#include <linux/miscdevice.h>
#include <linux/fs.h>
+#include <linux/sched.h>
#include "lg.h"
/*L:055 When something happens, the Waker process needs a way to stop the
@@ -13,7 +14,7 @@
* LHREQ_BREAK and the value "1" to /dev/lguest to do this. Once the Launcher
* has done whatever needs attention, it writes LHREQ_BREAK and "0" to release
* the Waker. */
-static int break_guest_out(struct lguest *lg, const unsigned long __user *input)
+static int break_guest_out(struct lg_cpu *cpu, const unsigned long __user*input)
{
unsigned long on;
@@ -22,21 +23,21 @@ static int break_guest_out(struct lguest *lg, const unsigned long __user *input)
return -EFAULT;
if (on) {
- lg->break_out = 1;
+ cpu->break_out = 1;
/* Pop it out of the Guest (may be running on different CPU) */
- wake_up_process(lg->tsk);
+ wake_up_process(cpu->tsk);
/* Wait for them to reset it */
- return wait_event_interruptible(lg->break_wq, !lg->break_out);
+ return wait_event_interruptible(cpu->break_wq, !cpu->break_out);
} else {
- lg->break_out = 0;
- wake_up(&lg->break_wq);
+ cpu->break_out = 0;
+ wake_up(&cpu->break_wq);
return 0;
}
}
/*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
* number to /dev/lguest. */
-static int user_send_irq(struct lguest *lg, const unsigned long __user *input)
+static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
{
unsigned long irq;
@@ -46,7 +47,7 @@ static int user_send_irq(struct lguest *lg, const unsigned long __user *input)
return -EINVAL;
/* Next time the Guest runs, the core code will see if it can deliver
* this interrupt. */
- set_bit(irq, lg->irqs_pending);
+ set_bit(irq, cpu->irqs_pending);
return 0;
}
@@ -55,13 +56,21 @@ static int user_send_irq(struct lguest *lg, const unsigned long __user *input)
static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
{
struct lguest *lg = file->private_data;
+ struct lg_cpu *cpu;
+ unsigned int cpu_id = *o;
/* You must write LHREQ_INITIALIZE first! */
if (!lg)
return -EINVAL;
+ /* Watch out for arbitrary vcpu indexes! */
+ if (cpu_id >= lg->nr_cpus)
+ return -EINVAL;
+
+ cpu = &lg->cpus[cpu_id];
+
/* If you're not the task which owns the Guest, go away. */
- if (current != lg->tsk)
+ if (current != cpu->tsk)
return -EPERM;
/* If the guest is already dead, we indicate why */
@@ -81,11 +90,53 @@ static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
/* If we returned from read() last time because the Guest notified,
* clear the flag. */
- if (lg->pending_notify)
- lg->pending_notify = 0;
+ if (cpu->pending_notify)
+ cpu->pending_notify = 0;
/* Run the Guest until something interesting happens. */
- return run_guest(lg, (unsigned long __user *)user);
+ return run_guest(cpu, (unsigned long __user *)user);
+}
+
+static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
+{
+ if (id >= NR_CPUS)
+ return -EINVAL;
+
+ cpu->id = id;
+ cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
+ cpu->lg->nr_cpus++;
+ init_clockdev(cpu);
+
+ /* We need a complete page for the Guest registers: they are accessible
+ * to the Guest and we can only grant it access to whole pages. */
+ cpu->regs_page = get_zeroed_page(GFP_KERNEL);
+ if (!cpu->regs_page)
+ return -ENOMEM;
+
+ /* We actually put the registers at the bottom of the page. */
+ cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
+
+ /* Now we initialize the Guest's registers, handing it the start
+ * address. */
+ lguest_arch_setup_regs(cpu, start_ip);
+
+ /* Initialize the queue for the waker to wait on */
+ init_waitqueue_head(&cpu->break_wq);
+
+ /* We keep a pointer to the Launcher task (ie. current task) for when
+ * other Guests want to wake this one (inter-Guest I/O). */
+ cpu->tsk = current;
+
+ /* We need to keep a pointer to the Launcher's memory map, because if
+ * the Launcher dies we need to clean it up. If we don't keep a
+ * reference, it is destroyed before close() is called. */
+ cpu->mm = get_task_mm(cpu->tsk);
+
+ /* We remember which CPU's pages this Guest used last, for optimization
+ * when the same Guest runs on the same CPU twice. */
+ cpu->last_pages = NULL;
+
+ return 0;
}
/*L:020 The initialization write supplies 4 pointer sized (32 or 64 bit)
@@ -134,15 +185,10 @@ static int initialize(struct file *file, const unsigned long __user *input)
lg->mem_base = (void __user *)(long)args[0];
lg->pfn_limit = args[1];
- /* We need a complete page for the Guest registers: they are accessible
- * to the Guest and we can only grant it access to whole pages. */
- lg->regs_page = get_zeroed_page(GFP_KERNEL);
- if (!lg->regs_page) {
- err = -ENOMEM;
+ /* This is the first cpu */
+ err = lg_cpu_start(&lg->cpus[0], 0, args[3]);
+ if (err)
goto release_guest;
- }
- /* We actually put the registers at the bottom of the page. */
- lg->regs = (void *)lg->regs_page + PAGE_SIZE - sizeof(*lg->regs);
/* Initialize the Guest's shadow page tables, using the toplevel
* address the Launcher gave us. This allocates memory, so can
@@ -151,28 +197,6 @@ static int initialize(struct file *file, const unsigned long __user *input)
if (err)
goto free_regs;
- /* Now we initialize the Guest's registers, handing it the start
- * address. */
- lguest_arch_setup_regs(lg, args[3]);
-
- /* The timer for lguest's clock needs initialization. */
- init_clockdev(lg);
-
- /* We keep a pointer to the Launcher task (ie. current task) for when
- * other Guests want to wake this one (inter-Guest I/O). */
- lg->tsk = current;
- /* We need to keep a pointer to the Launcher's memory map, because if
- * the Launcher dies we need to clean it up. If we don't keep a
- * reference, it is destroyed before close() is called. */
- lg->mm = get_task_mm(lg->tsk);
-
- /* Initialize the queue for the waker to wait on */
- init_waitqueue_head(&lg->break_wq);
-
- /* We remember which CPU's pages this Guest used last, for optimization
- * when the same Guest runs on the same CPU twice. */
- lg->last_pages = NULL;
-
/* We keep our "struct lguest" in the file's private_data. */
file->private_data = lg;
@@ -182,7 +206,8 @@ static int initialize(struct file *file, const unsigned long __user *input)
return sizeof(args);
free_regs:
- free_page(lg->regs_page);
+ /* FIXME: This should be in free_vcpu */
+ free_page(lg->cpus[0].regs_page);
release_guest:
kfree(lg);
unlock:
@@ -202,30 +227,37 @@ static ssize_t write(struct file *file, const char __user *in,
