summaryrefslogtreecommitdiffstats
path: root/fs/reiserfs/fix_node.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/reiserfs/fix_node.c')
-rw-r--r--fs/reiserfs/fix_node.c1008
1 files changed, 619 insertions, 389 deletions
diff --git a/fs/reiserfs/fix_node.c b/fs/reiserfs/fix_node.c
index dc4d4153031..6b0ddb2a909 100644
--- a/fs/reiserfs/fix_node.c
+++ b/fs/reiserfs/fix_node.c
@@ -2,59 +2,32 @@
* Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
*/
-/**
- ** old_item_num
- ** old_entry_num
- ** set_entry_sizes
- ** create_virtual_node
- ** check_left
- ** check_right
- ** directory_part_size
- ** get_num_ver
- ** set_parameters
- ** is_leaf_removable
- ** are_leaves_removable
- ** get_empty_nodes
- ** get_lfree
- ** get_rfree
- ** is_left_neighbor_in_cache
- ** decrement_key
- ** get_far_parent
- ** get_parents
- ** can_node_be_removed
- ** ip_check_balance
- ** dc_check_balance_internal
- ** dc_check_balance_leaf
- ** dc_check_balance
- ** check_balance
- ** get_direct_parent
- ** get_neighbors
- ** fix_nodes
- **
- **
- **/
-
#include <linux/time.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "reiserfs.h"
#include <linux/buffer_head.h>
-/* To make any changes in the tree we find a node, that contains item
- to be changed/deleted or position in the node we insert a new item
- to. We call this node S. To do balancing we need to decide what we
- will shift to left/right neighbor, or to a new node, where new item
- will be etc. To make this analysis simpler we build virtual
- node. Virtual node is an array of items, that will replace items of
- node S. (For instance if we are going to delete an item, virtual
- node does not contain it). Virtual node keeps information about
- item sizes and types, mergeability of first and last items, sizes
- of all entries in directory item. We use this array of items when
- calculating what we can shift to neighbors and how many nodes we
- have to have if we do not any shiftings, if we shift to left/right
- neighbor or to both. */
-
-/* taking item number in virtual node, returns number of item, that it has in source buffer */
+/*
+ * To make any changes in the tree we find a node that contains item
+ * to be changed/deleted or position in the node we insert a new item
+ * to. We call this node S. To do balancing we need to decide what we
+ * will shift to left/right neighbor, or to a new node, where new item
+ * will be etc. To make this analysis simpler we build virtual
+ * node. Virtual node is an array of items, that will replace items of
+ * node S. (For instance if we are going to delete an item, virtual
+ * node does not contain it). Virtual node keeps information about
+ * item sizes and types, mergeability of first and last items, sizes
+ * of all entries in directory item. We use this array of items when
+ * calculating what we can shift to neighbors and how many nodes we
+ * have to have if we do not any shiftings, if we shift to left/right
+ * neighbor or to both.
+ */
+
+/*
+ * Takes item number in virtual node, returns number of item
+ * that it has in source buffer
+ */
static inline int old_item_num(int new_num, int affected_item_num, int mode)
{
if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num)
@@ -105,14 +78,17 @@ static void create_virtual_node(struct tree_balance *tb, int h)
vn->vn_free_ptr += vn->vn_nr_item * sizeof(struct virtual_item);
/* first item in the node */
- ih = B_N_PITEM_HEAD(Sh, 0);
+ ih = item_head(Sh, 0);
/* define the mergeability for 0-th item (if it is not being deleted) */
- if (op_is_left_mergeable(&(ih->ih_key), Sh->b_size)
+ if (op_is_left_mergeable(&ih->ih_key, Sh->b_size)
&& (vn->vn_mode != M_DELETE || vn->vn_affected_item_num))
vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE;
- /* go through all items those remain in the virtual node (except for the new (inserted) one) */
+ /*
+ * go through all items that remain in the virtual
+ * node (except for the new (inserted) one)
+ */
for (new_num = 0; new_num < vn->vn_nr_item; new_num++) {
int j;
struct virtual_item *vi = vn->vn_vi + new_num;
@@ -128,11 +104,13 @@ static void create_virtual_node(struct tree_balance *tb, int h)
vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE;
vi->vi_ih = ih + j;
- vi->vi_item = B_I_PITEM(Sh, ih + j);
+ vi->vi_item = ih_item_body(Sh, ih + j);
vi->vi_uarea = vn->vn_free_ptr;
- // FIXME: there is no check, that item operation did not
- // consume too much memory
+ /*
+ * FIXME: there is no check that item operation did not
+ * consume too much memory
+ */
vn->vn_free_ptr +=
op_create_vi(vn, vi, is_affected, tb->insert_size[0]);
if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr)
@@ -145,7 +123,8 @@ static void create_virtual_node(struct tree_balance *tb, int h)
if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) {
vn->vn_vi[new_num].vi_item_len += tb->insert_size[0];
- vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted
+ /* pointer to data which is going to be pasted */
+ vi->vi_new_data = vn->vn_data;
}
}
@@ -164,11 +143,14 @@ static void create_virtual_node(struct tree_balance *tb, int h)
tb->insert_size[0]);
}
- /* set right merge flag we take right delimiting key and check whether it is a mergeable item */
+ /*
+ * set right merge flag we take right delimiting key and
+ * check whether it is a mergeable item
+ */
if (tb->CFR[0]) {
struct reiserfs_key *key;
- key = B_N_PDELIM_KEY(tb->CFR[0], tb->rkey[0]);
+ key = internal_key(tb->CFR[0], tb->rkey[0]);
if (op_is_left_mergeable(key, Sh->b_size)
&& (vn->vn_mode != M_DELETE
|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1))
@@ -179,12 +161,19 @@ static void create_virtual_node(struct tree_balance *tb, int h)
if (op_is_left_mergeable(key, Sh->b_size) &&
!(vn->vn_mode != M_DELETE
|| vn->vn_affected_item_num != B_NR_ITEMS(Sh) - 1)) {
- /* we delete last item and it could be merged with right neighbor's first item */
+ /*
+ * we delete last item and it could be merged
+ * with right neighbor's first item
+ */
if (!
