diff options
Diffstat (limited to 'fs/ntfs')
-rw-r--r-- | fs/ntfs/ChangeLog | 38 | ||||
-rw-r--r-- | fs/ntfs/Makefile | 2 | ||||
-rw-r--r-- | fs/ntfs/file.c | 2247 |
3 files changed, 2242 insertions, 45 deletions
diff --git a/fs/ntfs/ChangeLog b/fs/ntfs/ChangeLog index 3b8ff231808..03015c7b236 100644 --- a/fs/ntfs/ChangeLog +++ b/fs/ntfs/ChangeLog @@ -1,16 +1,15 @@ ToDo/Notes: - Find and fix bugs. - - In between ntfs_prepare/commit_write, need exclusion between - simultaneous file extensions. This is given to us by holding i_sem - on the inode. The only places in the kernel when a file is resized - are prepare/commit write and ntfs_truncate() for both of which i_sem - is held. Just have to be careful in read-/writepage and other helpers + - The only places in the kernel where a file is resized are + ntfs_file_write*() and ntfs_truncate() for both of which i_sem is + held. Just have to be careful in read-/writepage and other helpers not running under i_sem that we play nice... Also need to be careful - with initialized_size extention in ntfs_prepare_write and writepage. - UPDATE: The only things that need to be checked are - prepare/commit_write as well as the compressed write and the other - attribute resize/write cases like index attributes, etc. For now - none of these are implemented so are safe. + with initialized_size extension in ntfs_file_write*() and writepage. + UPDATE: The only things that need to be checked are the compressed + write and the other attribute resize/write cases like index + attributes, etc. For now none of these are implemented so are safe. + - Implement filling in of holes in aops.c::ntfs_writepage() and its + helpers. - Implement mft.c::sync_mft_mirror_umount(). We currently will just leave the volume dirty on umount if the final iput(vol->mft_ino) causes a write of any mirrored mft records due to the mft mirror @@ -20,7 +19,7 @@ ToDo/Notes: - Enable the code for setting the NT4 compatibility flag when we start making NTFS 1.2 specific modifications. -2.1.25-WIP +2.1.25 - (Almost) fully implement write(2) and truncate(2). - Change ntfs_map_runlist_nolock(), ntfs_attr_find_vcn_nolock() and {__,}ntfs_cluster_free() to also take an optional attribute search @@ -49,7 +48,12 @@ ToDo/Notes: extend the allocation of an attributes. Optionally, the data size, but not the initialized size can be extended, too. - Implement fs/ntfs/inode.[hc]::ntfs_truncate(). It only supports - uncompressed and unencrypted files. + uncompressed and unencrypted files and it never creates sparse files + at least for the moment (making a file sparse requires us to modify + its directory entries and we do not support directory operations at + the moment). Also, support for highly fragmented files, i.e. ones + whose data attribute is split across multiple extents, is severly + limited. When such a case is encountered, EOPNOTSUPP is returned. - Enable ATTR_SIZE attribute changes in ntfs_setattr(). This completes the initial implementation of file truncation. Now both open(2)ing a file with the O_TRUNC flag and the {,f}truncate(2) system calls @@ -61,6 +65,16 @@ ToDo/Notes: and cond_resched() in the main loop as we could be dirtying a lot of pages and this ensures we play nice with the VM and the system as a whole. + - Implement file operations ->write, ->aio_write, ->writev for regular + files. This replaces the old use of generic_file_write(), et al and + the address space operations ->prepare_write and ->commit_write. + This means that both sparse and non-sparse (unencrypted and + uncompressed) files can now be extended using the normal write(2) + code path. There are two limitations at present and these are that + we never create sparse files and that we only have limited support + for highly fragmented files, i.e. ones whose data attribute is split + across multiple extents. When such a case is encountered, + EOPNOTSUPP is returned. 2.1.24 - Lots of bug fixes and support more clean journal states. diff --git a/fs/ntfs/Makefile b/fs/ntfs/Makefile index a3ce2c0e7dd..d0d45d1c853 100644 --- a/fs/ntfs/Makefile +++ b/fs/ntfs/Makefile @@ -6,7 +6,7 @@ ntfs-objs := aops.o attrib.o collate.o compress.o debug.o dir.o file.o \ index.o inode.o mft.o mst.o namei.o runlist.o super.o sysctl.o \ unistr.o upcase.o -EXTRA_CFLAGS = -DNTFS_VERSION=\"2.1.25-WIP\" +EXTRA_CFLAGS = -DNTFS_VERSION=\"2.1.25\" ifeq ($(CONFIG_NTFS_DEBUG),y) EXTRA_CFLAGS += -DDEBUG diff --git a/fs/ntfs/file.c b/fs/ntfs/file.c index be9fd1dd423..cf2a0e2330d 100644 --- a/fs/ntfs/file.c +++ b/fs/ntfs/file.c @@ -19,11 +19,24 @@ * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ -#include <linux/pagemap.h> #include <linux/buffer_head.h> +#include <linux/pagemap.h> +#include <linux/pagevec.h> +#include <linux/sched.h> +#include <linux/swap.h> +#include <linux/uio.h> +#include <linux/writeback.h> +#include <asm/page.h> +#include <asm/uaccess.h> + +#include "attrib.h" +#include "bitmap.h" #include "inode.h" #include "debug.h" +#include "lcnalloc.h" +#include "malloc.h" +#include "mft.h" #include "ntfs.h" /** @@ -56,6 +69,2176 @@ static int ntfs_file_open(struct inode *vi, struct file *filp) #ifdef NTFS_RW /** + * ntfs_attr_extend_initialized - extend the initialized size of an attribute + * @ni: ntfs inode of the attribute to extend + * @new_init_size: requested new initialized size in bytes + * @cached_page: store any allocated but unused page here + * @lru_pvec: lru-buffering pagevec of the caller + * + * Extend the initialized size of an attribute described by the ntfs inode @ni + * to @new_init_size bytes. This involves zeroing any non-sparse space between + * the old initialized size and @new_init_size both in the page cache and on + * disk (if relevant complete pages are zeroed in the page cache then these may + * simply be marked dirty for later writeout). There is one caveat and that is + * that if any uptodate page cache pages between the old initialized size and + * the smaller of @new_init_size and the file size (vfs inode->i_size) are in + * memory, these need to be marked dirty without being zeroed since they could + * be non-zero due to mmap() based writes. + * + * As a side-effect, the file size (vfs inode->i_size) may be incremented as, + * in the resident attribute case, it is tied to the initialized size and, in + * the non-resident attribute case, it may not fall below the initialized size. + * + * Note that if the attribute is resident, we do not need to touch the page + * cache at all. This is because if the page cache page is not uptodate we + * bring it uptodate later, when doing the write to the mft record since we + * then already have the page mapped. And if the page is uptodate, the + * non-initialized region will already have been zeroed when the page was + * brought uptodate and the region may in fact already have been overwritten + * with new data via mmap() based writes, so we cannot just zero it. And since + * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped + * is unspecified, we choose not to do zeroing and thus we do not need to touch + * the page at all. For a more detailed explanation see ntfs_truncate() which + * is in fs/ntfs/inode.c. + * + * @cached_page and @lru_pvec are just optimisations for dealing with multiple + * pages. + * + * Return 0 on success and -errno on error. In the case that an error is + * encountered it is possible that the initialized size will already have been + * incremented some way towards @new_init_size but it is guaranteed that if + * this is the case, the necessary zeroing will also have happened and that all + * metadata is self-consistent. + * + * Locking: This function locks the mft record of the base ntfs inode and + * maintains the lock throughout execution of the function. This is required + * so that the initialized size of the attribute can be modified safely. + */ +static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size, + struct page **cached_page, struct pagevec *lru_pvec) +{ + s64 old_init_size; + loff_t old_i_size; + pgoff_t index, end_index; + unsigned long flags; + struct inode *vi = VFS_I(ni); + ntfs_inode *base_ni; + MFT_RECORD *m = NULL; + ATTR_RECORD *a; + ntfs_attr_search_ctx *ctx = NULL; + struct address_space *mapping; + struct page *page = NULL; + u8 *kattr; + int err; + u32 attr_len; + + read_lock_irqsave(&ni->size_lock, flags); + old_init_size = ni->initialized_size; + old_i_size = i_size_read(vi); + BUG_ON(new_init_size > ni->allocated_size); + read_unlock_irqrestore(&ni->size_lock, flags); + ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " + "old_initialized_size 0x%llx, " + "new_initialized_size 0x%llx, i_size 0x%llx.", + vi->i_ino, (unsigned)le32_to_cpu(ni->type), + (unsigned long long)old_init_size, + (unsigned long long)new_init_size, old_i_size); + if (!NInoAttr(ni)) + base_ni = ni; + else + base_ni = ni->ext.base_ntfs_ino; + /* Use goto to reduce indentation and we need the label below