struct lguest *lg = file->private_data;
const unsigned long __user *input = (const unsigned long __user *)in;
unsigned long req;
+ struct lg_cpu *uninitialized_var(cpu);
+ unsigned int cpu_id = *off;
if (get_user(req, input) != 0)
return -EFAULT;
input++;
/* If you haven't initialized, you must do that first. */
- if (req != LHREQ_INITIALIZE && !lg)
- return -EINVAL;
+ if (req != LHREQ_INITIALIZE) {
+ if (!lg || (cpu_id >= lg->nr_cpus))
+ return -EINVAL;
+ cpu = &lg->cpus[cpu_id];
+ if (!cpu)
+ return -EINVAL;
+ }
/* Once the Guest is dead, all you can do is read() why it died. */
if (lg && lg->dead)
return -ENOENT;
/* If you're not the task which owns the Guest, you can only break */
- if (lg && current != lg->tsk && req != LHREQ_BREAK)
+ if (lg && current != cpu->tsk && req != LHREQ_BREAK)
return -EPERM;
switch (req) {
case LHREQ_INITIALIZE:
return initialize(file, input);
case LHREQ_IRQ:
- return user_send_irq(lg, input);
+ return user_send_irq(cpu, input);
case LHREQ_BREAK:
- return break_guest_out(lg, input);
+ return break_guest_out(cpu, input);
default:
return -EINVAL;
}
@@ -241,6 +273,7 @@ static ssize_t write(struct file *file, const char __user *in,
static int close(struct inode *inode, struct file *file)
{
struct lguest *lg = file->private_data;
+ unsigned int i;
/* If we never successfully initialized, there's nothing to clean up */
if (!lg)
@@ -249,19 +282,23 @@ static int close(struct inode *inode, struct file *file)
/* We need the big lock, to protect from inter-guest I/O and other
* Launchers initializing guests. */
mutex_lock(&lguest_lock);
- /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
- hrtimer_cancel(&lg->hrt);
+
/* Free up the shadow page tables for the Guest. */
free_guest_pagetable(lg);
- /* Now all the memory cleanups are done, it's safe to release the
- * Launcher's memory management structure. */
- mmput(lg->mm);
+
+ for (i = 0; i < lg->nr_cpus; i++) {
+ /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
+ hrtimer_cancel(&lg->cpus[i].hrt);
+ /* We can free up the register page we allocated. */
+ free_page(lg->cpus[i].regs_page);
+ /* Now all the memory cleanups are done, it's safe to release
+ * the Launcher's memory management structure. */
+ mmput(lg->cpus[i].mm);
+ }
/* If lg->dead doesn't contain an error code it will be NULL or a
* kmalloc()ed string, either of which is ok to hand to kfree(). */
if (!IS_ERR(lg->dead))
kfree(lg->dead);
- /* We can free up the register page we allocated. */
- free_page(lg->regs_page);
/* We clear the entire structure, which also marks it as free for the
* next user. */
memset(lg, 0, sizeof(*lg));
diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c
index fffabb32715..74b4cf2a6c4 100644
--- a/drivers/lguest/page_tables.c
+++ b/drivers/lguest/page_tables.c
@@ -68,23 +68,23 @@ static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
* page directory entry (PGD) for that address. Since we keep track of several
* page tables, the "i" argument tells us which one we're interested in (it's
* usually the current one). */
-static pgd_t *spgd_addr(struct lguest *lg, u32 i, unsigned long vaddr)
+static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
{
unsigned int index = pgd_index(vaddr);
/* We kill any Guest trying to touch the Switcher addresses. */
if (index >= SWITCHER_PGD_INDEX) {
- kill_guest(lg, "attempt to access switcher pages");
+ kill_guest(cpu, "attempt to access switcher pages");
index = 0;
}
/* Return a pointer index'th pgd entry for the i'th page table. */
- return &lg->pgdirs[i].pgdir[index];
+ return &cpu->lg->pgdirs[i].pgdir[index];
}
/* This routine then takes the page directory entry returned above, which
* contains the address of the page table entry (PTE) page. It then returns a
* pointer to the PTE entry for the given address. */
-static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
+static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr)
{
pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
/* You should never call this if the PGD entry wasn't valid */
@@ -94,14 +94,13 @@ static pte_t *spte_addr(struct lguest *lg, pgd_t spgd, unsigned long vaddr)
/* These two functions just like the above two, except they access the Guest
* page tables. Hence they return a Guest address. */
-static unsigned long gpgd_addr(struct lguest *lg, unsigned long vaddr)
+static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
{
unsigned int index = vaddr >> (PGDIR_SHIFT);
- return lg->pgdirs[lg->pgdidx].gpgdir + index * sizeof(pgd_t);
+ return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
}
-static unsigned long gpte_addr(struct lguest *lg,
- pgd_t gpgd, unsigned long vaddr)
+static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr)
{
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
@@ -138,7 +137,7 @@ static unsigned long get_pfn(unsigned long virtpfn, int write)
* entry can be a little tricky. The flags are (almost) the same, but the
* Guest PTE contains a virtual page number: the CPU needs the real page
* number. */
-static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
+static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
{
unsigned long pfn, base, flags;
@@ -149,7 +148,7 @@ static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
/* The Guest's pages are offset inside the Launcher. */
- base = (unsigned long)lg->mem_base / PAGE_SIZE;
+ base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
/* We need a temporary "unsigned long" variable to hold the answer from
* get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
@@ -157,7 +156,7 @@ static pte_t gpte_to_spte(struct lguest *lg, pte_t gpte, int write)
* page, given the virtual number. */
pfn = get_pfn(base + pte_pfn(gpte), write);
if (pfn == -1UL) {
- kill_guest(lg, "failed to get page %lu", pte_pfn(gpte));
+ kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
/* When we destroy the Guest, we'll go through the shadow page
* tables and release_pte() them. Make sure we don't think
* this one is valid! */
@@ -177,17 +176,18 @@ static void release_pte(pte_t pte)
}
/*:*/
-static void check_gpte(struct lguest *lg, pte_t gpte)
+static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
{
if ((pte_flags(gpte) & (_PAGE_PWT|_PAGE_PSE))
- || pte_pfn(gpte) >= lg->pfn_limit)
- kill_guest(lg, "bad page table entry");
+ || pte_pfn(gpte) >= cpu->lg->pfn_limit)