(B_NR_ITEMS(Sh) == 1
- && is_direntry_le_ih(B_N_PITEM_HEAD(Sh, 0))
- && I_ENTRY_COUNT(B_N_PITEM_HEAD(Sh, 0)) == 1)) {
- /* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */
+ && is_direntry_le_ih(item_head(Sh, 0))
+ && ih_entry_count(item_head(Sh, 0)) == 1)) {
+ /*
+ * node contains more than 1 item, or item
+ * is not directory item, or this item
+ * contains more than 1 entry
+ */
print_block(Sh, 0, -1, -1);
reiserfs_panic(tb->tb_sb, "vs-8045",
"rdkey %k, affected item==%d "
@@ -198,8 +187,10 @@ static void create_virtual_node(struct tree_balance *tb, int h)
}
}
-/* using virtual node check, how many items can be shifted to left
- neighbor */
+/*
+ * Using virtual node check, how many items can be
+ * shifted to left neighbor
+ */
static void check_left(struct tree_balance *tb, int h, int cur_free)
{
int i;
@@ -259,9 +250,13 @@ static void check_left(struct tree_balance *tb, int h, int cur_free)
}
/* the item cannot be shifted entirely, try to split it */
- /* check whether L[0] can hold ih and at least one byte of the item body */
+ /*
+ * check whether L[0] can hold ih and at least one byte
+ * of the item body
+ */
+
+ /* cannot shift even a part of the current item */
if (cur_free <= ih_size) {
- /* cannot shift even a part of the current item */
tb->lbytes = -1;
return;
}
@@ -278,8 +273,10 @@ static void check_left(struct tree_balance *tb, int h, int cur_free)
return;
}
-/* using virtual node check, how many items can be shifted to right
- neighbor */
+/*
+ * Using virtual node check, how many items can be
+ * shifted to right neighbor
+ */
static void check_right(struct tree_balance *tb, int h, int cur_free)
{
int i;
@@ -338,13 +335,21 @@ static void check_right(struct tree_balance *tb, int h, int cur_free)
continue;
}
- /* check whether R[0] can hold ih and at least one byte of the item body */
- if (cur_free <= ih_size) { /* cannot shift even a part of the current item */
+ /*
+ * check whether R[0] can hold ih and at least one
+ * byte of the item body
+ */
+
+ /* cannot shift even a part of the current item */
+ if (cur_free <= ih_size) {
tb->rbytes = -1;
return;
}
- /* R[0] can hold the header of the item and at least one byte of its body */
+ /*
+ * R[0] can hold the header of the item and at least
+ * one byte of its body
+ */
cur_free -= ih_size; /* cur_free is still > 0 */
tb->rbytes = op_check_right(vi, cur_free);
@@ -361,45 +366,64 @@ static void check_right(struct tree_balance *tb, int h, int cur_free)
/*
* from - number of items, which are shifted to left neighbor entirely
* to - number of item, which are shifted to right neighbor entirely
- * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor
- * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */
+ * from_bytes - number of bytes of boundary item (or directory entries)
+ * which are shifted to left neighbor
+ * to_bytes - number of bytes of boundary item (or directory entries)
+ * which are shifted to right neighbor
+ */
static int get_num_ver(int mode, struct tree_balance *tb, int h,
int from, int from_bytes,
int to, int to_bytes, short *snum012, int flow)
{
int i;
int cur_free;
- // int bytes;
int units;
struct virtual_node *vn = tb->tb_vn;
- // struct virtual_item * vi;
-
int total_node_size, max_node_size, current_item_size;
int needed_nodes;
- int start_item, /* position of item we start filling node from */
- end_item, /* position of item we finish filling node by */
- start_bytes, /* number of first bytes (entries for directory) of start_item-th item
- we do not include into node that is being filled */
- end_bytes; /* number of last bytes (entries for directory) of end_item-th item
- we do node include into node that is being filled */
- int split_item_positions[2]; /* these are positions in virtual item of
- items, that are split between S[0] and
- S1new and S1new and S2new */
+
+ /* position of item we start filling node from */
+ int start_item;
+
+ /* position of item we finish filling node by */
+ int end_item;
+
+ /*
+ * number of first bytes (entries for directory) of start_item-th item
+ * we do not include into node that is being filled
+ */
+ int start_bytes;
+
+ /*
+ * number of last bytes (entries for directory) of end_item-th item
+ * we do node include into node that is being filled
+ */
+ int end_bytes;
+
+ /*
+ * these are positions in virtual item of items, that are split
+ * between S[0] and S1new and S1new and S2new
+ */
+ int split_item_positions[2];
split_item_positions[0] = -1;
split_item_positions[1] = -1;
- /* We only create additional nodes if we are in insert or paste mode
- or we are in replace mode at the internal level. If h is 0 and
- the mode is M_REPLACE then in fix_nodes we change the mode to
- paste or insert before we get here in the code. */
+ /*
+ * We only create additional nodes if we are in insert or paste mode
+ * or we are in replace mode at the internal level. If h is 0 and
+ * the mode is M_REPLACE then in fix_nodes we change the mode to
+ * paste or insert before we get here in the code.
+ */
RFALSE(tb->insert_size[h] < 0 || (mode != M_INSERT && mode != M_PASTE),
"vs-8100: insert_size < 0 in overflow");
max_node_size = MAX_CHILD_SIZE(PATH_H_PBUFFER(tb->tb_path, h));
- /* snum012 [0-2] - number of items, that lay
- to S[0], first new node and second new node */
+ /*
+ * snum012 [0-2] - number of items, that lay
+ * to S[0], first new node and second new node
+ */
snum012[3] = -1; /* s1bytes */
snum012[4] = -1; /* s2bytes */
@@ -416,20 +440,22 @@ static int get_num_ver(int mode, struct tree_balance *tb, int h,
total_node_size = 0;
cur_free = max_node_size;
- // start from 'from'-th item
+ /* start from 'from'-th item */
start_item = from;
- // skip its first 'start_bytes' units
+ /* skip its first 'start_bytes' units */
start_bytes = ((from_bytes != -1) ? from_bytes : 0);
- // last included item is the 'end_item'-th one
+ /* last included item is the 'end_item'-th one */
end_item = vn->vn_nr_item - to - 1;
- // do not count last 'end_bytes' units of 'end_item'-th item
+ /* do not count last 'end_bytes' units of 'end_item'-th item */
end_bytes = (to_bytes != -1) ? to_bytes : 0;
- /* go through all item beginning from the start_item-th item and ending by
- the end_item-th item. Do not count first 'start_bytes' units of
- 'start_item'-th item and last 'end_bytes' of 'end_item'-th item */
-
+ /*
+ * go through all item beginning from the start_item-th item
+ * and ending by the end_item-th item. Do not count first
+ * 'start_bytes' units of 'start_item'-th item and last
+ * 'end_bytes' of 'end_item'-th item
+ */
for (i = start_item; i <= end_item; i++) {
struct virtual_item *vi = vn->vn_vi + i;
int skip_from_end = ((i == end_item) ? end_bytes : 0);
@@ -439,7 +465,10 @@ static int get_num_ver(int mode, struct tree_balance *tb, int h,
/* get size of current item */
current_item_size = vi->vi_item_len;
- /* do not take in calculation head part (from_bytes) of from-th item */
+ /*
+ * do not take in calculation head part (from_bytes)
+ * of from-th item
+ */
current_item_size -=
op_part_size(vi, 0 /*from start */ , start_bytes);
@@ -455,9 +484,11 @@ static int get_num_ver(int mode, struct tree_balance *tb, int h,
continue;
}
+ /*
+ * virtual item length is longer, than max size of item in
+ * a node. It is impossible for direct item
+ */
if (current_item_size > max_node_size) {
- /* virtual item length is longer, than max size of item in
- a node. It is impossible for direct item */
RFALSE(is_direct_le_ih(vi->vi_ih),
"vs-8110: "
"direct item length is %d. It can not be longer than %d",
@@ -466,15 +497,18 @@ static int get_num_ver(int mode, struct tree_balance *tb, int h,
flow = 1;
}
+ /* as we do not split items, take new node and continue */
if (!flow) {
- /* as we do not split items, take new node and continue */
needed_nodes++;
i--;
total_node_size = 0;
continue;
}
- // calculate number of item units which fit into node being
- // filled
+
+ /*
+ * calculate number of item units which fit into node being
+ * filled
+ */
{
int free_space;
@@ -482,17 +516,17 @@ static int get_num_ver(int mode, struct tree_balance *tb, int h,
units =
op_check_left(vi, free_space, start_bytes,
skip_from_end);
+ /*
+ * nothing fits into current node, take new
+ * node and continue
+ */
if (units == -1) {
- /* nothing fits into current node, take new node and continue */
needed_nodes++, i--, total_node_size = 0;
continue;
}
}
/* something fits into the current node */
- //if (snum012[3] != -1 || needed_nodes != 1)
- // reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required");
- //snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units;
start_bytes += units;
snum012[needed_nodes - 1 + 3] = units;
@@ -508,9 +542,11 @@ static int get_num_ver(int mode, struct tree_balance *tb, int h,
total_node_size = 0;
}
- // sum012[4] (if it is not -1) contains number of units of which
- // are to be in S1new, snum012[3] - to be in S0. They are supposed
- // to be S1bytes and S2bytes correspondingly, so recalculate
+ /*
+ * sum012[4] (if it is not -1) contains number of units of which
+ * are to be in S1new, snum012[3] - to be in S0. They are supposed
+ * to be S1bytes and S2bytes correspondingly, so recalculate
+ */
if (snum012[4] > 0) {
int split_item_num;
int bytes_to_r, bytes_to_l;
@@ -527,7 +563,7 @@ static int get_num_ver(int mode, struct tree_balance *tb, int h,
((split_item_positions[0] ==
split_item_positions[1]) ? snum012[3] : 0);
- // s2bytes
+ /* s2bytes */
snum012[4] =
op_unit_num(&vn->vn_vi[split_item_num]) - snum012[4] -
bytes_to_r - bytes_to_l - bytes_to_S1new;
@@ -555,7 +591,7 @@ static int get_num_ver(int mode, struct tree_balance *tb, int h,
((split_item_positions[0] == split_item_positions[1]
&& snum012[4] != -1) ? snum012[4] : 0);
- // s1bytes
+ /* s1bytes */
snum012[3] =
op_unit_num(&vn->vn_vi[split_item_num]) - snum012[3] -
bytes_to_r - bytes_to_l - bytes_to_S2new;
@@ -565,7 +601,8 @@ static int get_num_ver(int mode, struct tree_balance *tb, int h,
}
-/* Set parameters for balancing.