anyway. */ + if (NInoNonResident(ni)) + goto do_non_resident_extend; + BUG_ON(old_init_size != old_i_size); + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + m = NULL; + goto err_out; + } + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + goto err_out; + } + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, 0, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + goto err_out; + } + m = ctx->mrec; + a = ctx->attr; + BUG_ON(a->non_resident); + /* The total length of the attribute value. */ + attr_len = le32_to_cpu(a->data.resident.value_length); + BUG_ON(old_i_size != (loff_t)attr_len); + /* + * Do the zeroing in the mft record and update the attribute size in + * the mft record. + */ + kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); + memset(kattr + attr_len, 0, new_init_size - attr_len); + a->data.resident.value_length = cpu_to_le32((u32)new_init_size); + /* Finally, update the sizes in the vfs and ntfs inodes. */ + write_lock_irqsave(&ni->size_lock, flags); + i_size_write(vi, new_init_size); + ni->initialized_size = new_init_size; + write_unlock_irqrestore(&ni->size_lock, flags); + goto done; +do_non_resident_extend: + /* + * If the new initialized size @new_init_size exceeds the current file + * size (vfs inode->i_size), we need to extend the file size to the + * new initialized size. + */ + if (new_init_size > old_i_size) { + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + m = NULL; + goto err_out; + } + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + goto err_out; + } + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, 0, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + goto err_out; + } + m = ctx->mrec; + a = ctx->attr; + BUG_ON(!a->non_resident); + BUG_ON(old_i_size != (loff_t) + sle64_to_cpu(a->data.non_resident.data_size)); + a->data.non_resident.data_size = cpu_to_sle64(new_init_size); + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + /* Update the file size in the vfs inode. */ + i_size_write(vi, new_init_size); + ntfs_attr_put_search_ctx(ctx); + ctx = NULL; + unmap_mft_record(base_ni); + m = NULL; + } + mapping = vi->i_mapping; + index = old_init_size >> PAGE_CACHE_SHIFT; + end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; + do { + /* + * Read the page. If the page is not present, this will zero + * the uninitialized regions for us. + */ + page = read_cache_page(mapping, index, + (filler_t*)mapping->a_ops->readpage, NULL); + if (IS_ERR(page)) { + err = PTR_ERR(page); + goto init_err_out; + } + wait_on_page_locked(page); + if (unlikely(!PageUptodate(page) || PageError(page))) { + page_cache_release(page); + err = -EIO; + goto init_err_out; + } + /* + * Update the initialized size in the ntfs inode. This is + * enough to make ntfs_writepage() work. + */ + write_lock_irqsave(&ni->size_lock, flags); + ni->initialized_size = (index + 1) << PAGE_CACHE_SHIFT; + if (ni->initialized_size > new_init_size) + ni->initialized_size = new_init_size; + write_unlock_irqrestore(&ni->size_lock, flags); + /* Set the page dirty so it gets written out. */ + set_page_dirty(page); + page_cache_release(page); + /* + * Play nice with the vm and the rest of the system. This is + * very much needed as we can potentially be modifying the + * initialised size from a very small value to a really huge + * value, e.g. + * f = open(somefile, O_TRUNC); + * truncate(f, 10GiB); + * seek(f, 10GiB); + * write(f, 1); + * And this would mean we would be marking dirty hundreds of + * thousands of pages or as in the above example more than + * two and a half million pages! + * + * TODO: For sparse pages could optimize this workload by using + * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This + * would be set in readpage for sparse pages and here we would + * not need to mark dirty any pages which have this bit set. + * The only caveat is that we have to clear the bit everywhere + * where we allocate any clusters that lie in the page or that + * contain the page. + * + * TODO: An even greater optimization would be for us to only + * call readpage() on pages which are not in sparse regions as + * determined from the runlist. This would greatly reduce the + * number of pages we read and make dirty in the case of sparse + * files. + */ + balance_dirty_pages_ratelimited(mapping); + cond_resched(); + } while (++index < end_index); + read_lock_irqsave(&ni->size_lock, flags); + BUG_ON(ni->initialized_size != new_init_size); + read_unlock_irqrestore(&ni->size_lock, flags); + /* Now bring in sync the initialized_size in the mft record. */ + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + m = NULL; + goto init_err_out; + } + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + goto init_err_out; + } + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, 0, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + goto init_err_out; + } + m = ctx->mrec; + a = ctx->attr; + BUG_ON(!a->non_resident); + a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); +done: + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + if (ctx) + ntfs_attr_put_search_ctx(ctx); + if (m) + unmap_mft_record(base_ni); + ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", + (unsigned long long)new_init_size, i_size_read(vi)); + return 0; +init_err_out: + write_lock_irqsave(&ni->size_lock, flags); + ni->initialized_size = old_init_size; + write_unlock_irqrestore(&ni->size_lock, flags); +err_out: + if (ctx) + ntfs_attr_put_search_ctx(ctx); + if (m) + unmap_mft_record(base_ni); + ntfs_debug("Failed. Returning error code %i.", err); + return err; +} + +/** + * ntfs_fault_in_pages_readable - + * + * Fault a number of userspace pages into pagetables. + * + * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes + * with more than two userspace pages as well as handling the single page case + * elegantly. + * + * If you find this difficult to understand, then think of the while loop being + * the following code, except that we do without the integer variable ret: + * + * do { + * ret = __get_user(c, uaddr); + * uaddr += PAGE_SIZE; + * } while (!ret && uaddr < end); + * + * Note, the final __get_user() may well run out-of-bounds of the user buffer, + * but _not_ out-of-bounds of the page the user buffer belongs to, and since + * this is only a read and not a write, and since it is still in the same page, + * it should not matter and this makes the code much simpler. + */ +static inline void ntfs_fault_in_pages_readable(const char __user *uaddr, + int bytes) +{ + const char __user *end; + volatile char c; + + /* Set @end to the first byte outside the last page we care about. */ + end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes); + + while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end)) + ; +} + +/** + * ntfs_fault_in_pages_readable_iovec - + * + * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs. + */ +static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov, + size_t iov_ofs, int bytes) +{ + do { + const char __user *buf; + unsigned len; + + buf = iov->iov_base + iov_ofs; + len = iov->iov_len - iov_ofs; + if (len > bytes) + len = bytes; + ntfs_fault_in_pages_readable(buf, len); + bytes -= len; + iov++; + iov_ofs = 0; + } while (bytes); +} + +/** + * __ntfs_grab_cache_pages - obtain a number of locked pages + * @mapping: address space mapping from which to obtain page cache pages + * @index: starting index in @mapping at which to begin obtaining pages + * @nr_pages: number of page cache pages to obtain + * @pages: array of pages in which to return the obtained page cache pages + * @cached_page: allocated but as yet unused page + * @lru_pvec: lru-buffering pagevec of caller + * + * Obtain @nr_pages locked page cache pages from the mapping @maping and + * starting at index @index. + * + * If a page is newly created, increment its refcount and add it to the + * caller's lru-buffering pagevec @lru_pvec. + * + * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages + * are obtained at once instead of just one page and that 0 is returned on + * success and -errno on error. + * + * Note, the page locks are obtained in ascending page index order. + */ +static inline int __ntfs_grab_cache_pages(struct address_space *mapping, + pgoff_t index, const unsigned nr_pages, struct page **pages, + struct page **cached_page, struct pagevec *lru_pvec) +{ + int err, nr; + + BUG_ON(!nr_pages); + err = nr = 0; + do { + pages[nr] = find_lock_page(mapping, index); + if (!pages[nr]) { + if (!*cached_page) { + *cached_page = page_cache_alloc(mapping); + if (unlikely(!