+ kill_guest(cpu, "bad page table entry");
}
-static void check_gpgd(struct lguest *lg, pgd_t gpgd)
+static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
{
- if ((pgd_flags(gpgd) & ~_PAGE_TABLE) || pgd_pfn(gpgd) >= lg->pfn_limit)
- kill_guest(lg, "bad page directory entry");
+ if ((pgd_flags(gpgd) & ~_PAGE_TABLE) ||
+ (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
+ kill_guest(cpu, "bad page directory entry");
}
/*H:330
@@ -200,7 +200,7 @@ static void check_gpgd(struct lguest *lg, pgd_t gpgd)
*
* If we fixed up the fault (ie. we mapped the address), this routine returns
* true. Otherwise, it was a real fault and we need to tell the Guest. */
-int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
+int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
{
pgd_t gpgd;
pgd_t *spgd;
@@ -209,24 +209,24 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
pte_t *spte;
/* First step: get the top-level Guest page table entry. */
- gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
+ gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
/* Toplevel not present? We can't map it in. */
if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
return 0;
/* Now look at the matching shadow entry. */
- spgd = spgd_addr(lg, lg->pgdidx, vaddr);
+ spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
/* No shadow entry: allocate a new shadow PTE page. */
unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
/* This is not really the Guest's fault, but killing it is
* simple for this corner case. */
if (!ptepage) {
- kill_guest(lg, "out of memory allocating pte page");
+ kill_guest(cpu, "out of memory allocating pte page");
return 0;
}
/* We check that the Guest pgd is OK. */
- check_gpgd(lg, gpgd);
+ check_gpgd(cpu, gpgd);
/* And we copy the flags to the shadow PGD entry. The page
* number in the shadow PGD is the page we just allocated. */
*spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
@@ -234,8 +234,8 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
/* OK, now we look at the lower level in the Guest page table: keep its
* address, because we might update it later. */
- gpte_ptr = gpte_addr(lg, gpgd, vaddr);
- gpte = lgread(lg, gpte_ptr, pte_t);
+ gpte_ptr = gpte_addr(gpgd, vaddr);
+ gpte = lgread(cpu, gpte_ptr, pte_t);
/* If this page isn't in the Guest page tables, we can't page it in. */
if (!(pte_flags(gpte) & _PAGE_PRESENT))
@@ -252,7 +252,7 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
/* Check that the Guest PTE flags are OK, and the page number is below
* the pfn_limit (ie. not mapping the Launcher binary). */
- check_gpte(lg, gpte);
+ check_gpte(cpu, gpte);
/* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
gpte = pte_mkyoung(gpte);
@@ -260,7 +260,7 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
gpte = pte_mkdirty(gpte);
/* Get the pointer to the shadow PTE entry we're going to set. */
- spte = spte_addr(lg, *spgd, vaddr);
+ spte = spte_addr(*spgd, vaddr);
/* If there was a valid shadow PTE entry here before, we release it.
* This can happen with a write to a previously read-only entry. */
release_pte(*spte);
@@ -268,17 +268,17 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
/* If this is a write, we insist that the Guest page is writable (the
* final arg to gpte_to_spte()). */
if (pte_dirty(gpte))
- *spte = gpte_to_spte(lg, gpte, 1);
+ *spte = gpte_to_spte(cpu, gpte, 1);
else
/* If this is a read, don't set the "writable" bit in the page
* table entry, even if the Guest says it's writable. That way
* we will come back here when a write does actually occur, so
* we can update the Guest's _PAGE_DIRTY flag. */
- *spte = gpte_to_spte(lg, pte_wrprotect(gpte), 0);
+ *spte = gpte_to_spte(cpu, pte_wrprotect(gpte), 0);
/* Finally, we write the Guest PTE entry back: we've set the
* _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
- lgwrite(lg, gpte_ptr, pte_t, gpte);
+ lgwrite(cpu, gpte_ptr, pte_t, gpte);
/* The fault is fixed, the page table is populated, the mapping
* manipulated, the result returned and the code complete. A small
@@ -297,19 +297,19 @@ int demand_page(struct lguest *lg, unsigned long vaddr, int errcode)
*
* This is a quick version which answers the question: is this virtual address
* mapped by the shadow page tables, and is it writable? */
-static int page_writable(struct lguest *lg, unsigned long vaddr)
+static int page_writable(struct lg_cpu *cpu, unsigned long vaddr)
{
pgd_t *spgd;
unsigned long flags;
/* Look at the current top level entry: is it present? */
- spgd = spgd_addr(lg, lg->pgdidx, vaddr);
+ spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
return 0;
/* Check the flags on the pte entry itself: it must be present and
* writable. */
- flags = pte_flags(*(spte_addr(lg, *spgd, vaddr)));
+ flags = pte_flags(*(spte_addr(*spgd, vaddr)));
return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
}
@@ -317,10 +317,10 @@ static int page_writable(struct lguest *lg, unsigned long vaddr)
/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
* in the page tables, and if not, we call demand_page() with error code 2
* (meaning "write"). */
-void pin_page(struct lguest *lg, unsigned long vaddr)
+void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
{
- if (!page_writable(lg, vaddr) && !demand_page(lg, vaddr, 2))
- kill_guest(lg, "bad stack page %#lx", vaddr);
+ if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
+ kill_guest(cpu, "bad stack page %#lx", vaddr);
}
/*H:450 If we chase down the release_pgd() code, it looks like this: */
@@ -358,28 +358,28 @@ static void flush_user_mappings(struct lguest *lg, int idx)
*
* The Guest has a hypercall to throw away the page tables: it's used when a
* large number of mappings have been changed. */
-void guest_pagetable_flush_user(struct lguest *lg)
+void guest_pagetable_flush_user(struct lg_cpu *cpu)
{
/* Drop the userspace part of the current page table. */
- flush_user_mappings(lg, lg->pgdidx);
+ flush_user_mappings(cpu->lg, cpu->cpu_pgd);
}
/*:*/
/* We walk down the guest page tables to get a guest-physical address */
-unsigned long guest_pa(struct lguest *lg, unsigned long vaddr)
+unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
{
pgd_t gpgd;
pte_t gpte;
/* First step: get the top-level Guest page table entry. */
- gpgd = lgread(lg, gpgd_addr(lg, vaddr), pgd_t);
+ gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