+/*
+ * Set parameters for balancing.
* Performs write of results of analysis of balancing into structure tb,
* where it will later be used by the functions that actually do the balancing.
* Parameters:
@@ -575,11 +612,12 @@ static int get_num_ver(int mode, struct tree_balance *tb, int h,
* rnum number of items from S[h] that must be shifted to R[h];
* blk_num number of blocks that S[h] will be splitted into;
* s012 number of items that fall into splitted nodes.
- * lbytes number of bytes which flow to the left neighbor from the item that is not
- * not shifted entirely
- * rbytes number of bytes which flow to the right neighbor from the item that is not
- * not shifted entirely
- * s1bytes number of bytes which flow to the first new node when S[0] splits (this number is contained in s012 array)
+ * lbytes number of bytes which flow to the left neighbor from the
+ * item that is not not shifted entirely
+ * rbytes number of bytes which flow to the right neighbor from the
+ * item that is not not shifted entirely
+ * s1bytes number of bytes which flow to the first new node when
+ * S[0] splits (this number is contained in s012 array)
*/
static void set_parameters(struct tree_balance *tb, int h, int lnum,
@@ -590,12 +628,14 @@ static void set_parameters(struct tree_balance *tb, int h, int lnum,
tb->rnum[h] = rnum;
tb->blknum[h] = blk_num;
- if (h == 0) { /* only for leaf level */
+ /* only for leaf level */
+ if (h == 0) {
if (s012 != NULL) {
- tb->s0num = *s012++,
- tb->s1num = *s012++, tb->s2num = *s012++;
- tb->s1bytes = *s012++;
- tb->s2bytes = *s012;
+ tb->s0num = *s012++;
+ tb->snum[0] = *s012++;
+ tb->snum[1] = *s012++;
+ tb->sbytes[0] = *s012++;
+ tb->sbytes[1] = *s012;
}
tb->lbytes = lb;
tb->rbytes = rb;
@@ -607,8 +647,10 @@ static void set_parameters(struct tree_balance *tb, int h, int lnum,
PROC_INFO_ADD(tb->tb_sb, rbytes[h], rb);
}
-/* check, does node disappear if we shift tb->lnum[0] items to left
- neighbor and tb->rnum[0] to the right one. */
+/*
+ * check if node disappears if we shift tb->lnum[0] items to left
+ * neighbor and tb->rnum[0] to the right one.
+ */
static int is_leaf_removable(struct tree_balance *tb)
{
struct virtual_node *vn = tb->tb_vn;
@@ -616,8 +658,10 @@ static int is_leaf_removable(struct tree_balance *tb)
int size;
int remain_items;
- /* number of items, that will be shifted to left (right) neighbor
- entirely */
+ /*
+ * number of items that will be shifted to left (right) neighbor
+ * entirely
+ */
to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0);
to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0);
remain_items = vn->vn_nr_item;
@@ -625,21 +669,21 @@ static int is_leaf_removable(struct tree_balance *tb)
/* how many items remain in S[0] after shiftings to neighbors */
remain_items -= (to_left + to_right);
+ /* all content of node can be shifted to neighbors */
if (remain_items < 1) {
- /* all content of node can be shifted to neighbors */
set_parameters(tb, 0, to_left, vn->vn_nr_item - to_left, 0,
NULL, -1, -1);
return 1;
}
+ /* S[0] is not removable */
if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1)
- /* S[0] is not removable */
return 0;
- /* check, whether we can divide 1 remaining item between neighbors */
+ /* check whether we can divide 1 remaining item between neighbors */
/* get size of remaining item (in item units) */
- size = op_unit_num(&(vn->vn_vi[to_left]));
+ size = op_unit_num(&vn->vn_vi[to_left]);
if (tb->lbytes + tb->rbytes >= size) {
set_parameters(tb, 0, to_left + 1, to_right + 1, 0, NULL,
@@ -675,23 +719,28 @@ static int are_leaves_removable(struct tree_balance *tb, int lfree, int rfree)
"vs-8125: item number must be 1: it is %d",
B_NR_ITEMS(S0));
- ih = B_N_PITEM_HEAD(S0, 0);
+ ih = item_head(S0, 0);
if (tb->CFR[0]
- && !comp_short_le_keys(&(ih->ih_key),
- B_N_PDELIM_KEY(tb->CFR[0],
+ && !comp_short_le_keys(&ih->ih_key,
+ internal_key(tb->CFR[0],
tb->rkey[0])))
+ /*
+ * Directory must be in correct state here: that is
+ * somewhere at the left side should exist first
+ * directory item. But the item being deleted can
+ * not be that first one because its right neighbor
+ * is item of the same directory. (But first item
+ * always gets deleted in last turn). So, neighbors
+ * of deleted item can be merged, so we can save
+ * ih_size
+ */
if (is_direntry_le_ih(ih)) {
- /* Directory must be in correct state here: that is
- somewhere at the left side should exist first directory
- item. But the item being deleted can not be that first
- one because its right neighbor is item of the same
- directory. (But first item always gets deleted in last
- turn). So, neighbors of deleted item can be merged, so
- we can save ih_size */
ih_size = IH_SIZE;
- /* we might check that left neighbor exists and is of the
- same directory */
+ /*
+ * we might check that left neighbor exists
+ * and is of the same directory
+ */
RFALSE(le_ih_k_offset(ih) == DOT_OFFSET,
"vs-8130: first directory item can not be removed until directory is not empty");
}
@@ -770,7 +819,8 @@ static void free_buffers_in_tb(struct tree_balance *tb)
}
}
-/* Get new buffers for storing new nodes that are created while balancing.