*cached_page)) { + err = -ENOMEM; + goto err_out; + } + } + err = add_to_page_cache(*cached_page, mapping, index, + GFP_KERNEL); + if (unlikely(err)) { + if (err == -EEXIST) + continue; + goto err_out; + } + pages[nr] = *cached_page; + page_cache_get(*cached_page); + if (unlikely(!pagevec_add(lru_pvec, *cached_page))) + __pagevec_lru_add(lru_pvec); + *cached_page = NULL; + } + index++; + nr++; + } while (nr < nr_pages); +out: + return err; +err_out: + while (nr > 0) { + unlock_page(pages[--nr]); + page_cache_release(pages[nr]); + } + goto out; +} + +static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) +{ + lock_buffer(bh); + get_bh(bh); + bh->b_end_io = end_buffer_read_sync; + return submit_bh(READ, bh); +} + +/** + * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data + * @pages: array of destination pages + * @nr_pages: number of pages in @pages + * @pos: byte position in file at which the write begins + * @bytes: number of bytes to be written + * + * This is called for non-resident attributes from ntfs_file_buffered_write() + * with i_sem held on the inode (@pages[0]->mapping->host). There are + * @nr_pages pages in @pages which are locked but not kmap()ped. The source + * data has not yet been copied into the @pages. + * + * Need to fill any holes with actual clusters, allocate buffers if necessary, + * ensure all the buffers are mapped, and bring uptodate any buffers that are + * only partially being written to. + * + * If @nr_pages is greater than one, we are guaranteed that the cluster size is + * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside + * the same cluster and that they are the entirety of that cluster, and that + * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. + * + * i_size is not to be modified yet. + * + * Return 0 on success or -errno on error. + */ +static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, + unsigned nr_pages, s64 pos, size_t bytes) +{ + VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; + LCN lcn; + s64 bh_pos, vcn_len, end, initialized_size; + sector_t lcn_block; + struct page *page; + struct inode *vi; + ntfs_inode *ni, *base_ni = NULL; + ntfs_volume *vol; + runlist_element *rl, *rl2; + struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; + ntfs_attr_search_ctx *ctx = NULL; + MFT_RECORD *m = NULL; + ATTR_RECORD *a = NULL; + unsigned long flags; + u32 attr_rec_len = 0; + unsigned blocksize, u; + int err, mp_size; + BOOL rl_write_locked, was_hole, is_retry; + unsigned char blocksize_bits; + struct { + u8 runlist_merged:1; + u8 mft_attr_mapped:1; + u8 mp_rebuilt:1; + u8 attr_switched:1; + } status = { 0, 0, 0, 0 }; + + BUG_ON(!nr_pages); + BUG_ON(!pages); + BUG_ON(!*pages); + vi = pages[0]->mapping->host; + ni = NTFS_I(vi); + vol = ni->vol; + ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " + "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%x.", + vi->i_ino, ni->type, pages[0]->index, nr_pages, + (long long)pos, bytes); + blocksize_bits = vi->i_blkbits; + blocksize = 1 << blocksize_bits; + u = 0; + do { + struct page *page = pages[u]; + /* + * create_empty_buffers() will create uptodate/dirty buffers if + * the page is uptodate/dirty. + */ + if (!page_has_buffers(page)) { + create_empty_buffers(page, blocksize, 0); + if (unlikely(!page_has_buffers(page))) + return -ENOMEM; + } + } while (++u < nr_pages); + rl_write_locked = FALSE; + rl = NULL; + err = 0; + vcn = lcn = -1; + vcn_len = 0; + lcn_block = -1; + was_hole = FALSE; + cpos = pos >> vol->cluster_size_bits; + end = pos + bytes; + cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; + /* + * Loop over each page and for each page over each buffer. Use goto to + * reduce indentation. + */ + u = 0; +do_next_page: + page = pages[u]; + bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; + bh = head = page_buffers(page); + do { + VCN cdelta; + s64 bh_end; + unsigned bh_cofs; + + /* Clear buffer_new on all buffers to reinitialise state. */ + if (buffer_new(bh)) + clear_buffer_new(bh); + bh_end = bh_pos + blocksize; + bh_cpos = bh_pos >> vol->cluster_size_bits; + bh_cofs = bh_pos & vol->cluster_size_mask; + if (buffer_mapped(bh)) { + /* + * The buffer is already mapped. If it is uptodate, + * ignore it. + */ + if (buffer_uptodate(bh)) + continue; + /* + * The buffer is not uptodate. If the page is uptodate + * set the buffer uptodate and otherwise ignore it. + */ + if (PageUptodate(page)) { + set_buffer_uptodate(bh); + continue; + } + /* + * Neither the page nor the buffer are uptodate. If + * the buffer is only partially being written to, we + * need to read it in before the write, i.e. now. + */ + if ((bh_pos < pos && bh_end > pos) || + (bh_pos < end && bh_end > end)) { + /* + * If the buffer is fully or partially within + * the initialized size, do an actual read. + * Otherwise, simply zero the buffer. + */ + read_lock_irqsave(&ni->size_lock, flags); + initialized_size = ni->initialized_size; + read_unlock_irqrestore(&ni->size_lock, flags); + if (bh_pos < initialized_size) { + ntfs_submit_bh_for_read(bh); + *wait_bh++ = bh; + } else { + u8 *kaddr = kmap_atomic(page, KM_USER0); + memset(kaddr + bh_offset(bh), 0, + blocksize); + kunmap_atomic(kaddr, KM_USER0); + flush_dcache_page(page); + set_buffer_uptodate(bh); + } + } + continue; + } + /* Unmapped buffer. Need to map it. */ + bh->b_bdev = vol->sb->s_bdev; + /* + * If the current buffer is in the same clusters as the map + * cache, there is no need to check the runlist again. The + * map cache is made up of @vcn, which is the first cached file + * cluster, @vcn_len which is the number of cached file + * clusters, @lcn is the device cluster corresponding to @vcn, + * and @lcn_block is the block number corresponding to @lcn. + */ + cdelta = bh_cpos - vcn; + if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { +map_buffer_cached: + BUG_ON(lcn < 0); + bh->b_blocknr = lcn_block + + (cdelta << (vol->cluster_size_bits - + blocksize_bits)) + + (bh_cofs >> blocksize_bits); + set_buffer_mapped(bh); + /* + * If the page is uptodate so is the buffer. If the + * buffer is fully outside the write, we ignore it if + * it was already allocated and we mark it dirty so it + * gets written out if we allocated it. On the other + * hand, if we allocated the buffer but we are not + * marking it dirty we set buffer_new so we can do + * error recovery. + */ + if (PageUptodate(page)) { + if (!buffer_uptodate(bh)) + set_buffer_uptodate(bh); + if (unlikely(was_hole)) { + /* We allocated the buffer. */ + unmap_underlying_metadata(bh->b_bdev, + bh->b_blocknr); + if (bh_end <= pos || bh_pos >= end) + mark_buffer_dirty(bh); + else + set_buffer_new(bh); + } + continue; + } + /* Page is _not_ uptodate. */ + if (likely(!was_hole)) { + /* + * Buffer was already allocated. If it is not + * uptodate and is only partially being written + * to, we need to read it in before the write, + * i.e. now. + */ + if (!buffer_uptodate(bh) && ((bh_pos < pos && + bh_end > pos) || + (bh_end > end && + bh_end > end))) { + /* + * If the buffer is fully or partially + * within the initialized size, do an + * actual read. Otherwise, simply zero + * the buffer. + */ + read_lock_irqsave(&ni->size_lock, + flags); + initialized_size = ni->initialized_size; + read_unlock_irqrestore(&ni->size_lock, + flags); + if (bh_pos < initialized_size) { + ntfs_submit_bh_for_read(bh); + *wait_bh++ = bh; + } else { + u8 *kaddr = kmap_atomic(page, + KM_USER0); + memset(kaddr + bh_offset(bh), + 0, blocksize); + kunmap_atomic(kaddr, KM_USER0); + flush_dcache_page(page); + set_buffer_uptodate(bh); + } + } + continue; + } + /* We allocated the buffer. */ + unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); + /* + * If the buffer is fully outside the write, zero it, + * set it uptodate, and mark it dirty so it gets + * written out. If it is partially being written to, + * zero region surrounding the write but leave it to + * commit write to do anything else. Finally, if the + * buffer is fully being overwritten, do nothing. + */ + if (bh_end <= pos || bh_pos >= end) { + if (!buffer_uptodate(bh)) { + u8 *kaddr = kmap_atomic(page, KM_USER0); + memset(kaddr + bh_offset(bh), 0, + blocksize); + kunmap_atomic(kaddr, KM_USER0); + flush_dcache_page(page); + set_buffer_uptodate(bh); + } + mark_buffer_dirty(bh); + continue; + } + set_buffer_new(bh); + if (!buffer_uptodate(bh) && + (bh_pos < pos || bh_end > end)) { + u8 *kaddr; + unsigned pofs; + + kaddr = kmap_atomic(page, KM_USER0); + if (bh_pos < pos) { + pofs = bh_pos & ~PAGE_CACHE_MASK; + memset(kaddr + pofs, 0, pos - bh_pos); + } + if (bh_end > end) { + pofs = end & ~PAGE_CACHE_MASK; + memset(kaddr + pofs, 0, bh_end - end); + } + kunmap_atomic(kaddr, KM_USER0); + flush_dcache_page(page); + } + continue; + } + /* + * Slow path: this is the first buffer in the cluster. If it + * is outside allocated size and is not uptodate, zero it and + * set it uptodate. + */ + read_lock_irqsave(&ni->size_lock, flags); + initialized_size = ni->allocated_size; + read_unlock_irqrestore(&ni->size_lock, flags); + if (bh_pos > initialized_size) { + if (PageUptodate(page)) { + if (!buffer_uptodate(bh)) + set_buffer_uptodate(bh); + } else if (!buffer_uptodate(bh)) { + u8 *kaddr = kmap_atomic(page, KM_USER0); + memset(kaddr + bh_offset(bh), 