/* Toplevel not present? We can't map it in. */
if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
- kill_guest(lg, "Bad address %#lx", vaddr);
+ kill_guest(cpu, "Bad address %#lx", vaddr);
- gpte = lgread(lg, gpte_addr(lg, gpgd, vaddr), pte_t);
+ gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t);
if (!(pte_flags(gpte) & _PAGE_PRESENT))
- kill_guest(lg, "Bad address %#lx", vaddr);
+ kill_guest(cpu, "Bad address %#lx", vaddr);
return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
}
@@ -399,7 +399,7 @@ static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
/*H:435 And this is us, creating the new page directory. If we really do
* allocate a new one (and so the kernel parts are not there), we set
* blank_pgdir. */
-static unsigned int new_pgdir(struct lguest *lg,
+static unsigned int new_pgdir(struct lg_cpu *cpu,
unsigned long gpgdir,
int *blank_pgdir)
{
@@ -407,22 +407,23 @@ static unsigned int new_pgdir(struct lguest *lg,
/* We pick one entry at random to throw out. Choosing the Least
* Recently Used might be better, but this is easy. */
- next = random32() % ARRAY_SIZE(lg->pgdirs);
+ next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
/* If it's never been allocated at all before, try now. */
- if (!lg->pgdirs[next].pgdir) {
- lg->pgdirs[next].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
+ if (!cpu->lg->pgdirs[next].pgdir) {
+ cpu->lg->pgdirs[next].pgdir =
+ (pgd_t *)get_zeroed_page(GFP_KERNEL);
/* If the allocation fails, just keep using the one we have */
- if (!lg->pgdirs[next].pgdir)
- next = lg->pgdidx;
+ if (!cpu->lg->pgdirs[next].pgdir)
+ next = cpu->cpu_pgd;
else
/* This is a blank page, so there are no kernel
* mappings: caller must map the stack! */
*blank_pgdir = 1;
}
/* Record which Guest toplevel this shadows. */
- lg->pgdirs[next].gpgdir = gpgdir;
+ cpu->lg->pgdirs[next].gpgdir = gpgdir;
/* Release all the non-kernel mappings. */
- flush_user_mappings(lg, next);
+ flush_user_mappings(cpu->lg, next);
return next;
}
@@ -432,21 +433,21 @@ static unsigned int new_pgdir(struct lguest *lg,
* Now we've seen all the page table setting and manipulation, let's see what
* what happens when the Guest changes page tables (ie. changes the top-level
* pgdir). This occurs on almost every context switch. */
-void guest_new_pagetable(struct lguest *lg, unsigned long pgtable)
+void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
{
int newpgdir, repin = 0;
/* Look to see if we have this one already. */
- newpgdir = find_pgdir(lg, pgtable);
+ newpgdir = find_pgdir(cpu->lg, pgtable);
/* If not, we allocate or mug an existing one: if it's a fresh one,
* repin gets set to 1. */
- if (newpgdir == ARRAY_SIZE(lg->pgdirs))
- newpgdir = new_pgdir(lg, pgtable, &repin);
+ if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
+ newpgdir = new_pgdir(cpu, pgtable, &repin);
/* Change the current pgd index to the new one. */
- lg->pgdidx = newpgdir;
+ cpu->cpu_pgd = newpgdir;
/* If it was completely blank, we map in the Guest kernel stack */
if (repin)
- pin_stack_pages(lg);
+ pin_stack_pages(cpu);
}
/*H:470 Finally, a routine which throws away everything: all PGD entries in all
@@ -468,11 +469,11 @@ static void release_all_pagetables(struct lguest *lg)
* mapping. Since kernel mappings are in every page table, it's easiest to
* throw them all away. This traps the Guest in amber for a while as
* everything faults back in, but it's rare. */
-void guest_pagetable_clear_all(struct lguest *lg)
+void guest_pagetable_clear_all(struct lg_cpu *cpu)
{
- release_all_pagetables(lg);
+ release_all_pagetables(cpu->lg);
/* We need the Guest kernel stack mapped again. */
- pin_stack_pages(lg);
+ pin_stack_pages(cpu);
}
/*:*/
/*M:009 Since we throw away all mappings when a kernel mapping changes, our
@@ -497,24 +498,24 @@ void guest_pagetable_clear_all(struct lguest *lg)
* _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
* they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
*/
-static void do_set_pte(struct lguest *lg, int idx,
+static void do_set_pte(struct lg_cpu *cpu, int idx,
unsigned long vaddr, pte_t gpte)
{
/* Look up the matching shadow page directory entry. */
- pgd_t *spgd = spgd_addr(lg, idx, vaddr);
+ pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
/* If the top level isn't present, there's no entry to update. */
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
/* Otherwise, we start by releasing the existing entry. */
- pte_t *spte = spte_addr(lg, *spgd, vaddr);
+ pte_t *spte = spte_addr(*spgd, vaddr);
release_pte(*spte);
/* If they're setting this entry as dirty or accessed, we might
* as well put that entry they've given us in now. This shaves
* 10% off a copy-on-write micro-benchmark. */
if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
- check_gpte(lg, gpte);
- *spte = gpte_to_spte(lg, gpte,
+ check_gpte(cpu, gpte);
+ *spte = gpte_to_spte(cpu, gpte,
pte_flags(gpte) & _PAGE_DIRTY);
} else
/* Otherwise kill it and we can demand_page() it in
@@ -533,22 +534,22 @@ static void do_set_pte(struct lguest *lg, int idx,
*
* The benefit is that when we have to track a new page table, we can copy keep
* all the kernel mappings. This speeds up context switch immensely. */
-void guest_set_pte(struct lguest *lg,
+void guest_set_pte(struct lg_cpu *cpu,
unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
{
/* Kernel mappings must be changed on all top levels. Slow, but
* doesn't happen often. */
- if (vaddr >= lg->kernel_address) {
+ if (vaddr >= cpu->lg->kernel_address) {
unsigned int i;
- for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
- if (lg->pgdirs[i].pgdir)
- do_set_pte(lg, i, vaddr, gpte);
+ for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
+ if (cpu->lg->pgdirs[i].pgdir)
+ do_set_pte(cpu, i, vaddr, gpte);
} else {
/* Is this page table one we have a shadow for? */
- int pgdir = find_pgdir(lg, gpgdir);
- if (pgdir != ARRAY_SIZE(lg->pgdirs))
+ int pgdir = find_pgdir(cpu->lg, gpgdir);
+ if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
/* If so, do the update. */
- do_set_pte(lg, pgdir, vaddr, gpte);
+ do_set_pte(cpu, pgdir, vaddr, gpte);
}
}
@@ -590,30 +591,32 @@ int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
{
/* We start on the first shadow page table, and give it a blank PGD
* page. */
- lg->pgdidx = 0;
- lg->pgdirs[lg->pgdidx].gpgdir = pgtable;