+/*
+ * Get new buffers for storing new nodes that are created while balancing.
* Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
* CARRY_ON - schedule didn't occur while the function worked;
* NO_DISK_SPACE - no disk space.
@@ -778,28 +828,33 @@ static void free_buffers_in_tb(struct tree_balance *tb)
/* The function is NOT SCHEDULE-SAFE! */
static int get_empty_nodes(struct tree_balance *tb, int h)
{
- struct buffer_head *new_bh,
- *Sh = PATH_H_PBUFFER(tb->tb_path, h);
+ struct buffer_head *new_bh, *Sh = PATH_H_PBUFFER(tb->tb_path, h);
b_blocknr_t *blocknr, blocknrs[MAX_AMOUNT_NEEDED] = { 0, };
- int counter, number_of_freeblk, amount_needed, /* number of needed empty blocks */
- retval = CARRY_ON;
+ int counter, number_of_freeblk;
+ int amount_needed; /* number of needed empty blocks */
+ int retval = CARRY_ON;
struct super_block *sb = tb->tb_sb;
- /* number_of_freeblk is the number of empty blocks which have been
- acquired for use by the balancing algorithm minus the number of
- empty blocks used in the previous levels of the analysis,
- number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs
- after empty blocks are acquired, and the balancing analysis is
- then restarted, amount_needed is the number needed by this level
- (h) of the balancing analysis.
-
- Note that for systems with many processes writing, it would be
- more layout optimal to calculate the total number needed by all
- levels and then to run reiserfs_new_blocks to get all of them at once. */
-
- /* Initiate number_of_freeblk to the amount acquired prior to the restart of
- the analysis or 0 if not restarted, then subtract the amount needed
- by all of the levels of the tree below h. */
+ /*
+ * number_of_freeblk is the number of empty blocks which have been
+ * acquired for use by the balancing algorithm minus the number of
+ * empty blocks used in the previous levels of the analysis,
+ * number_of_freeblk = tb->cur_blknum can be non-zero if a schedule
+ * occurs after empty blocks are acquired, and the balancing analysis
+ * is then restarted, amount_needed is the number needed by this
+ * level (h) of the balancing analysis.
+ *
+ * Note that for systems with many processes writing, it would be
+ * more layout optimal to calculate the total number needed by all
+ * levels and then to run reiserfs_new_blocks to get all of them at
+ * once.
+ */
+
+ /*
+ * Initiate number_of_freeblk to the amount acquired prior to the
+ * restart of the analysis or 0 if not restarted, then subtract the
+ * amount needed by all of the levels of the tree below h.
+ */
/* blknum includes S[h], so we subtract 1 in this calculation */
for (counter = 0, number_of_freeblk = tb->cur_blknum;
counter < h; counter++)
@@ -810,13 +865,19 @@ static int get_empty_nodes(struct tree_balance *tb, int h)
/* Allocate missing empty blocks. */
/* if Sh == 0 then we are getting a new root */
amount_needed = (Sh) ? (tb->blknum[h] - 1) : 1;
- /* Amount_needed = the amount that we need more than the amount that we have. */
+ /*
+ * Amount_needed = the amount that we need more than the
+ * amount that we have.
+ */
if (amount_needed > number_of_freeblk)
amount_needed -= number_of_freeblk;
- else /* If we have enough already then there is nothing to do. */
+ else /* If we have enough already then there is nothing to do. */
return CARRY_ON;
- /* No need to check quota - is not allocated for blocks used for formatted nodes */
+ /*
+ * No need to check quota - is not allocated for blocks used
+ * for formatted nodes
+ */
if (reiserfs_new_form_blocknrs(tb, blocknrs,
amount_needed) == NO_DISK_SPACE)
return NO_DISK_SPACE;
@@ -849,8 +910,10 @@ static int get_empty_nodes(struct tree_balance *tb, int h)
return retval;
}
-/* Get free space of the left neighbor, which is stored in the parent
- * node of the left neighbor. */
+/*
+ * Get free space of the left neighbor, which is stored in the parent
+ * node of the left neighbor.
+ */
static int get_lfree(struct tree_balance *tb, int h)
{
struct buffer_head *l, *f;
@@ -870,7 +933,8 @@ static int get_lfree(struct tree_balance *tb, int h)
return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f, order)));
}
-/* Get free space of the right neighbor,
+/*
+ * Get free space of the right neighbor,
* which is stored in the parent node of the right neighbor.
*/
static int get_rfree(struct tree_balance *tb, int h)
@@ -916,7 +980,10 @@ static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
"vs-8165: F[h] (%b) or FL[h] (%b) is invalid",
father, tb->FL[h]);
- /* Get position of the pointer to the left neighbor into the left father. */
+ /*
+ * Get position of the pointer to the left neighbor
+ * into the left father.
+ */
left_neighbor_position = (father == tb->FL[h]) ?
tb->lkey[h] : B_NR_ITEMS(tb->FL[h]);
/* Get left neighbor block number. */
@@ -940,17 +1007,20 @@ static int is_left_neighbor_in_cache(struct tree_balance *tb, int h)
static void decrement_key(struct cpu_key *key)
{
- // call item specific function for this key
+ /* call item specific function for this key */
item_ops[cpu_key_k_type(key)]->decrement_key(key);
}
-/* Calculate far left/right parent of the left/right neighbor of the current node, that
- * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h].
+/*
+ * Calculate far left/right parent of the left/right neighbor of the
+ * current node, that is calculate the left/right (FL[h]/FR[h]) neighbor
+ * of the parent F[h].
* Calculate left/right common parent of the current node and L[h]/R[h].
* Calculate left/right delimiting key position.
- * Returns: PATH_INCORRECT - path in the tree is not correct;
- SCHEDULE_OCCURRED - schedule occurred while the function worked;
- * CARRY_ON - schedule didn't occur while the function worked;
+ * Returns: PATH_INCORRECT - path in the tree is not correct
+ * SCHEDULE_OCCURRED - schedule occurred while the function worked
+ * CARRY_ON - schedule didn't occur while the function
+ * worked
*/
static int get_far_parent(struct tree_balance *tb,
int h,
@@ -966,8 +1036,10 @@ static int get_far_parent(struct tree_balance *tb,
first_last_position = 0,
path_offset = PATH_H_PATH_OFFSET(path, h);
- /* Starting from F[h] go upwards in the tree, and look for the common
- ancestor of F[h], and its neighbor l/r, that should be obtained. */
+ /*
+ * Starting from F[h] go upwards in the tree, and look for the common
+ * ancestor of F[h], and its neighbor l/r, that should be obtained.
+ */
counter = path_offset;
@@ -975,21 +1047,33 @@ static int get_far_parent(struct tree_balance *tb,
"PAP-8180: invalid path length");
for (; counter > FIRST_PATH_ELEMENT_OFFSET; counter--) {
- /* Check whether parent of the current buffer in the path is really parent in the tree. */
+ /*
+ * Check whether parent of the current buffer in the path
+ * is really parent in the tree.
+ */
if (!B_IS_IN_TREE
(parent = PATH_OFFSET_PBUFFER(path, counter - 1)))
return REPEAT_SEARCH;
+
/* Check whether position in the parent is correct. */
if ((position =
PATH_OFFSET_POSITION(path,
counter - 1)) >
B_NR_ITEMS(parent))
return REPEAT_SEARCH;
- /* Check whether parent at the path really points to the child. */
+
+ /*
+ * Check whether parent at the path really points
+ * to the child.