0, blocksize); + kunmap_atomic(kaddr, KM_USER0); + flush_dcache_page(page); + set_buffer_uptodate(bh); + } + continue; + } + is_retry = FALSE; + if (!rl) { + down_read(&ni->runlist.lock); +retry_remap: + rl = ni->runlist.rl; + } + if (likely(rl != NULL)) { + /* Seek to element containing target cluster. */ + while (rl->length && rl[1].vcn <= bh_cpos) + rl++; + lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); + if (likely(lcn >= 0)) { + /* + * Successful remap, setup the map cache and + * use that to deal with the buffer. + */ + was_hole = FALSE; + vcn = bh_cpos; + vcn_len = rl[1].vcn - vcn; + lcn_block = lcn << (vol->cluster_size_bits - + blocksize_bits); + /* + * If the number of remaining clusters in the + * @pages is smaller or equal to the number of + * cached clusters, unlock the runlist as the + * map cache will be used from now on. + */ + if (likely(vcn + vcn_len >= cend)) { + if (rl_write_locked) { + up_write(&ni->runlist.lock); + rl_write_locked = FALSE; + } else + up_read(&ni->runlist.lock); + rl = NULL; + } + goto map_buffer_cached; + } + } else + lcn = LCN_RL_NOT_MAPPED; + /* + * If it is not a hole and not out of bounds, the runlist is + * probably unmapped so try to map it now. + */ + if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { + if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { + /* Attempt to map runlist. */ + if (!rl_write_locked) { + /* + * We need the runlist locked for + * writing, so if it is locked for + * reading relock it now and retry in + * case it changed whilst we dropped + * the lock. + */ + up_read(&ni->runlist.lock); + down_write(&ni->runlist.lock); + rl_write_locked = TRUE; + goto retry_remap; + } + err = ntfs_map_runlist_nolock(ni, bh_cpos, + NULL); + if (likely(!err)) { + is_retry = TRUE; + goto retry_remap; + } + /* + * If @vcn is out of bounds, pretend @lcn is + * LCN_ENOENT. As long as the buffer is out + * of bounds this will work fine. + */ + if (err == -ENOENT) { + lcn = LCN_ENOENT; + err = 0; + goto rl_not_mapped_enoent; + } + } else + err = -EIO; + /* Failed to map the buffer, even after retrying. */ + bh->b_blocknr = -1; + ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " + "attribute type 0x%x, vcn 0x%llx, " + "vcn offset 0x%x, because its " + "location on disk could not be " + "determined%s (error code %i).", + ni->mft_no, ni->type, + (unsigned long long)bh_cpos, + (unsigned)bh_pos & + vol->cluster_size_mask, + is_retry ? " even after retrying" : "", + err); + break; + } +rl_not_mapped_enoent: + /* + * The buffer is in a hole or out of bounds. We need to fill + * the hole, unless the buffer is in a cluster which is not + * touched by the write, in which case we just leave the buffer + * unmapped. This can only happen when the cluster size is + * less than the page cache size. + */ + if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { + bh_cend = (bh_end + vol->cluster_size - 1) >> + vol->cluster_size_bits; + if ((bh_cend <= cpos || bh_cpos >= cend)) { + bh->b_blocknr = -1; + /* + * If the buffer is uptodate we skip it. If it + * is not but the page is uptodate, we can set + * the buffer uptodate. If the page is not + * uptodate, we can clear the buffer and set it + * uptodate. Whether this is worthwhile is + * debatable and this could be removed. + */ + if (PageUptodate(page)) { + if (!buffer_uptodate(bh)) + set_buffer_uptodate(bh); + } else if (!buffer_uptodate(bh)) { + u8 *kaddr = kmap_atomic(page, KM_USER0); + memset(kaddr + bh_offset(bh), 0, + blocksize); + kunmap_atomic(kaddr, KM_USER0); + flush_dcache_page(page); + set_buffer_uptodate(bh); + } + continue; + } + } + /* + * Out of bounds buffer is invalid if it was not really out of + * bounds. + */ + BUG_ON(lcn != LCN_HOLE); + /* + * We need the runlist locked for writing, so if it is locked + * for reading relock it now and retry in case it changed + * whilst we dropped the lock. + */ + BUG_ON(!rl); + if (!rl_write_locked) { + up_read(&ni->runlist.lock); + down_write(&ni->runlist.lock); + rl_write_locked = TRUE; + goto retry_remap; + } + /* Find the previous last allocated cluster. */ + BUG_ON(rl->lcn != LCN_HOLE); + lcn = -1; + rl2 = rl; + while (--rl2 >= ni->runlist.rl) { + if (rl2->lcn >= 0) { + lcn = rl2->lcn + rl2->length; + break; + } + } + rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, + FALSE); + if (IS_ERR(rl2)) { + err = PTR_ERR(rl2); + ntfs_debug("Failed to allocate cluster, error code %i.", + err); + break; + } + lcn = rl2->lcn; + rl = ntfs_runlists_merge(ni->runlist.rl, rl2); + if (IS_ERR(rl)) { + err = PTR_ERR(rl); + if (err != -ENOMEM) + err = -EIO; + if (ntfs_cluster_free_from_rl(vol, rl2)) { + ntfs_error(vol->sb, "Failed to release " + "allocated cluster in error " + "code path. Run chkdsk to " + "recover the lost cluster."); + NVolSetErrors(vol); + } + ntfs_free(rl2); + break; + } + ni->runlist.rl = rl; + status.runlist_merged = 1; + ntfs_debug("Allocated cluster, lcn 0x%llx.", lcn); + /* Map and lock the mft record and get the attribute record. */ + if (!NInoAttr(ni)) + base_ni = ni; + else + base_ni = ni->ext.base_ntfs_ino; + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + break; + } + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + unmap_mft_record(base_ni); + break; + } + status.mft_attr_mapped = 1; + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + break; + } + m = ctx->mrec; + a = ctx->attr; + /* + * Find the runlist element with which the attribute extent + * starts. Note, we cannot use the _attr_ version because we + * have mapped the mft record. That is ok because we know the + * runlist fragment must be mapped already to have ever gotten + * here, so we can just use the _rl_ version. + */ + vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); + rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); + BUG_ON(!rl2); + BUG_ON(!rl2->length); + BUG_ON(rl2->lcn < LCN_HOLE); + highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); + /* + * If @highest_vcn is zero, calculate the real highest_vcn + * (which can really be zero). + */ + if (!highest_vcn) + highest_vcn = (sle64_to_cpu( + a->data.non_resident.allocated_size) >> + vol->cluster_size_bits) - 1; + /* + * Determine the size of the mapping pairs array for the new + * extent, i.e. the old extent with the hole filled. + */ + mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, + highest_vcn); + if (unlikely(mp_size <= 0)) { + if (!(err = mp_size)) + err = -EIO; + ntfs_debug("Failed to get size for mapping pairs " + "array, error code %i.", err); + break; + } + /* + * Resize the attribute record to fit the new mapping pairs + * array. + */ + attr_rec_len = le32_to_cpu(a->length); + err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( + a->data.non_resident.mapping_pairs_offset)); + if (unlikely(err)) { + BUG_ON(err != -ENOSPC); + // TODO: Deal with this by using the current attribute + // and fill it with as much of the mapping pairs + // array as possible. Then loop over each attribute + // extent rewriting the mapping pairs arrays as we go + // along and if when we reach the end we have not + // enough space, try to resize the last attribute + // extent and if even that fails, add a new attribute + // extent. + // We could also try to resize at each step in the hope + // that we will not need to rewrite every single extent. + // Note, we may need to decompress some extents to fill + // the runlist as we are walking the extents... + ntfs_error(vol->sb, "Not enough space in the mft " + "record for the extended attribute " + "record. This case is not " + "implemented yet."); + err = -EOPNOTSUPP; + break ; + } + status.mp_rebuilt = 1; + /* + * Generate the mapping pairs array directly into the attribute + * record. + */ + err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( + a->data.non_resident.mapping_pairs_offset), + mp_size, rl2, vcn, highest_vcn, NULL); + if (unlikely(err)) { + ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " + "attribute type 0x%x, because building " + "the mapping pairs failed with error " + "code %i.", vi->i_ino, + (unsigned)le32_to_cpu(ni->type), err); + err = -EIO; + break; + } + /* Update the highest_vcn but only if it was not set. */ + if (unlikely(!a->data.non_resident.highest_vcn)) + a->data.non_resident.highest_vcn = + cpu_to_sle64(highest_vcn); + /* + * If the attribute is sparse/compressed, update the compressed + * size in the ntfs_inode structure and the attribute record. + */ + if (likely(NInoSparse(ni) || NInoCompressed(ni))) { + /* + * If we are not in the first attribute extent, switch + * to it, but first ensure the changes will make it to + * disk later. + */ + if (a->data.non_resident.lowest_vcn) { + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + ntfs_attr_reinit_search_ctx(ctx); + err = ntfs_attr_lookup(ni->type, ni->name, + ni->name_len, CASE_SENSITIVE, + 0, NULL, 0, ctx); + if (unlikely(err)) { + status.attr_switched = 1; + break; + } + /* @m is not used any more so do not set it. */ + a = ctx->attr; + } + write_lock_irqsave(&ni->size_lock, flags); + ni->itype.compressed.size += vol->cluster_size; + a->data.non_resident.compressed_size = + cpu_to_sle64(ni->itype.compressed.size); + write_unlock_irqrestore(&ni->size_lock, flags); + } + /* Ensure the changes make it to disk. */ + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + ntfs_attr_put_search_ctx(ctx); + unmap_mft_record(base_ni); + /* Successfully filled the hole. */ + status.runlist_merged = 0; + status.mft_attr_mapped = 0; + status.mp_rebuilt = 0; + /* Setup the map cache and use that to deal with the buffer. */ + was_hole = TRUE; + vcn = bh_cpos; + vcn_len = 1; + lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); + cdelta = 0; + /* + * If the number of remaining clusters in the @pages is smaller + * or equal to the number of cached clusters, unlock the + * runlist as the map cache will be used from now on. + */ + if (likely(vcn + vcn_len >= cend)) { + up_write(&ni->runlist.lock); + rl_write_locked = FALSE; + rl = NULL; + } + goto map_buffer_cached; + } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); + /* If there are no errors, do the next page. */ + if (likely(!err && ++u < nr_pages)) + goto do_next_page; + /* If there are no errors, release the runlist lock if we took it. */ + if (likely(!err)) { + if (unlikely(rl_write_locked)) { + up_write(&ni->runlist.lock); + rl_write_locked = FALSE; + } else if (unlikely(rl)) + up_read(&ni->runlist.lock); + rl = NULL; + } + /* If we issued read requests, let them complete. */ + read_lock_irqsave(&ni->size_lock, flags); + initialized_size = ni->initialized_size; + read_unlock_irqrestore(&ni->size_lock, flags); + while (wait_bh > wait) { + bh = *--wait_bh; + wait_on_buffer(bh); + if (likely(buffer_uptodate(bh))) { + page = bh->b_page; + bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + + bh_offset(bh); + /* + * If the buffer overflows the initialized size, need + * to zero the overflowing region. + */ + if (unlikely(bh_pos + blocksize > initialized_size)) { + u8 *kaddr; + int ofs = 0; + + if (likely(bh_pos < initialized_size)) + ofs = initialized_size - bh_pos; + kaddr = kmap_atomic(page, KM_USER0); + memset(kaddr + bh_offset(bh) + ofs, 0, + blocksize - ofs); + kunmap_atomic(kaddr, KM_USER0); + flush_dcache_page(page); + } + } else /* if (unlikely(!buffer_uptodate(bh))) */ + err = -EIO; + } + if (likely(!err)) { + /* Clear buffer_new on all buffers. */ + u = 0; + do { + bh = head = page_buffers(pages[u]); + do { + if (buffer_new(bh)) + clear_buffer_new(bh); + } while ((bh = bh->b_this_page) != head); + } while (++u < nr_pages); + ntfs_debug("Done."); + return err; + } + if (status.attr_switched) { + /* Get back to the attribute extent we modified. */ + ntfs_attr_reinit_search_ctx(ctx); + if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { + ntfs_error(vol->sb, "Failed to find required " + "attribute extent of attribute in " + "error code path. Run chkdsk to " + "recover."); + write_lock_irqsave(&ni->size_lock, flags); + ni->itype.compressed.size += vol->cluster_size; + write_unlock_irqrestore(&ni->size_lock, flags); + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + /* + * The only thing that is now wrong is the compressed + * size of the base attribute extent which chkdsk + * should be able to fix. + */ + NVolSetErrors(vol); + } else { + m = ctx->mrec; + a = ctx->attr; + status.attr_switched = 0; + } + } + /* + * If the runlist has been modified, need to restore it by punching a + * hole into it and we then need to deallocate the on-disk cluster as + * well. Note, we only modify the runlist if we are able to generate a + * new mapping pairs array, i.e. only when the mapped attribute extent + * is not switched. + */ + if (status.runlist_merged && !status.attr_switched) { + BUG_ON(!rl_write_locked); + /* Make the file cluster we allocated sparse in the runlist. */ + if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { + ntfs_error(vol->sb, "Failed to punch hole into " + "attribute runlist in error code " + "path. Run chkdsk to recover the " + "lost cluster."); + make_bad_inode(vi); + make_bad_inode(VFS_I(base_ni)); + NVolSetErrors(vol); + } else /* if (success) */ { + status.runlist_merged = 0; + /* + * Deallocate the on-disk cluster we allocated but only + * if we succeeded in punching its vcn out of the + * runlist. + */ + down_write(&vol->lcnbmp_lock); + if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { + ntfs_error(vol->sb, "Failed to release " + "allocated cluster in error " + "code path. Run chkdsk to " + "recover the lost cluster."); + NVolSetErrors(vol); + } + up_write(&vol->lcnbmp_lock); + } + } + /* + * Resize the attribute record to its old size and rebuild the mapping + * pairs array. Note, we only can do this if the runlist has been + * restored to its old state which also implies that the mapped + * attribute extent is not switched. + */ + if (status.mp_rebuilt && !status.runlist_merged) { + if (ntfs_attr_record_resize(m, a, attr_rec_len)) { + ntfs_error(vol->sb, "Failed to restore attribute " + "record in error code path. Run " + "chkdsk to recover."); + make_bad_inode(vi); + make_bad_inode(VFS_I(base_ni)); + NVolSetErrors(vol); + } else /* if (success) */ { + if (ntfs_mapping_pairs_build(vol, (u8*)a + + le16_to_cpu(a->data.non_resident. + mapping_pairs_offset), attr_rec_len - + le16_to_cpu(a->data.non_resident. + mapping_pairs_offset), ni->runlist.rl, + vcn, highest_vcn, NULL)) { + ntfs_error(vol->sb, "Failed to restore " + "mapping pairs array in error " + "code path. Run chkdsk to " + "recover."); + make_bad_inode(vi); + make_bad_inode(VFS_I(base_ni)); + NVolSetErrors(vol); + } + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + } + } + /* Release the mft record and the attribute. */ + if (status.mft_attr_mapped) { + ntfs_attr_put_search_ctx(ctx); + unmap_mft_record(base_ni); + } + /* Release the runlist lock. */ + if (rl_write_locked) + up_write(&ni->runlist.lock); + else if (rl) + up_read(&ni->runlist.lock); + /* + * Zero out any newly allocated blocks to avoid exposing stale data. + * If BH_New is set, we know that the block was newly allocated above + * and that it has not been fully zeroed and marked dirty yet. + */ + nr_pages = u; + u = 0; + end = bh_cpos << vol->cluster_size_bits; + do { + page = pages[u]; + bh = head = page_buffers(page); + do { + if (u == nr_pages && + ((s64)page->index << PAGE_CACHE_SHIFT) + + bh_offset(bh) >= end) + break; + if (!buffer_new(bh)) + continue; + clear_buffer_new(bh); + if (!buffer_uptodate(bh)) { + if (PageUptodate(page)) + set_buffer_uptodate(bh); + else { + u8 *kaddr = kmap_atomic(page, KM_USER0); + memset(kaddr + bh_offset(bh), 0, + blocksize); + kunmap_atomic(kaddr, KM_USER0); + flush_dcache_page(page); + set_buffer_uptodate(bh); + } + } + mark_buffer_dirty(bh); + } while ((bh = bh->b_this_page) != head); + } while (++u <= nr_pages); + ntfs_error(vol->sb, "Failed. Returning error code %i.", err); + return err; +} + +/* + * Copy as much as we can into the pages and return the number of bytes which + * were sucessfully copied. If a fault is encountered then clear the pages + * out to (ofs + bytes) and return the number of bytes which were copied. + */ +static inline size_t ntfs_copy_from_user(struct page **pages, + unsigned nr_pages, unsigned ofs, const char __user *buf, + size_t bytes) +{ + struct page **last_page = pages + nr_pages; + char *kaddr; + size_t total = 0; + unsigned len; + int left; + + do { + len = PAGE_CACHE_SIZE - ofs; + if (len > bytes) + len = bytes; + kaddr = kmap_atomic(*pages, KM_USER0); + left = __copy_from_user_inatomic(kaddr + ofs, buf, len); + kunmap_atomic(kaddr, KM_USER0); + if (unlikely(left)) { + /* Do it the slow way. */ + kaddr = kmap(*pages); + left = __copy_from_user(kaddr + ofs, buf, len); + kunmap(*pages); + if (unlikely(left)) + goto err_out; + } + total += len; + bytes -= len; + if (!bytes) + break; + buf += len; + ofs = 0; + } while (++pages < last_page); +out: + return total; +err_out: + total += len - left; + /* Zero the rest of the target like __copy_from_user(). */ + while (++pages < last_page) { + bytes -= len; + if (!bytes) + break; + len = PAGE_CACHE_SIZE; + if (len > bytes) + len = bytes; + kaddr = kmap_atomic(*pages, KM_USER0); + memset(kaddr, 0, len); + kunmap_atomic(kaddr, KM_USER0); + } + goto out; +} + +static size_t __ntfs_copy_from_user_iovec(char *vaddr, + const struct iovec *iov, size_t iov_ofs, size_t bytes) +{ + size_t total = 0; + + while (1) { + const char __user *buf = iov->iov_base + iov_ofs; + unsigned len; + size_t left; + + len = iov->iov_len - iov_ofs; + if (len > bytes) + len = bytes; + left = __copy_from_user_inatomic(vaddr, buf, len); + total += len; + bytes -= len; + vaddr += len; + if (unlikely(left)) { + /* + * Zero the rest of the target like __copy_from_user(). + */ + memset(vaddr, 0, bytes); + total -= left; + break; + } + if (!bytes) + break; + iov++; + iov_ofs = 0; + } + return total; +} + +static inline void ntfs_set_next_iovec(const struct iovec **iovp, + size_t *iov_ofsp, size_t bytes) +{ + const struct iovec *iov = *iovp; + size_t iov_ofs = *iov_ofsp; + + while (bytes) { + unsigned len; + + len = iov->iov_len - iov_ofs; + if (len > bytes) + len = bytes; + bytes -= len; + iov_ofs += len; + if (iov->iov_len == iov_ofs) { + iov++; + iov_ofs = 0; + } + } + *iovp = iov; + *iov_ofsp = iov_ofs; +} + +/* + * This has the same side-effects and return value as ntfs_copy_from_user(). + * The difference is that on a fault we need to memset the remainder of the + * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s + * single-segment behaviour. + * + * We call the same helper (__ntfs_copy_from_user_iovec()) both when atomic and + * when not atomic. This is ok because __ntfs_copy_from_user_iovec() calls + * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In + * fact, the only difference between __copy_from_user_inatomic() and + * __copy_from_user() is that the latter calls might_sleep(). And on many + * architectures __copy_from_user_inatomic() is just defined to + * __copy_from_user() so it makes no difference at all on those architectures. + */ +static inline size_t ntfs_copy_from_user_iovec(struct page **pages, + unsigned nr_pages, unsigned ofs, const struct iovec **iov, + size_t *iov_ofs, size_t bytes) +{ + struct page **last_page = pages + nr_pages; + char *kaddr; + size_t copied, len, total = 0; + + do { + len = PAGE_CACHE_SIZE - ofs; + if (len > bytes) + len = bytes; + kaddr = kmap_atomic(*pages, KM_USER0); + copied = __ntfs_copy_from_user_iovec(kaddr + ofs, + *iov, *iov_ofs, len); + kunmap_atomic(kaddr, KM_USER0); + if (unlikely(copied != len)) { + /* Do it the slow way. */ + kaddr = kmap(*pages); + copied = __ntfs_copy_from_user_iovec(kaddr + ofs, + *iov, *iov_ofs, len); + kunmap(*pages); + if (unlikely(copied != len)) + goto err_out; + } + total += len; + bytes -= len; + if (!bytes) + break; + ntfs_set_next_iovec(iov, iov_ofs, len); + ofs = 0; + } while (++pages < last_page); +out: + return total; +err_out: + total += copied; + /* Zero the rest of the target like __copy_from_user(). */ + while (++pages < last_page) { + bytes -= len; + if (!bytes) + break; + len = PAGE_CACHE_SIZE; + if (len > bytes) + len = bytes; + kaddr = kmap_atomic(*pages, KM_USER0); + memset(kaddr, 0, len); + kunmap_atomic(kaddr, KM_USER0); + } + goto out; +} + +static inline void ntfs_flush_dcache_pages(struct page **pages, + unsigned nr_pages) +{ + BUG_ON(!nr_pages); + do { + /* + * Warning: Do not do the decrement at the same time as the + * call because flush_dcache_page() is a NULL macro on i386 + * and hence the decrement never happens. + */ + flush_dcache_page(pages[nr_pages]); + } while (--nr_pages > 0); +} + +/** + * ntfs_commit_pages_after_non_resident_write - commit the received data + * @pages: array of destination pages + * @nr_pages: number of pages in @pages + * @pos: byte position in file at which the write begins + * @bytes: number of bytes to be written + * + * See description of ntfs_commit_pages_after_write(), below. + */ +static inline int ntfs_commit_pages_after_non_resident_write( + struct page **pages, const unsigned nr_pages, + s64 pos, size_t bytes) +{ + s64 end, initialized_size; + struct inode *vi; + ntfs_inode *ni, *base_ni; + struct buffer_head *bh, *head; + ntfs_attr_search_ctx *ctx; + MFT_RECORD *m; + ATTR_RECORD *a; + unsigned long flags; + unsigned blocksize, u; + int err; + + vi = pages[0]->mapping->host; + ni = NTFS_I(vi); + blocksize = 1 << vi->i_blkbits; + end = pos + bytes; + u = 0; + do { + s64 bh_pos; + struct page *page; + BOOL partial; + + page = pages[u]; + bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; + bh = head = page_buffers(page); + partial = FALSE; + do { + s64 bh_end; + + bh_end = bh_pos + blocksize; + if (bh_end <= pos || bh_pos >= end) { + if (!buffer_uptodate(bh)) + partial = TRUE; + } else { + set_buffer_uptodate(bh); + mark_buffer_dirty(bh); + } + } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); + /* + * If all buffers are now uptodate but the page is not, set the + * page uptodate. + */ + if (!partial && !PageUptodate(page)) + SetPageUptodate(page); + } while (++u < nr_pages); + /* + * Finally, if we do not need to update initialized_size or i_size we + * are finished. + */ + read_lock_irqsave(&ni->size_lock, flags); + initialized_size = ni->initialized_size; + read_unlock_irqrestore(&ni->size_lock, flags); + if (end <= initialized_size) { + ntfs_debug("Done."); + return 0; + } + /* + * Update initialized_size/i_size as appropriate, both in the inode and + * the mft record. + */ + if (!NInoAttr(ni)) + base_ni = ni; + else + base_ni = ni->ext.base_ntfs_ino; + /* Map, pin, and lock the mft record. */ + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + m = NULL; + ctx = NULL; + goto err_out; + } + BUG_ON(!NInoNonResident(ni)); + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + goto err_out; + } + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, 0, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + goto err_out; + } + a = ctx->attr; + BUG_ON(!a->non_resident); + write_lock_irqsave(&ni->size_lock, flags); + BUG_ON(end > ni->allocated_size); + ni->initialized_size = end; + a->data.non_resident.initialized_size = cpu_to_sle64(end); + if (end > i_size_read(vi)) { + i_size_write(vi, end); + a->data.non_resident.data_size = + a->data.non_resident.initialized_size; + } + write_unlock_irqrestore(&ni->size_lock, flags); + /* Mark the mft record dirty, so it gets written back. */ + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + ntfs_attr_put_search_ctx(ctx); + unmap_mft_record(base_ni); + ntfs_debug("Done."); + return 0; +err_out: + if (ctx) + ntfs_attr_put_search_ctx(ctx); + if (m) + unmap_mft_record(base_ni); + ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " + "code %i).", err); + if (err != -ENOMEM) { + NVolSetErrors(ni->vol); + make_bad_inode(VFS_I(base_ni)); + make_bad_inode(vi); + } + return err; +} + +/** + * ntfs_commit_pages_after_write - commit the received data + * @pages: array of destination pages + * @nr_pages: number of pages in @pages + * @pos: byte position in file at which the write begins + * @bytes: number of bytes to be written + * + * This is called from ntfs_file_buffered_write() with i_sem held on the inode + * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are + * locked but not kmap()ped. The source data has already been copied into the + * @page. ntfs_prepare_pages_for_non_resident_write() has been called before + * the data was copied (for non-resident attributes only) and it returned + * success. + * + * Need to set uptodate and mark dirty all buffers within the boundary of the + * write. If all buffers in a page are uptodate we set the page uptodate, too. + * + * Setting the buffers dirty ensures that they get written out later when + * ntfs_writepage() is invoked by the VM. + * + * Finally, we need to update i_size and initialized_size as appropriate both + * in the inode and the mft record. + * + * This is modelled after fs/buffer.c::generic_commit_write(), which marks + * buffers uptodate and dirty, sets the page uptodate if all buffers in the + * page are uptodate, and updates i_size if the end of io is beyond i_size. In + * that case, it also marks the inode dirty. + * + * If things have gone as outlined in + * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page + * content modifications here for non-resident attributes. For resident + * attributes we need to do the uptodate bringing here which we combine with + * the copying into the mft record which means we save one atomic kmap. + * + * Return 0 on success or -errno on error. + */ +static int ntfs_commit_pages_after_write(struct page **pages, + const unsigned nr_pages, s64 pos, size_t bytes) +{ + s64 end, initialized_size; + loff_t i_size; + struct inode *vi; + ntfs_inode *ni, *base_ni; + struct page *page; + ntfs_attr_search_ctx *ctx; + MFT_RECORD *m; + ATTR_RECORD *a; + char *kattr, *kaddr; + unsigned long flags; + u32 attr_len; + int err; + + BUG_ON(!nr_pages); + BUG_ON(!pages); + page = pages[0]; + BUG_ON(!page); + vi = page->mapping->host; + ni = NTFS_I(vi); + ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " + "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%x.", + vi->i_ino, ni->type, page->index, nr_pages, + (long long)pos, bytes); + if (NInoNonResident(ni)) + return ntfs_commit_pages_after_non_resident_write(pages, + nr_pages, pos, bytes); + BUG_ON(nr_pages > 1); + /* + * Attribute is resident, implying it is not compressed, encrypted, or + * sparse. + */ + if (!NInoAttr(ni)) + base_ni = ni; + else + base_ni = ni->ext.base_ntfs_ino; + BUG_ON(NInoNonResident(ni)); + /* Map, pin, and lock the mft record. */ + m = map_mft_record(base_ni); + if (IS_ERR(m)) { + err = PTR_ERR(m); + m = NULL; + ctx = NULL; + goto err_out; + } + ctx = ntfs_attr_get_search_ctx(base_ni, m); + if (unlikely(!ctx)) { + err = -ENOMEM; + goto err_out; + } + err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, + CASE_SENSITIVE, 0, NULL, 0, ctx); + if (unlikely(err)) { + if (err == -ENOENT) + err = -EIO; + goto err_out; + } + a = ctx->attr; + BUG_ON(a->non_resident); + /* The total length of the attribute value. */ + attr_len = le32_to_cpu(a->data.resident.value_length); + i_size = i_size_read(vi); + BUG_ON(attr_len != i_size); + BUG_ON(pos > attr_len); + end = pos + bytes; + BUG_ON(end > le32_to_cpu(a->length) - + le16_to_cpu(a->data.resident.value_offset)); + kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); + kaddr = kmap_atomic(page, KM_USER0); + /* Copy the received data from the page to the mft record. */ + memcpy(kattr + pos, kaddr + pos, bytes); + /* Update the attribute length if necessary. */ + if (end > attr_len) { + attr_len = end; + a->data.resident.value_length = cpu_to_le32(attr_len); + } + /* + * If the page is not uptodate, bring the out of bounds area(s) + * uptodate by copying data from the mft record to the page. + */ + if (!PageUptodate(page)) { + if (pos > 0) + memcpy(kaddr, kattr, pos); + if (end < attr_len) + memcpy(kaddr + end, kattr + end, attr_len - end); + /* Zero the region outside the end of the attribute value. */ + memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); + flush_dcache_page(page); + SetPageUptodate(page); + } + kunmap_atomic(kaddr, KM_USER0); + /* Update initialized_size/i_size if necessary. */ + read_lock_irqsave(&ni->size_lock, flags); + initialized_size = ni->initialized_size; + BUG_ON(end > ni->allocated_size); + read_unlock_irqrestore(&ni->size_lock, flags); + BUG_ON(initialized_size != i_size); + if (end > initialized_size) { + unsigned long flags; + + write_lock_irqsave(&ni->size_lock, flags); + ni->initialized_size = end; + i_size_write(vi, end); + write_unlock_irqrestore(&ni->size_lock, flags); + } + /* Mark the mft record dirty, so it gets written back. */ + flush_dcache_mft_record_page(ctx->ntfs_ino); + mark_mft_record_dirty(ctx->ntfs_ino); + ntfs_attr_put_search_ctx(ctx); + unmap_mft_record(base_ni); + ntfs_debug("Done."); + return 0; +err_out: + if (err == -ENOMEM) { + ntfs_warning(vi->i_sb, "Error allocating memory required to " + "commit the write."); + if (PageUptodate(page)) { + ntfs_warning(vi->i_sb, "Page is uptodate, setting " + "dirty so the write will be retried " + "later on by the VM."); + /* + * Put the page on mapping->dirty_pages, but leave its + * buffers' dirty state as-is. + */ + __set_page_dirty_nobuffers(page); + err = 0; + } else + ntfs_error(vi->i_sb, "Page is not uptodate. Written " + "data has been lost."); + } else { + ntfs_error(vi->i_sb, "Resident attribute commit write failed " + "with error %i.", err); + NVolSetErrors(ni->vol); + make_bad_inode(VFS_I(base_ni)); + make_bad_inode(vi); + } + if (ctx) + ntfs_attr_put_search_ctx(ctx); + if (m) + unmap_mft_record(base_ni); + return err; +} + +/** + * ntfs_file_buffered_write - + * + * Locking: The vfs is holding ->i_sem on the inode. + */ +static ssize_t ntfs_file_buffered_write(struct kiocb *iocb, + const struct iovec *iov, unsigned long nr_segs, + loff_t pos, loff_t *ppos, size_t count) +{ + struct file *file = iocb->ki_filp; + struct address_space *mapping = file->f_mapping; + struct inode *vi = mapping->host; + ntfs_inode *ni = NTFS_I(vi); + ntfs_volume *vol = ni->vol; + struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; + struct page *cached_page = NULL; + char __user *buf = NULL; + s64 end, ll; + VCN last_vcn; + LCN lcn; + unsigned long flags; + size_t bytes, iov_ofs; + ssize_t status, written; + unsigned nr_pages; + int err; + struct pagevec lru_pvec; + + ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " + "pos 0x%llx, count 0x%lx.", + vi->i_ino, (unsigned)le32_to_cpu(ni->type), + (unsigned long long)pos, (unsigned long)count); + if (unlikely(!count)) + return 0; + BUG_ON(NInoMstProtected(ni)); + /* + * If the attribute is not an index root and it is encrypted or + * compressed, we cannot write to it yet. Note we need to check for + * AT_INDEX_ALLOCATION since this is the type of both directory and + * index inodes. + */ + if (ni->type != AT_INDEX_ALLOCATION) { + /* If file is encrypted, deny access, just like NT4. */ + if (NInoEncrypted(ni)) { + ntfs_debug("Denying write access to encrypted file."); + return -EACCES; + } + if (NInoCompressed(ni)) { + ntfs_error(vi->i_sb, "Writing to compressed files is " + "not implemented yet. Sorry."); + return -EOPNOTSUPP; + } + } + /* + * If a previous ntfs_truncate() failed, repeat it and abort if it + * fails again. + */ + if (unlikely(NInoTruncateFailed(ni))) { + down_write(&vi->i_alloc_sem); + err = ntfs_truncate(vi); + up_write(&vi->i_alloc_sem); + if (err || NInoTruncateFailed(ni)) { + if (!err) + err = -EIO; + ntfs_error(vol->sb, "Cannot perform write to inode " + "0x%lx, attribute type 0x%x, because " + "ntfs_truncate() failed (error code " + "%i).", vi->i_ino, + (unsigned)le32_to_cpu(ni->type), err); + return err; + } + } + /* The first byte after the write. */ + end = pos + count; + /* + * If the write goes beyond the allocated size, extend the allocation + * to cover the whole of the write, rounded up to the nearest cluster. + */ + read_lock_irqsave(&ni->size_lock, flags); + ll = ni->allocated_size; + read_unlock_irqrestore(&ni->size_lock, flags); + if (end > ll) { + /* Extend the allocation without changing the data size. */ + ll = ntfs_attr_extend_allocation(ni, end, -1, pos); + if (likely(ll >= 0)) { + BUG_ON(pos >= ll); + /* If the extension was partial truncate the write. */ + if (end > ll) { + ntfs_debug("Truncating write to inode 0x%lx, " + "attribute type 0x%x, because " + "the allocation was only " + "partially extended.", + vi->i_ino, (unsigned) + le32_to_cpu(ni->type)); + end = ll; + count = ll - pos; + } + } else { + err = ll; + read_lock_irqsave(&ni->size_lock, flags); + ll = ni->allocated_size; + read_unlock_irqrestore(&ni->size_lock, flags); + /* Perform a partial write if possible or fail. */ + if (pos < ll) { + ntfs_debug("Truncating write to inode 0x%lx, " + "attribute type 0x%x, because " + "extending the allocation " + "failed (error code %i).", + vi->i_ino, (unsigned) + le32_to_cpu(ni->type), err); + end = ll; + count = ll - pos; + } else { + ntfs_error(vol->sb, "Cannot perform write to " + "inode 0x%lx, attribute type " + "0x%x, because extending the " + "allocation failed (error " + "code %i).", vi->i_ino, + (unsigned) + le32_to_cpu(ni->type), err); + return err; + } + } + } + pagevec_init(&lru_pvec, 0); + written = 0; + /* + * If the write starts beyond the initialized size, extend it up to the + * beginning of the write and initialize all non-sparse space between + * the old initialized size and the new one. This automatically also + * increments the vfs inode->i_size to keep it above or equal to the + * initialized_size. + */ + read_lock_irqsave(&ni->size_lock, flags); + ll = ni->initialized_size; + read_unlock_irqrestore(&ni->size_lock, flags); + if (pos > ll) { + err = ntfs_attr_extend_initialized(ni, pos, &cached_page, + &lru_pvec); + if (err < 0) { + ntfs_error(vol->sb, "Cannot perform write to inode " + "0x%lx, attribute type 0x%x, because " + "extending the initialized size " + "failed (error code %i).", vi->i_ino, + (unsigned)le32_to_cpu(ni->type), err); + status = err; + goto err_out; + } + } + /* + * Determine the number of pages per cluster for non-resident + * attributes. + */ + nr_pages = 1; + if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) + nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; + /* Finally, perform the actual write. */ + last_vcn = -1; + if (likely(nr_segs == 1)) + buf = iov->iov_base; + else + iov_ofs = 0; /* Offset in the current iovec. */ + do { + VCN vcn; + pgoff_t idx, start_idx; + unsigned ofs, do_pages, u; + size_t copied; + + start_idx = idx = pos >> PAGE_CACHE_SHIFT; + ofs = pos & ~PAGE_CACHE_MASK; + bytes = PAGE_CACHE_SIZE - ofs; + do_pages = 1; + if (nr_pages > 1) { + vcn = pos >> vol->cluster_size_bits; + if (vcn != last_vcn) { + last_vcn = vcn; + /* + * Get the lcn of the vcn the write is in. If + * it is a hole, need to lock down all pages in + * the cluster. + */ + down_read(&ni->runlist.lock); + lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> + vol->cluster_size_bits, FALSE); + up_read(&ni->runlist.lock); + if (unlikely(lcn < LCN_HOLE)) { + status = -EIO; + if (lcn == LCN_ENOMEM) + status = -ENOMEM; + else + ntfs_error(vol->sb, "Cannot " + "perform write to " + "inode 0x%lx, " + "attribute type 0x%x, " + "because the attribute " + "is corrupt.", + vi->i_ino, (unsigned) + le32_to_cpu(ni->type)); + break; + } + if (lcn == LCN_HOLE) { + start_idx = (pos & ~(s64) + vol->cluster_size_mask) + >> PAGE_CACHE_SHIFT; + bytes = vol->cluster_size - (pos & + vol->cluster_size_mask); + do_pages = nr_pages; + } + } + } + if (bytes > count) + bytes = count; + /* + * Bring in the user page(s) that we will copy from _first_. + * Otherwise there is a nasty deadlock on copying from the same + * page(s) as we are writing to, without it/them being marked + * up-to-date. Note, at present there is nothing to stop the + * pages being swapped out between us bringing them into memory + * and doing the actual copying. + */ + if (likely(nr_segs == 1)) + ntfs_fault_in_pages_readable(buf, bytes); + else + ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes); + /* Get and lock @do_pages starting at index @start_idx. */ + status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, + pages, &cached_page, &lru_pvec); + if (unlikely(status)) + break; + /* + * For non-resident attributes, we need to fill any holes with + * actual clusters and ensure all bufferes are mapped. We also + * need to bring uptodate any buffers that are only partially + * being written to. + */ + if (NInoNonResident(ni)) { + status = ntfs_prepare_pages_for_non_resident_write( + pages, do_pages, pos, bytes); + if (unlikely(status)) { + loff_t i_size; + + do { + unlock_page(pages[--do_pages]); + page_cache_release(pages[do_pages]); + } while (do_pages); + /* + * The write preparation may have instantiated + * allocated space outside i_size. Trim this + * off again. We can ignore any errors in this + * case as we will just be waisting a bit of + * allocated space, which is not a disaster. + */ + i_size = i_size_read(vi); + if (pos + bytes > i_size) + vmtruncate(vi, i_size); + break; + } + } + u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; + if (likely(nr_segs == 1)) { + copied = ntfs_copy_from_user(pages + u, do_pages - u, + ofs, buf, bytes); + buf += copied; + } else + copied = ntfs_copy_from_user_iovec(pages + u, + do_pages - u, ofs, &iov, &iov_ofs, + bytes); + ntfs_flush_dcache_pages(pages + u, do_pages - u); + status = ntfs_commit_pages_after_write(pages, do_pages, pos, + bytes); + if (likely(!status)) { + written += copied; + count -= copied; + pos += copied; + if (unlikely(copied != bytes)) + status = -EFAULT; + } + do { + unlock_page(pages[--do_pages]); + mark_page_accessed(pages[do_pages]); + page_cache_release(pages[do_pages]); + } while (do_pages); + if (unlikely(status)) + break; + balance_dirty_pages_ratelimited(mapping); + cond_resched(); + } while (count); +err_out: + *ppos = pos; + if (cached_page) + page_cache_release(cached_page); + /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */ + if (likely(!status)) { + if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) { + if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb)) + status = generic_osync_inode(vi, mapping, + OSYNC_METADATA|OSYNC_DATA); + } + } + pagevec_lru_add(&lru_pvec); + ntfs_debug("Done. Returning %s (written 0x%lx, status %li).", + written ? "written" : "status", (unsigned long)written, + (long)status); + return written ? written : status; +} + +/** + * ntfs_file_aio_write_nolock - + */ +static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb, + const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) +{ + struct file *file = iocb->ki_filp; + struct address_space *mapping = file->f_mapping; + struct inode *inode = mapping->host; + loff_t pos; + unsigned long seg; + size_t count; /* after file limit checks */ + ssize_t written, err; + + count = 0; + for (seg = 0; seg < nr_segs; seg++) { + const struct iovec *iv = &iov[seg]; + /* + * If any segment has a negative length, or the cumulative + * length ever wraps negative then return -EINVAL. + */ + count += iv->iov_len; + if (unlikely((ssize_t)(count|iv->iov_len) < 0)) + return -EINVAL; + if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) + continue; + if (!seg) + return -EFAULT; + nr_segs = seg; + count -= iv->iov_len; /* This segment is no good */ + break; + } + pos = *ppos; + vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); + /* We can write back this queue in page reclaim. */ + current->backing_dev_info = mapping->backing_dev_info; + written = 0; + err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); + if (err) + goto out; + if (!count) + goto out; + err = remove_suid(file->f_dentry); + if (err) + goto out; + inode_update_time(inode, 1); + written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos, + count); +out: + current->backing_dev_info = NULL; + return written ? written : err; +} + +/** + * ntfs_file_aio_write - + */ +static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const char __user *buf, + size_t count, loff_t pos) +{ + struct file *file = iocb->ki_filp; + struct address_space *mapping = file->f_mapping; + struct inode *inode = mapping->host; + ssize_t ret; + struct iovec local_iov = { .iov_base = (void __user *)buf, + .iov_len = count }; + + BUG_ON(iocb->ki_pos != pos); + + down(&inode->i_sem); + ret = ntfs_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos); + up(&inode->i_sem); + if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { + int err = sync_page_range(inode, mapping, pos, ret); + if (err < 0) + ret = err; + } + return ret; +} + +/** + * ntfs_file_writev - + * + * Basically the same as generic_file_writev() except that it ends up calling + * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock(). + */ +static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov, + unsigned long nr_segs, loff_t *ppos) +{ + struct address_space *mapping = file->f_mapping; + struct inode *inode = mapping->host; + struct kiocb kiocb; + ssize_t ret; + + down(&inode->i_sem); + init_sync_kiocb(&kiocb, file); + ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); + if (ret == -EIOCBQUEUED) + ret = wait_on_sync_kiocb(&kiocb); + up(&inode->i_sem); + if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { + int err = sync_page_range(inode, mapping, *ppos - ret, ret); + if (err < 0) + ret = err; + } + return ret; +} + +/** + * ntfs_file_write - simple wrapper for ntfs_file_writev() + */ +static ssize_t ntfs_file_write(struct file *file, const char __user *buf, + size_t count, loff_t *ppos) +{ + struct iovec local_iov = { .iov_base = (void __user *)buf, + .iov_len = count }; + + return ntfs_file_writev(file, &local_iov, 1, ppos); +} + +/** * ntfs_file_fsync - sync a file to disk * @filp: file to be synced * @dentry: dentry describing the file to sync @@ -113,39 +2296,39 @@ static int ntfs_file_fsync(struct file *filp, struct dentry *dentry, #endif /* NTFS_RW */ struct file_operations ntfs_file_ops = { - .llseek = generic_file_llseek, /* Seek inside file. */ - .read = generic_file_read, /* Read from file. */ - .aio_read = generic_file_aio_read, /* Async read from file. */ - .readv = generic_file_readv, /* Read from file. */ + .llseek = generic_file_llseek, /* Seek inside file. */ + .read = generic_file_read, /* Read from file. */ + .aio_read = generic_file_aio_read, /* Async read from file. */ + .readv = generic_file_readv, /* Read from file. */ #ifdef NTFS_RW - .write = generic_file_write, /* Write to file. */ - .aio_write = generic_file_aio_write, /* Async write to file. */ - .writev = generic_file_writev, /* Write to file. */ - /*.release = ,*/ /* Last file is closed. See - fs/ext2/file.c:: - ext2_release_file() for - how to use this to discard - preallocated space for - write opened files. */ - .fsync = ntfs_file_fsync, /* Sync a file to disk. */ - /*.aio_fsync = ,*/ /* Sync all outstanding async - i/o operations on a - kiocb. */ + .write = ntfs_file_write, /* Write to file. */ + .aio_write = ntfs_file_aio_write, /* Async write to file. */ + .writev = ntfs_file_writev, /* Write to file. */ + /*.release = ,*/ /* Last file is closed. See + fs/ext2/file.c:: + ext2_release_file() for + how to use this to discard + preallocated space for + write opened files. */ + .fsync = ntfs_file_fsync, /* Sync a file to disk. */ + /*.aio_fsync = ,*/ /* Sync all outstanding async + i/o operations on a + kiocb. */ #endif /* NTFS_RW */ - /*.ioctl = ,*/ /* Perform function on the - mounted filesystem. */ - .mmap = generic_file_mmap, /* Mmap file. */ - .open = ntfs_file_open, /* Open file. */ - .sendfile = generic_file_sendfile, /* Zero-copy data send with - the data source being on - the ntfs partition. We - do not need to care about - the data destination. */ - /*.sendpage = ,*/ /* Zero-copy data send with - the data destination being - on the ntfs partition. We - do not need to care about - the data source. */ + /*.ioctl = ,*/ /* Perform function on the + mounted filesystem. */ + .mmap = generic_file_mmap, /* Mmap file. */ + .open = ntfs_file_open, /* Open file. */ + .sendfile = generic_file_sendfile, /* Zero-copy data send with + the data source being on + the ntfs partition. We do + not need to care about the + data destination. */ + /*.sendpage = ,*/ /* Zero-copy data send with + the data destination being + on the ntfs partition. We + do not need to care about + the data source. */ }; struct inode_operations ntfs_file_inode_ops = { |