- lg->pgdirs[lg->pgdidx].pgdir = (pgd_t*)get_zeroed_page(GFP_KERNEL);
- if (!lg->pgdirs[lg->pgdidx].pgdir)
+ lg->pgdirs[0].gpgdir = pgtable;
+ lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
+ if (!lg->pgdirs[0].pgdir)
return -ENOMEM;
+ lg->cpus[0].cpu_pgd = 0;
return 0;
}
/* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
-void page_table_guest_data_init(struct lguest *lg)
+void page_table_guest_data_init(struct lg_cpu *cpu)
{
/* We get the kernel address: above this is all kernel memory. */
- if (get_user(lg->kernel_address, &lg->lguest_data->kernel_address)
+ if (get_user(cpu->lg->kernel_address,
+ &cpu->lg->lguest_data->kernel_address)
/* We tell the Guest that it can't use the top 4MB of virtual
* addresses used by the Switcher. */
- || put_user(4U*1024*1024, &lg->lguest_data->reserve_mem)
- || put_user(lg->pgdirs[lg->pgdidx].gpgdir,&lg->lguest_data->pgdir))
- kill_guest(lg, "bad guest page %p", lg->lguest_data);
+ || put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem)
+ || put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir))
+ kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
/* In flush_user_mappings() we loop from 0 to
* "pgd_index(lg->kernel_address)". This assumes it won't hit the
* Switcher mappings, so check that now. */
- if (pgd_index(lg->kernel_address) >= SWITCHER_PGD_INDEX)
- kill_guest(lg, "bad kernel address %#lx", lg->kernel_address);
+ if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
+ kill_guest(cpu, "bad kernel address %#lx",
+ cpu->lg->kernel_address);
}
/* When a Guest dies, our cleanup is fairly simple. */
@@ -634,17 +637,18 @@ void free_guest_pagetable(struct lguest *lg)
* Guest (and not the pages for other CPUs). We have the appropriate PTE pages
* for each CPU already set up, we just need to hook them in now we know which
* Guest is about to run on this CPU. */
-void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
+void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
{
pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
pgd_t switcher_pgd;
pte_t regs_pte;
+ unsigned long pfn;
/* Make the last PGD entry for this Guest point to the Switcher's PTE
* page for this CPU (with appropriate flags). */
- switcher_pgd = __pgd(__pa(switcher_pte_page) | _PAGE_KERNEL);
+ switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL);
- lg->pgdirs[lg->pgdidx].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
+ cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
/* We also change the Switcher PTE page. When we're running the Guest,
* we want the Guest's "regs" page to appear where the first Switcher
@@ -653,7 +657,8 @@ void map_switcher_in_guest(struct lguest *lg, struct lguest_pages *pages)
* CPU's "struct lguest_pages": if we make sure the Guest's register
* page is already mapped there, we don't have to copy them out
* again. */
- regs_pte = pfn_pte (__pa(lg->regs_page) >> PAGE_SHIFT, __pgprot(_PAGE_KERNEL));
+ pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
+ regs_pte = pfn_pte(pfn, __pgprot(__PAGE_KERNEL));
switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
}
/*:*/
diff --git a/drivers/lguest/segments.c b/drivers/lguest/segments.c
index 9e189cbec7d..ec6aa3f1c36 100644
--- a/drivers/lguest/segments.c
+++ b/drivers/lguest/segments.c
@@ -58,7 +58,7 @@ static int ignored_gdt(unsigned int num)
* Protection Fault in the Switcher when it restores a Guest segment register
* which tries to use that entry. Then we kill the Guest for causing such a
* mess: the message will be "unhandled trap 256". */
-static void fixup_gdt_table(struct lguest *lg, unsigned start, unsigned end)
+static void fixup_gdt_table(struct lg_cpu *cpu, unsigned start, unsigned end)
{
unsigned int i;
@@ -71,14 +71,14 @@ static void fixup_gdt_table(struct lguest *lg, unsigned start, unsigned end)
/* Segment descriptors contain a privilege level: the Guest is
* sometimes careless and leaves this as 0, even though it's
* running at privilege level 1. If so, we fix it here. */
- if ((lg->arch.gdt[i].b & 0x00006000) == 0)
- lg->arch.gdt[i].b |= (GUEST_PL << 13);
+ if ((cpu->arch.gdt[i].b & 0x00006000) == 0)
+ cpu->arch.gdt[i].b |= (GUEST_PL << 13);
/* Each descriptor has an "accessed" bit. If we don't set it
* now, the CPU will try to set it when the Guest first loads
* that entry into a segment register. But the GDT isn't
* writable by the Guest, so bad things can happen. */
- lg->arch.gdt[i].b |= 0x00000100;
+ cpu->arch.gdt[i].b |= 0x00000100;
}
}
@@ -109,31 +109,31 @@ void setup_default_gdt_entries(struct lguest_ro_state *state)
/* This routine sets up the initial Guest GDT for booting. All entries start
* as 0 (unusable). */
-void setup_guest_gdt(struct lguest *lg)
+void setup_guest_gdt(struct lg_cpu *cpu)
{
/* Start with full 0-4G segments... */
- lg->arch.gdt[GDT_ENTRY_KERNEL_CS] = FULL_EXEC_SEGMENT;
- lg->arch.gdt[GDT_ENTRY_KERNEL_DS] = FULL_SEGMENT;
+ cpu->arch.gdt[GDT_ENTRY_KERNEL_CS] = FULL_EXEC_SEGMENT;
+ cpu->arch.gdt[GDT_ENTRY_KERNEL_DS] = FULL_SEGMENT;
/* ...except the Guest is allowed to use them, so set the privilege
* level appropriately in the flags. */
- lg->arch.gdt[GDT_ENTRY_KERNEL_CS].b |= (GUEST_PL << 13);
- lg->arch.gdt[GDT_ENTRY_KERNEL_DS].b |= (GUEST_PL << 13);
+ cpu->arch.gdt[GDT_ENTRY_KERNEL_CS].b |= (GUEST_PL << 13);
+ cpu->arch.gdt[GDT_ENTRY_KERNEL_DS].b |= (GUEST_PL << 13);
}
/*H:650 An optimization of copy_gdt(), for just the three "thead-local storage"
* entries. */
-void copy_gdt_tls(const struct lguest *lg, struct desc_struct *gdt)
+void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt)
{
unsigned int i;
for (i = GDT_ENTRY_TLS_MIN; i <= GDT_ENTRY_TLS_MAX; i++)
- gdt[i] = lg->arch.gdt[i];
+ gdt[i] = cpu->arch.gdt[i];
}
/*H:640 When the Guest is run on a different CPU, or the GDT entries have
* changed, copy_gdt() is called to copy the Guest's GDT entries across to this
* CPU's GDT. */
-void copy_gdt(const struct lguest *lg, struct desc_struct *gdt)
+void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt)
{
unsigned int i;
@@ -141,38 +141,38 @@ void copy_gdt(const struct lguest *lg, struct desc_struct *gdt)
* replaced. See ignored_gdt() above. */
for (i = 0; i < GDT_ENTRIES; i++)
if (!ignored_gdt(i))
- gdt[i] = lg->arch.gdt[i];
+ gdt[i] = cpu->arch.gdt[i];
}
/*H:620 This is where the Guest asks us to load a new GDT (LHCALL_LOAD_GDT).