+ */
if (B_N_CHILD_NUM(parent, position) !=
PATH_OFFSET_PBUFFER(path, counter)->b_blocknr)
return REPEAT_SEARCH;
- /* Return delimiting key if position in the parent is not equal to first/last one. */
+
+ /*
+ * Return delimiting key if position in the parent is not
+ * equal to first/last one.
+ */
if (c_lr_par == RIGHT_PARENTS)
first_last_position = B_NR_ITEMS(parent);
if (position != first_last_position) {
@@ -1002,7 +1086,10 @@ static int get_far_parent(struct tree_balance *tb,
/* if we are in the root of the tree, then there is no common father */
if (counter == FIRST_PATH_ELEMENT_OFFSET) {
- /* Check whether first buffer in the path is the root of the tree. */
+ /*
+ * Check whether first buffer in the path is the
+ * root of the tree.
+ */
if (PATH_OFFSET_PBUFFER
(tb->tb_path,
FIRST_PATH_ELEMENT_OFFSET)->b_blocknr ==
@@ -1031,12 +1118,15 @@ static int get_far_parent(struct tree_balance *tb,
}
}
- /* So, we got common parent of the current node and its left/right neighbor.
- Now we are geting the parent of the left/right neighbor. */
+ /*
+ * So, we got common parent of the current node and its
+ * left/right neighbor. Now we are getting the parent of the
+ * left/right neighbor.
+ */
/* Form key to get parent of the left/right neighbor. */
le_key2cpu_key(&s_lr_father_key,
- B_N_PDELIM_KEY(*pcom_father,
+ internal_key(*pcom_father,
(c_lr_par ==
LEFT_PARENTS) ? (tb->lkey[h - 1] =
position -
@@ -1050,7 +1140,7 @@ static int get_far_parent(struct tree_balance *tb,
if (search_by_key
(tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father,
h + 1) == IO_ERROR)
- // path is released
+ /* path is released */
return IO_ERROR;
if (FILESYSTEM_CHANGED_TB(tb)) {
@@ -1071,12 +1161,15 @@ static int get_far_parent(struct tree_balance *tb,
return CARRY_ON;
}
-/* Get parents of neighbors of node in the path(S[path_offset]) and common parents of
- * S[path_offset] and L[path_offset]/R[path_offset]: F[path_offset], FL[path_offset],
- * FR[path_offset], CFL[path_offset], CFR[path_offset].
- * Calculate numbers of left and right delimiting keys position: lkey[path_offset], rkey[path_offset].
- * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
- * CARRY_ON - schedule didn't occur while the function worked;
+/*
+ * Get parents of neighbors of node in the path(S[path_offset]) and
+ * common parents of S[path_offset] and L[path_offset]/R[path_offset]:
+ * F[path_offset], FL[path_offset], FR[path_offset], CFL[path_offset],
+ * CFR[path_offset].
+ * Calculate numbers of left and right delimiting keys position:
+ * lkey[path_offset], rkey[path_offset].
+ * Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked
+ * CARRY_ON - schedule didn't occur while the function worked
*/
static int get_parents(struct tree_balance *tb, int h)
{
@@ -1088,8 +1181,11 @@ static int get_parents(struct tree_balance *tb, int h)
/* Current node is the root of the tree or will be root of the tree */
if (path_offset <= FIRST_PATH_ELEMENT_OFFSET) {
- /* The root can not have parents.
- Release nodes which previously were obtained as parents of the current node neighbors. */
+ /*
+ * The root can not have parents.
+ * Release nodes which previously were obtained as
+ * parents of the current node neighbors.
+ */
brelse(tb->FL[h]);
brelse(tb->CFL[h]);
brelse(tb->FR[h]);
@@ -1111,10 +1207,14 @@ static int get_parents(struct tree_balance *tb, int h)
get_bh(curf);
tb->lkey[h] = position - 1;
} else {
- /* Calculate current parent of L[path_offset], which is the left neighbor of the current node.
- Calculate current common parent of L[path_offset] and the current node. Note that
- CFL[path_offset] not equal FL[path_offset] and CFL[path_offset] not equal F[path_offset].
- Calculate lkey[path_offset]. */
+ /*
+ * Calculate current parent of L[path_offset], which is the
+ * left neighbor of the current node. Calculate current
+ * common parent of L[path_offset] and the current node.
+ * Note that CFL[path_offset] not equal FL[path_offset] and
+ * CFL[path_offset] not equal F[path_offset].
+ * Calculate lkey[path_offset].
+ */
if ((ret = get_far_parent(tb, h + 1, &curf,
&curcf,
LEFT_PARENTS)) != CARRY_ON)
@@ -1130,19 +1230,22 @@ static int get_parents(struct tree_balance *tb, int h)
(curcf && !B_IS_IN_TREE(curcf)),
"PAP-8195: FL (%b) or CFL (%b) is invalid", curf, curcf);
-/* Get parent FR[h] of R[h]. */
+ /* Get parent FR[h] of R[h]. */
-/* Current node is the last child of F[h]. FR[h] != F[h]. */
+ /* Current node is the last child of F[h]. FR[h] != F[h]. */
if (position == B_NR_ITEMS(PATH_H_PBUFFER(path, h + 1))) {
-/* Calculate current parent of R[h], which is the right neighbor of F[h].
- Calculate current common parent of R[h] and current node. Note that CFR[h]
- not equal FR[path_offset] and CFR[h] not equal F[h]. */
+ /*
+ * Calculate current parent of R[h], which is the right
+ * neighbor of F[h]. Calculate current common parent of
+ * R[h] and current node. Note that CFR[h] not equal
+ * FR[path_offset] and CFR[h] not equal F[h].
+ */
if ((ret =
get_far_parent(tb, h + 1, &curf, &curcf,
RIGHT_PARENTS)) != CARRY_ON)
return ret;
} else {
-/* Current node is not the last child of its parent F[h]. */
+ /* Current node is not the last child of its parent F[h]. */
curf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
curcf = PATH_OFFSET_PBUFFER(path, path_offset - 1);
get_bh(curf);
@@ -1165,8 +1268,10 @@ static int get_parents(struct tree_balance *tb, int h)
return CARRY_ON;
}
-/* it is possible to remove node as result of shiftings to
- neighbors even when we insert or paste item. */
+/*
+ * it is possible to remove node as result of shiftings to
+ * neighbors even when we insert or paste item.
+ */
static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
struct tree_balance *tb, int h)
{
@@ -1175,21 +1280,22 @@ static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
struct item_head *ih;
struct reiserfs_key *r_key = NULL;
- ih = B_N_PITEM_HEAD(Sh, 0);
+ ih = item_head(Sh, 0);
if (tb->CFR[h])
- r_key = B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]);
+ r_key = internal_key(tb->CFR[h], tb->rkey[h]);
if (lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes
/* shifting may merge items which might save space */
-
((!h
- && op_is_left_mergeable(&(ih->ih_key), Sh->b_size)) ? IH_SIZE : 0)
+ && op_is_left_mergeable(&ih->ih_key, Sh->b_size)) ? IH_SIZE : 0)
-
((!h && r_key
&& op_is_left_mergeable(r_key, Sh->b_size)) ? IH_SIZE : 0)
+ ((h) ? KEY_SIZE : 0)) {
/* node can not be removed */
- if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
+ if (sfree >= levbytes) {
+ /* new item fits into node S[h] without any shifting */
if (!h)
tb->s0num =
B_NR_ITEMS(Sh) +
@@ -1202,7 +1308,8 @@ static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
return !NO_BALANCING_NEEDED;
}
-/* Check whether current node S[h] is balanced when increasing its size by
+/*
+ * Check whether current node S[h] is balanced when increasing its size by
* Inserting or Pasting.