* We copy it from the Guest and tweak the entries. */
-void load_guest_gdt(struct lguest *lg, unsigned long table, u32 num)
+void load_guest_gdt(struct lg_cpu *cpu, unsigned long table, u32 num)
{
/* We assume the Guest has the same number of GDT entries as the
* Host, otherwise we'd have to dynamically allocate the Guest GDT. */
- if (num > ARRAY_SIZE(lg->arch.gdt))
- kill_guest(lg, "too many gdt entries %i", num);
+ if (num > ARRAY_SIZE(cpu->arch.gdt))
+ kill_guest(cpu, "too many gdt entries %i", num);
/* We read the whole thing in, then fix it up. */
- __lgread(lg, lg->arch.gdt, table, num * sizeof(lg->arch.gdt[0]));
- fixup_gdt_table(lg, 0, ARRAY_SIZE(lg->arch.gdt));
+ __lgread(cpu, cpu->arch.gdt, table, num * sizeof(cpu->arch.gdt[0]));
+ fixup_gdt_table(cpu, 0, ARRAY_SIZE(cpu->arch.gdt));
/* Mark that the GDT changed so the core knows it has to copy it again,
* even if the Guest is run on the same CPU. */
- lg->changed |= CHANGED_GDT;
+ cpu->changed |= CHANGED_GDT;
}
/* This is the fast-track version for just changing the three TLS entries.
* Remember that this happens on every context switch, so it's worth
* optimizing. But wouldn't it be neater to have a single hypercall to cover
* both cases? */
-void guest_load_tls(struct lguest *lg, unsigned long gtls)
+void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls)
{
- struct desc_struct *tls = &lg->arch.gdt[GDT_ENTRY_TLS_MIN];
+ struct desc_struct *tls = &cpu->arch.gdt[GDT_ENTRY_TLS_MIN];
- __lgread(lg, tls, gtls, sizeof(*tls)*GDT_ENTRY_TLS_ENTRIES);
- fixup_gdt_table(lg, GDT_ENTRY_TLS_MIN, GDT_ENTRY_TLS_MAX+1);
+ __lgread(cpu, tls, gtls, sizeof(*tls)*GDT_ENTRY_TLS_ENTRIES);
+ fixup_gdt_table(cpu, GDT_ENTRY_TLS_MIN, GDT_ENTRY_TLS_MAX+1);
/* Note that just the TLS entries have changed. */
- lg->changed |= CHANGED_GDT_TLS;
+ cpu->changed |= CHANGED_GDT_TLS;
}
/*:*/
diff --git a/drivers/lguest/x86/core.c b/drivers/lguest/x86/core.c
index 44adb00e149..61f2f8eb8ca 100644
--- a/drivers/lguest/x86/core.c
+++ b/drivers/lguest/x86/core.c
@@ -60,7 +60,7 @@ static struct lguest_pages *lguest_pages(unsigned int cpu)
(SWITCHER_ADDR + SHARED_SWITCHER_PAGES*PAGE_SIZE))[cpu]);
}
-static DEFINE_PER_CPU(struct lguest *, last_guest);
+static DEFINE_PER_CPU(struct lg_cpu *, last_cpu);
/*S:010
* We approach the Switcher.
@@ -73,16 +73,16 @@ static DEFINE_PER_CPU(struct lguest *, last_guest);
* since it last ran. We saw this set in interrupts_and_traps.c and
* segments.c.
*/
-static void copy_in_guest_info(struct lguest *lg, struct lguest_pages *pages)
+static void copy_in_guest_info(struct lg_cpu *cpu, struct lguest_pages *pages)
{
/* Copying all this data can be quite expensive. We usually run the
* same Guest we ran last time (and that Guest hasn't run anywhere else
* meanwhile). If that's not the case, we pretend everything in the
* Guest has changed. */
- if (__get_cpu_var(last_guest) != lg || lg->last_pages != pages) {
- __get_cpu_var(last_guest) = lg;
- lg->last_pages = pages;
- lg->changed = CHANGED_ALL;
+ if (__get_cpu_var(last_cpu) != cpu || cpu->last_pages != pages) {
+ __get_cpu_var(last_cpu) = cpu;
+ cpu->last_pages = pages;
+ cpu->changed = CHANGED_ALL;
}
/* These copies are pretty cheap, so we do them unconditionally: */
@@ -90,42 +90,42 @@ static void copy_in_guest_info(struct lguest *lg, struct lguest_pages *pages)
pages->state.host_cr3 = __pa(current->mm->pgd);
/* Set up the Guest's page tables to see this CPU's pages (and no
* other CPU's pages). */
- map_switcher_in_guest(lg, pages);
+ map_switcher_in_guest(cpu, pages);
/* Set up the two "TSS" members which tell the CPU what stack to use
* for traps which do directly into the Guest (ie. traps at privilege
* level 1). */
- pages->state.guest_tss.sp1 = lg->esp1;
- pages->state.guest_tss.ss1 = lg->ss1;
+ pages->state.guest_tss.esp1 = cpu->esp1;
+ pages->state.guest_tss.ss1 = cpu->ss1;
/* Copy direct-to-Guest trap entries. */
- if (lg->changed & CHANGED_IDT)
- copy_traps(lg, pages->state.guest_idt, default_idt_entries);
+ if (cpu->changed & CHANGED_IDT)
+ copy_traps(cpu, pages->state.guest_idt, default_idt_entries);
/* Copy all GDT entries which the Guest can change. */
- if (lg->changed & CHANGED_GDT)
- copy_gdt(lg, pages->state.guest_gdt);
+ if (cpu->changed & CHANGED_GDT)
+ copy_gdt(cpu, pages->state.guest_gdt);
/* If only the TLS entries have changed, copy them. */
- else if (lg->changed & CHANGED_GDT_TLS)
- copy_gdt_tls(lg, pages->state.guest_gdt);
+ else if (cpu->changed & CHANGED_GDT_TLS)
+ copy_gdt_tls(cpu, pages->state.guest_gdt);
/* Mark the Guest as unchanged for next time. */
- lg->changed = 0;
+ cpu->changed = 0;
}
/* Finally: the code to actually call into the Switcher to run the Guest. */
-static void run_guest_once(struct lguest *lg, struct lguest_pages *pages)
+static void run_guest_once(struct lg_cpu *cpu, struct lguest_pages *pages)
{
/* This is a dummy value we need for GCC's sake. */
unsigned int clobber;
/* Copy the guest-specific information into this CPU's "struct
* lguest_pages". */
- copy_in_guest_info(lg, pages);
+ copy_in_guest_info(cpu, pages);
/* Set the trap number to 256 (impossible value). If we fault while
* switching to the Guest (bad segment registers or bug), this will
* cause us to abort the Guest. */
- lg->regs->trapnum = 256;
+ cpu->regs->trapnum = 256;
/* Now: we push the "eflags" register on the stack, then do an "lcall".
* This is how we change from using the kernel code segment to using
@@ -143,7 +143,7 @@ static void run_guest_once(struct lguest *lg, struct lguest_pages *pages)
* 0-th argument above, ie "a"). %ebx contains the
* physical address of the Guest's top-level page
* directory. */
- : "0"(pages), "1"(__pa(lg->pgdirs[lg->pgdidx].pgdir))
+ : "0"(pages), "1"(__pa(cpu->lg->pgdirs[cpu->cpu_pgd].pgdir))
/* We tell gcc that all these registers could change,
* which means we don't have to save and restore them in
* the Switcher. */
@@ -161,12 +161,12 @@ static void run_guest_once(struct lguest *lg, struct lguest_pages *pages)
/*H:040 This is the i386-specific code to setup and run the Guest. Interrupts
* are disabled: we own the CPU. */
-void lguest_arch_run_guest(struct lguest *lg)
+void lguest_arch_run_guest(struct lg_cpu *cpu)
{
/* Remember the awfully-named TS bit? If the Guest has asked to set it
* we set it now, so we can trap and pass that trap to the Guest if it
* uses the FPU. */
- if (lg->ts)
+ if (cpu->ts)
lguest_set_ts();
/* SYSENTER is an optimized way of doing system calls. We can't allow
@@ -180,7 +180,7 @@ void lguest_arch_run_guest(struct lguest *lg)
/* Now we actually run the Guest. It will return when something
* interesting happens, and we can examine its registers to see what it
* was doing. */
- run_guest_once(lg, lguest_pages(raw_smp_processor_id()));
+ run_guest_once(cpu, lguest_pages(raw_smp_processor_id()));
/* Note that the "regs" pointer contains two extra entries which are
* not really registers: a trap number which says what interrupt or
@@ -191,11 +191,11 @@ void lguest_arch_run_guest(struct lguest *lg)
* bad virtual address. We have to grab this now, because once we
* re-enable interrupts an interrupt could fault and thus overwrite
* cr2, or we could even move off to a different CPU. */
- if (lg->regs->trapnum == 14)
- lg->arch.last_pagefault = read_cr2();
+ if (cpu->regs->trapnum == 14)
+ cpu->arch.last_pagefault = read_cr2();
/* Similarly, if we took a trap because the Guest used the FPU,
* we have to restore the FPU it expects to see. */
- else if (lg->regs->trapnum == 7)
+ else if (cpu->regs->trapnum == 7)
math_state_restore();
/* Restore SYSENTER if it's supposed to be on. */
@@ -214,22 +214,22 @@ void lguest_arch_run_guest(struct lguest *lg)
* When the Guest uses one of these instructions, we get a trap (General
* Protection Fault) and come here. We see if it's one of those troublesome
* instructions and skip over it. We return true if we did. */
-static int emulate_insn(struct lguest *lg)
+static int emulate_insn(struct lg_cpu *cpu)
{
u8 insn;
unsigned int insnlen = 0, in = 0, shift = 0;
/* The eip contains the *virtual* address of the Guest's instruction:
* guest_pa just subtracts the Guest's page_offset. */
- unsigned long physaddr = guest_pa(lg, lg->regs->eip);
+ unsigned long physaddr = guest_pa(cpu, cpu->regs->eip);
/* This must be the Guest kernel trying to do something, not userspace!