* Calculate parameters for balancing for current level h.
* Parameters:
@@ -1219,39 +1326,48 @@ static inline int can_node_be_removed(int mode, int lfree, int sfree, int rfree,
static int ip_check_balance(struct tree_balance *tb, int h)
{
struct virtual_node *vn = tb->tb_vn;
- int levbytes, /* Number of bytes that must be inserted into (value
- is negative if bytes are deleted) buffer which
- contains node being balanced. The mnemonic is
- that the attempted change in node space used level
- is levbytes bytes. */
- ret;
+ /*
+ * Number of bytes that must be inserted into (value is negative
+ * if bytes are deleted) buffer which contains node being balanced.
+ * The mnemonic is that the attempted change in node space used
+ * level is levbytes bytes.
+ */
+ int levbytes;
+ int ret;
int lfree, sfree, rfree /* free space in L, S and R */ ;
- /* nver is short for number of vertixes, and lnver is the number if
- we shift to the left, rnver is the number if we shift to the
- right, and lrnver is the number if we shift in both directions.
- The goal is to minimize first the number of vertixes, and second,
- the number of vertixes whose contents are changed by shifting,
- and third the number of uncached vertixes whose contents are
- changed by shifting and must be read from disk. */
+ /*
+ * nver is short for number of vertixes, and lnver is the number if
+ * we shift to the left, rnver is the number if we shift to the
+ * right, and lrnver is the number if we shift in both directions.
+ * The goal is to minimize first the number of vertixes, and second,
+ * the number of vertixes whose contents are changed by shifting,
+ * and third the number of uncached vertixes whose contents are
+ * changed by shifting and must be read from disk.
+ */
int nver, lnver, rnver, lrnver;
- /* used at leaf level only, S0 = S[0] is the node being balanced,
- sInum [ I = 0,1,2 ] is the number of items that will
- remain in node SI after balancing. S1 and S2 are new
- nodes that might be created. */
+ /*
+ * used at leaf level only, S0 = S[0] is the node being balanced,
+ * sInum [ I = 0,1,2 ] is the number of items that will
+ * remain in node SI after balancing. S1 and S2 are new
+ * nodes that might be created.
+ */
- /* we perform 8 calls to get_num_ver(). For each call we calculate five parameters.
- where 4th parameter is s1bytes and 5th - s2bytes
+ /*
+ * we perform 8 calls to get_num_ver(). For each call we
+ * calculate five parameters. where 4th parameter is s1bytes
+ * and 5th - s2bytes
+ *
+ * s0num, s1num, s2num for 8 cases
+ * 0,1 - do not shift and do not shift but bottle
+ * 2 - shift only whole item to left
+ * 3 - shift to left and bottle as much as possible
+ * 4,5 - shift to right (whole items and as much as possible
+ * 6,7 - shift to both directions (whole items and as much as possible)
*/
- short snum012[40] = { 0, }; /* s0num, s1num, s2num for 8 cases
- 0,1 - do not shift and do not shift but bottle
- 2 - shift only whole item to left
- 3 - shift to left and bottle as much as possible
- 4,5 - shift to right (whole items and as much as possible
- 6,7 - shift to both directions (whole items and as much as possible)
- */
+ short snum012[40] = { 0, };
/* Sh is the node whose balance is currently being checked */
struct buffer_head *Sh;
@@ -1265,9 +1381,10 @@ static int ip_check_balance(struct tree_balance *tb, int h)
reiserfs_panic(tb->tb_sb, "vs-8210",
"S[0] can not be 0");
switch (ret = get_empty_nodes(tb, h)) {
+ /* no balancing for higher levels needed */
case CARRY_ON:
set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
- return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
+ return NO_BALANCING_NEEDED;
case NO_DISK_SPACE:
case REPEAT_SEARCH:
@@ -1278,7 +1395,9 @@ static int ip_check_balance(struct tree_balance *tb, int h)
}
}
- if ((ret = get_parents(tb, h)) != CARRY_ON) /* get parents of S[h] neighbors. */
+ /* get parents of S[h] neighbors. */
+ ret = get_parents(tb, h);
+ if (ret != CARRY_ON)
return ret;
sfree = B_FREE_SPACE(Sh);
@@ -1287,38 +1406,44 @@ static int ip_check_balance(struct tree_balance *tb, int h)
rfree = get_rfree(tb, h);
lfree = get_lfree(tb, h);
+ /* and new item fits into node S[h] without any shifting */
if (can_node_be_removed(vn->vn_mode, lfree, sfree, rfree, tb, h) ==
NO_BALANCING_NEEDED)
- /* and new item fits into node S[h] without any shifting */
return NO_BALANCING_NEEDED;
create_virtual_node(tb, h);
/*
- determine maximal number of items we can shift to the left neighbor (in tb structure)
- and the maximal number of bytes that can flow to the left neighbor
- from the left most liquid item that cannot be shifted from S[0] entirely (returned value)
+ * determine maximal number of items we can shift to the left
+ * neighbor (in tb structure) and the maximal number of bytes
+ * that can flow to the left neighbor from the left most liquid
+ * item that cannot be shifted from S[0] entirely (returned value)
*/
check_left(tb, h, lfree);
/*
- determine maximal number of items we can shift to the right neighbor (in tb structure)
- and the maximal number of bytes that can flow to the right neighbor
- from the right most liquid item that cannot be shifted from S[0] entirely (returned value)
+ * determine maximal number of items we can shift to the right
+ * neighbor (in tb structure) and the maximal number of bytes
+ * that can flow to the right neighbor from the right most liquid
+ * item that cannot be shifted from S[0] entirely (returned value)
*/
check_right(tb, h, rfree);
- /* all contents of internal node S[h] can be moved into its
- neighbors, S[h] will be removed after balancing */
+ /*
+ * all contents of internal node S[h] can be moved into its
+ * neighbors, S[h] will be removed after balancing
+ */
if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) {
int to_r;
- /* Since we are working on internal nodes, and our internal
- nodes have fixed size entries, then we can balance by the
- number of items rather than the space they consume. In this
- routine we set the left node equal to the right node,
- allowing a difference of less than or equal to 1 child
- pointer. */
+ /*
+ * Since we are working on internal nodes, and our internal
+ * nodes have fixed size entries, then we can balance by the
+ * number of items rather than the space they consume. In this
+ * routine we set the left node equal to the right node,
+ * allowing a difference of less than or equal to 1 child
+ * pointer.
+ */
to_r =
((MAX_NR_KEY(Sh) << 1) + 2 - tb->lnum[h] - tb->rnum[h] +
vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 -
@@ -1328,7 +1453,10 @@ static int ip_check_balance(struct tree_balance *tb, int h)
return CARRY_ON;
}
- /* this checks balance condition, that any two neighboring nodes can not fit in one node */
+ /*
+ * this checks balance condition, that any two neighboring nodes
+ * can not fit in one node
+ */
RFALSE(h &&
(tb->lnum[h] >= vn->vn_nr_item + 1 ||
tb->rnum[h] >= vn->vn_nr_item + 1),
@@ -1337,16 +1465,22 @@ static int ip_check_balance(struct tree_balance *tb, int h)
(tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1))),
"vs-8225: tree is not balanced on leaf level");
- /* all contents of S[0] can be moved into its neighbors
- S[0] will be removed after balancing. */
+ /*
+ * all contents of S[0] can be moved into its neighbors
+ * S[0] will be removed after balancing.