* The bottom two bits of the CS segment register are the privilege
* level. */
- if ((lg->regs->cs & 3) != GUEST_PL)
+ if ((cpu->regs->cs & 3) != GUEST_PL)
return 0;
/* Decoding x86 instructions is icky. */
- insn = lgread(lg, physaddr, u8);
+ insn = lgread(cpu, physaddr, u8);
/* 0x66 is an "operand prefix". It means it's using the upper 16 bits
of the eax register. */
@@ -237,7 +237,7 @@ static int emulate_insn(struct lguest *lg)
shift = 16;
/* The instruction is 1 byte so far, read the next byte. */
insnlen = 1;
- insn = lgread(lg, physaddr + insnlen, u8);
+ insn = lgread(cpu, physaddr + insnlen, u8);
}
/* We can ignore the lower bit for the moment and decode the 4 opcodes
@@ -268,26 +268,26 @@ static int emulate_insn(struct lguest *lg)
if (in) {
/* Lower bit tells is whether it's a 16 or 32 bit access */
if (insn & 0x1)
- lg->regs->eax = 0xFFFFFFFF;
+ cpu->regs->eax = 0xFFFFFFFF;
else
- lg->regs->eax |= (0xFFFF << shift);
+ cpu->regs->eax |= (0xFFFF << shift);
}
/* Finally, we've "done" the instruction, so move past it. */
- lg->regs->eip += insnlen;
+ cpu->regs->eip += insnlen;
/* Success! */
return 1;
}
/*H:050 Once we've re-enabled interrupts, we look at why the Guest exited. */
-void lguest_arch_handle_trap(struct lguest *lg)
+void lguest_arch_handle_trap(struct lg_cpu *cpu)
{
- switch (lg->regs->trapnum) {
+ switch (cpu->regs->trapnum) {
case 13: /* We've intercepted a General Protection Fault. */
/* Check if this was one of those annoying IN or OUT
* instructions which we need to emulate. If so, we just go
* back into the Guest after we've done it. */
- if (lg->regs->errcode == 0) {
- if (emulate_insn(lg))
+ if (cpu->regs->errcode == 0) {
+ if (emulate_insn(cpu))
return;
}
break;
@@ -301,7 +301,8 @@ void lguest_arch_handle_trap(struct lguest *lg)
*
* The errcode tells whether this was a read or a write, and
* whether kernel or userspace code. */
- if (demand_page(lg, lg->arch.last_pagefault, lg->regs->errcode))
+ if (demand_page(cpu, cpu->arch.last_pagefault,
+ cpu->regs->errcode))
return;
/* OK, it's really not there (or not OK): the Guest needs to
@@ -311,15 +312,16 @@ void lguest_arch_handle_trap(struct lguest *lg)
* Note that if the Guest were really messed up, this could
* happen before it's done the LHCALL_LGUEST_INIT hypercall, so
* lg->lguest_data could be NULL */
- if (lg->lguest_data &&
- put_user(lg->arch.last_pagefault, &lg->lguest_data->cr2))
- kill_guest(lg, "Writing cr2");
+ if (cpu->lg->lguest_data &&
+ put_user(cpu->arch.last_pagefault,
+ &cpu->lg->lguest_data->cr2))
+ kill_guest(cpu, "Writing cr2");
break;
case 7: /* We've intercepted a Device Not Available fault. */
/* If the Guest doesn't want to know, we already restored the
* Floating Point Unit, so we just continue without telling
* it. */
- if (!lg->ts)
+ if (!cpu->ts)
return;
break;
case 32 ... 255:
@@ -332,19 +334,19 @@ void lguest_arch_handle_trap(struct lguest *lg)
case LGUEST_TRAP_ENTRY:
/* Our 'struct hcall_args' maps directly over our regs: we set
* up the pointer now to indicate a hypercall is pending. */
- lg->hcall = (struct hcall_args *)lg->regs;
+ cpu->hcall = (struct hcall_args *)cpu->regs;
return;
}
/* We didn't handle the trap, so it needs to go to the Guest. */
- if (!deliver_trap(lg, lg->regs->trapnum))
+ if (!deliver_trap(cpu, cpu->regs->trapnum))
/* If the Guest doesn't have a handler (either it hasn't
* registered any yet, or it's one of the faults we don't let
* it handle), it dies with a cryptic error message. */
- kill_guest(lg, "unhandled trap %li at %#lx (%#lx)",
- lg->regs->trapnum, lg->regs->eip,
- lg->regs->trapnum == 14 ? lg->arch.last_pagefault
- : lg->regs->errcode);
+ kill_guest(cpu, "unhandled trap %li at %#lx (%#lx)",
+ cpu->regs->trapnum, cpu->regs->eip,
+ cpu->regs->trapnum == 14 ? cpu->arch.last_pagefault
+ : cpu->regs->errcode);
}
/* Now we can look at each of the routines this calls, in increasing order of
@@ -487,17 +489,17 @@ void __exit lguest_arch_host_fini(void)
/*H:122 The i386-specific hypercalls simply farm out to the right functions. */
-int lguest_arch_do_hcall(struct lguest *lg, struct hcall_args *args)
+int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
{
switch (args->arg0) {
case LHCALL_LOAD_GDT:
- load_guest_gdt(lg, args->arg1, args->arg2);
+ load_guest_gdt(cpu, args->arg1, args->arg2);
break;
case LHCALL_LOAD_IDT_ENTRY:
- load_guest_idt_entry(lg, args->arg1, args->arg2, args->arg3);
+ load_guest_idt_entry(cpu, args->arg1, args->arg2, args->arg3);
break;
case LHCALL_LOAD_TLS:
- guest_load_tls(lg, args->arg1);
+ guest_load_tls(cpu, args->arg1);
break;
default:
/* Bad Guest. Bad! */
@@ -507,13 +509,14 @@ int lguest_arch_do_hcall(struct lguest *lg, struct hcall_args *args)
}
/*H:126 i386-specific hypercall initialization: */
-int lguest_arch_init_hypercalls(struct lguest *lg)
+int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
{
u32 tsc_speed;
/* The pointer to the Guest's "struct lguest_data" is the only
* argument. We check that address now. */
- if (!lguest_address_ok(lg, lg->hcall->arg1, sizeof(*lg->lguest_data)))
+ if (!lguest_address_ok(cpu->lg, cpu->hcall->arg1,
+ sizeof(*cpu->lg->lguest_data)))
return -EFAULT;
/* Having checked it, we simply set lg->lguest_data to point straight
@@ -521,7 +524,7 @@ int lguest_arch_init_hypercalls(struct lguest *lg)
* copy_to_user/from_user from now on, instead of lgread/write. I put
* this in to show that I'm not immune to writing stupid
* optimizations. */
- lg->lguest_data = lg->mem_base + lg->hcall->arg1;
+ cpu->lg->lguest_data = cpu->lg->mem_base + cpu->hcall->arg1;
/* We insist that the Time Stamp Counter exist and doesn't change with
* cpu frequency. Some devious chip manufacturers decided that TSC
@@ -534,12 +537,12 @@ int lguest_arch_init_hypercalls(struct lguest *lg)
tsc_speed = tsc_khz;
else
tsc_speed = 0;
- if (put_user(tsc_speed, &lg->lguest_data->tsc_khz))
+ if (put_user(tsc_speed, &cpu->lg->lguest_data->tsc_khz))
return -EFAULT;
/* The interrupt code might not like the system call vector. */
- if (!check_syscall_vector(lg))
- kill_guest(lg, "bad syscall vector");
+ if (!check_syscall_vector(cpu->lg))
+ kill_guest(cpu, "bad syscall vector");
return 0;
}
@@ -548,9 +551,9 @@ int lguest_arch_init_hypercalls(struct lguest *lg)
*
* Most of the Guest's registers are left alone: we used get_zeroed_page() to
* allocate the structure, so they will be 0. */
-void lguest_arch_setup_regs(struct lguest *lg, unsigned long start)
+void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start)
{
- struct lguest_regs *regs = lg->regs;
+ struct lguest_regs *regs = cpu->regs;
/* There are four "segment" registers which the Guest needs to boot:
* The "code segment" register (cs) refers to the kernel code segment
@@ -577,5 +580,5 @@ void lguest_arch_setup_regs(struct lguest *lg, unsigned long start)
/* There are a couple of GDT entries the Guest expects when first
* booting. */
- setup_guest_gdt(lg);
+ setup_guest_gdt(cpu);
}