+ */
if (!h && is_leaf_removable(tb))
return CARRY_ON;
- /* why do we perform this check here rather than earlier??
- Answer: we can win 1 node in some cases above. Moreover we
- checked it above, when we checked, that S[0] is not removable
- in principle */
- if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */
+ /*
+ * why do we perform this check here rather than earlier??
+ * Answer: we can win 1 node in some cases above. Moreover we
+ * checked it above, when we checked, that S[0] is not removable
+ * in principle
+ */
+
+ /* new item fits into node S[h] without any shifting */
+ if (sfree >= levbytes) {
if (!h)
tb->s0num = vn->vn_nr_item;
set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
@@ -1355,18 +1489,19 @@ static int ip_check_balance(struct tree_balance *tb, int h)
{
int lpar, rpar, nset, lset, rset, lrset;
- /*
- * regular overflowing of the node
- */
+ /* regular overflowing of the node */
- /* get_num_ver works in 2 modes (FLOW & NO_FLOW)
- lpar, rpar - number of items we can shift to left/right neighbor (including splitting item)
- nset, lset, rset, lrset - shows, whether flowing items give better packing
+ /*
+ * get_num_ver works in 2 modes (FLOW & NO_FLOW)
+ * lpar, rpar - number of items we can shift to left/right
+ * neighbor (including splitting item)
+ * nset, lset, rset, lrset - shows, whether flowing items
+ * give better packing
*/
#define FLOW 1
#define NO_FLOW 0 /* do not any splitting */
- /* we choose one the following */
+ /* we choose one of the following */
#define NOTHING_SHIFT_NO_FLOW 0
#define NOTHING_SHIFT_FLOW 5
#define LEFT_SHIFT_NO_FLOW 10
@@ -1379,10 +1514,13 @@ static int ip_check_balance(struct tree_balance *tb, int h)
lpar = tb->lnum[h];
rpar = tb->rnum[h];
- /* calculate number of blocks S[h] must be split into when
- nothing is shifted to the neighbors,
- as well as number of items in each part of the split node (s012 numbers),
- and number of bytes (s1bytes) of the shared drop which flow to S1 if any */
+ /*
+ * calculate number of blocks S[h] must be split into when
+ * nothing is shifted to the neighbors, as well as number of
+ * items in each part of the split node (s012 numbers),
+ * and number of bytes (s1bytes) of the shared drop which
+ * flow to S1 if any
+ */
nset = NOTHING_SHIFT_NO_FLOW;
nver = get_num_ver(vn->vn_mode, tb, h,
0, -1, h ? vn->vn_nr_item : 0, -1,
@@ -1391,7 +1529,10 @@ static int ip_check_balance(struct tree_balance *tb, int h)
if (!h) {
int nver1;
- /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */
+ /*
+ * note, that in this case we try to bottle
+ * between S[0] and S1 (S1 - the first new node)
+ */
nver1 = get_num_ver(vn->vn_mode, tb, h,
0, -1, 0, -1,
snum012 + NOTHING_SHIFT_FLOW, FLOW);
@@ -1399,11 +1540,13 @@ static int ip_check_balance(struct tree_balance *tb, int h)
nset = NOTHING_SHIFT_FLOW, nver = nver1;
}
- /* calculate number of blocks S[h] must be split into when
- l_shift_num first items and l_shift_bytes of the right most
- liquid item to be shifted are shifted to the left neighbor,
- as well as number of items in each part of the splitted node (s012 numbers),
- and number of bytes (s1bytes) of the shared drop which flow to S1 if any
+ /*
+ * calculate number of blocks S[h] must be split into when
+ * l_shift_num first items and l_shift_bytes of the right
+ * most liquid item to be shifted are shifted to the left
+ * neighbor, as well as number of items in each part of the
+ * splitted node (s012 numbers), and number of bytes
+ * (s1bytes) of the shared drop which flow to S1 if any
*/
lset = LEFT_SHIFT_NO_FLOW;
lnver = get_num_ver(vn->vn_mode, tb, h,
@@ -1422,11 +1565,13 @@ static int ip_check_balance(struct tree_balance *tb, int h)
lset = LEFT_SHIFT_FLOW, lnver = lnver1;
}
- /* calculate number of blocks S[h] must be split into when
- r_shift_num first items and r_shift_bytes of the left most
- liquid item to be shifted are shifted to the right neighbor,
- as well as number of items in each part of the splitted node (s012 numbers),
- and number of bytes (s1bytes) of the shared drop which flow to S1 if any
+ /*
+ * calculate number of blocks S[h] must be split into when
+ * r_shift_num first items and r_shift_bytes of the left most
+ * liquid item to be shifted are shifted to the right neighbor,
+ * as well as number of items in each part of the splitted
+ * node (s012 numbers), and number of bytes (s1bytes) of the
+ * shared drop which flow to S1 if any
*/
rset = RIGHT_SHIFT_NO_FLOW;
rnver = get_num_ver(vn->vn_mode, tb, h,
@@ -1451,10 +1596,12 @@ static int ip_check_balance(struct tree_balance *tb, int h)
rset = RIGHT_SHIFT_FLOW, rnver = rnver1;
}
- /* calculate number of blocks S[h] must be split into when
- items are shifted in both directions,
- as well as number of items in each part of the splitted node (s012 numbers),
- and number of bytes (s1bytes) of the shared drop which flow to S1 if any
+ /*
+ * calculate number of blocks S[h] must be split into when
+ * items are shifted in both directions, as well as number
+ * of items in each part of the splitted node (s012 numbers),
+ * and number of bytes (s1bytes) of the shared drop which
+ * flow to S1 if any
*/
lrset = LR_SHIFT_NO_FLOW;
lrnver = get_num_ver(vn->vn_mode, tb, h,
@@ -1481,10 +1628,12 @@ static int ip_check_balance(struct tree_balance *tb, int h)
lrset = LR_SHIFT_FLOW, lrnver = lrnver1;
}
- /* Our general shifting strategy is:
- 1) to minimized number of new nodes;
- 2) to minimized number of neighbors involved in shifting;
- 3) to minimized number of disk reads; */
+ /*
+ * Our general shifting strategy is:
+ * 1) to minimized number of new nodes;
+ * 2) to minimized number of neighbors involved in shifting;
+ * 3) to minimized number of disk reads;
+ */
/* we can win TWO or ONE nodes by shifting in both directions */
if (lrnver < lnver && lrnver < rnver) {
@@ -1508,42 +1657,59 @@ static int ip_check_balance(struct tree_balance *tb, int h)
return CARRY_ON;
}
- /* if shifting doesn't lead to better packing then don't shift */
+ /*
+ * if shifting doesn't lead to better packing
+ * then don't shift
+ */
if (nver == lrnver) {
set_parameters(tb, h, 0, 0, nver, snum012 + nset, -1,
-1);
return CARRY_ON;
}
- /* now we know that for better packing shifting in only one
- direction either to the left or to the right is required */
+ /*
+ * now we know that for better packing shifting in only one
+ * direction either to the left or to the right is required
+ */
- /* if shifting to the left is better than shifting to the right */
+ /*
+ * if shifting to the left is better than
+ * shifting to the right
+ */
if (lnver < rnver) {
SET_PAR_SHIFT_LEFT;
return CARRY_ON;
}
- /* if shifting to the right is better than shifting to the left */
+ /*
+ * if shifting to the right is better than
+ * shifting to the left
+ */
if (lnver > rnver) {
SET_PAR_SHIFT_RIGHT;
return CARRY_ON;
}
- /* now shifting in either direction gives the same number
- of nodes and we can make use of the cached neighbors */
+ /*
+ * now shifting in either direction gives the same number
+ * of nodes and we can make use of the cached neighbors
+ */
if (is_left_neighbor_in_cache(tb, h)) {
SET_PAR_SHIFT_LEFT;
return CARRY_ON;
}
- /* shift to the right independently on whether the right neighbor in cache or not */
+ /*
+ * shift to the right independently on whether the
+ * right neighbor in cache or not
+ */
SET_PAR_SHIFT_RIGHT;
return CARRY_ON;
}
}
-/* Check whether current node S[h] is balanced when Decreasing its size by
+/*
+ * Check whether current node S[h] is balanced when Decreasing its size by
* Deleting or Cutting for INTERNAL node of S+tree.
* Calculate parameters for balancing for current level h.
* Parameters:
@@ -1563,8 +1729,10 @@ static int dc_check_balance_internal(struct tree_balance *tb, int h)
{
struct virtual_node *vn = tb->tb_vn;
- /* Sh is the node whose balance is currently being checked,
- and Fh is its father. */
+ /*
+ * Sh is the node whose balance is currently being checked,
+ * and Fh is its father.
+ */
struct buffer_head *Sh, *Fh;
int maxsize, ret;
int lfree, rfree /* free space in L and R */ ;
@@ -1574,19 +1742,25 @@ static int dc_check_balance_internal(struct tree_balance *tb, int h)
maxsize = MAX_CHILD_SIZE(Sh);
-/* using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */
-/* new_nr_item = number of items node would have if operation is */
-/* performed without balancing (new_nr_item); */
+ /*
+ * using tb->insert_size[h], which is negative in this case,
+ * create_virtual_node calculates:
+ * new_nr_item = number of items node would have if operation is
+ * performed without balancing (new_nr_item);
+ */
create_virtual_node(tb, h);
if (!Fh) { /* S[h] is the root. */
+ /* no balancing for higher levels needed */
if (vn->vn_nr_item > 0) {
set_parameters(tb, h, 0, 0, 1, NULL, -1, -1);
- return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */
+ return NO_BALANCING_NEEDED;
}
- /* new_nr_item == 0.
+ /*
+ * new_nr_item == 0.
* Current root will be deleted resulting in
- * decrementing the tree height. */
+ * decrementing the tree height.
+ */
set_parameters(tb, h, 0, 0, 0, NULL, -1, -1);
return CARRY_ON;
}
@@ -1602,12 +1776,18 @@ static int dc_check_balance_internal(struct tree_balance *tb, int h)
check_left(tb, h, lfree);
check_right(tb, h, rfree);
- if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) { /* Balance condition for the internal node is valid.
- * In this case we balance only if it leads to better packing. */
- if (vn->vn_nr_item == MIN_NR_KEY(Sh)) { /* Here we join S[h] with one of its neighbors,
- * which is impossible with greater values of new_nr_item. */
+ /*
+ * Balance condition for the internal node is valid.
+ * In this case we balance only if it leads to better packing.
+ */
+ if (vn->vn_nr_item >= MIN_NR_KEY(Sh)) {
+ /*
+ * Here we join S[h] with one of its neighbors,
+ * which is impossible with greater values of new_nr_item.
+ */
+ if (vn->vn_nr_item == MIN_NR_KEY(Sh)) {
+ /* All contents of S[h] can be moved to L[h]. */
if (tb->lnum[h] >= vn->vn_nr_item + 1) {
- /* All contents of S[h] can be moved to L[h]. */
int n;
int order_L;
@@ -1623,8 +1803,8 @@ static int dc_check_balance_internal(struct tree_balance *tb, int h)
return CARRY_ON;
}
+ /* All contents of S[h] can be moved to R[h]. */
if (tb->rnum[h] >= vn->vn_nr_item + 1) {
- /* All contents of S[h] can be moved to R[h]. */
int n;
int order_R;
@@ -1641,8 +1821,11 @@ static int dc_check_balance_internal(struct tree_balance *tb, int h)
}
}
+ /*
+ * All contents of S[h] can be moved to the neighbors
+ * (L[h] & R[h]).
+ */
if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) {
- /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */
int to_r;
to_r =
@@ -1659,7 +1842,10 @@ static int dc_check_balance_internal(struct tree_balance *tb, int h)
return NO_BALANCING_NEEDED;
}
- /* Current node contain insufficient number of items. Balancing is required. */
+ /*
+ * Current node contain insufficient number of items.
+ * Balancing is required.
+ */
/* Check whether we can merge S[h] with left neighbor. */
if (tb->lnum[h] >= vn->vn_nr_item + 1)
if (is_left_neighbor_in_cache(tb, h)
@@ -1726,7 +1912,8 @@ static int dc_check_balance_internal(struct tree_balance *tb, int h)
return CARRY_ON;
}
-/* Check whether current node S[h] is balanced when Decreasing its size by
+/*
+ * Check whether current node S[h] is balanced when Decreasing its size by
* Deleting or Truncating for LEAF node of S+tree.
* Calculate parameters for balancing for current level h.
* Parameters:
@@ -1743,15 +1930,21 @@ static int dc_check_balance_leaf(struct tree_balance *tb, int h)
{
struct virtual_node *vn = tb->tb_vn;
- /* Number of bytes that must be deleted from
- (value is negative if bytes are deleted) buffer which
- contains node being balanced. The mnemonic is that the
- attempted change in node space used level is levbytes bytes. */
+ /*
+ * Number of bytes that must be deleted from
+ * (value is negative if bytes are deleted) buffer which
+ * contains node being balanced. The mnemonic is that the
+ * attempted change in node space used level is levbytes bytes.
+ */
int levbytes;
+
/* the maximal item size */
int maxsize, ret;
- /* S0 is the node whose balance is currently being checked,
- and F0 is its father. */
+
+ /*
+ * S0 is the node whose balance is currently being checked,
+ * and F0 is its father.
+ */
struct buffer_head *S0, *F0;
int lfree, rfree /* free space in L and R */ ;
@@ -1784,9 +1977,11 @@ static int dc_check_balance_leaf(struct tree_balance *tb, int h)
if (are_leaves_removable(tb, lfree, rfree))
return CARRY_ON;
- /* determine maximal number of items we can shift to the left/right neighbor
- and the maximal number of bytes that can flow to the left/right neighbor
- from the left/right most liquid item that cannot be shifted from S[0] entirely
+ /*
+ * determine maximal number of items we can shift to the left/right
+ * neighbor and the maximal number of bytes that can flow to the
+ * left/right neighbor from the left/right most liquid item that
+ * cannot be shifted from S[0] entirely
*/
check_left(tb, h, lfree);
check_right(tb, h, rfree);
@@ -1810,7 +2005,10 @@ static int dc_check_balance_leaf(struct tree_balance *tb, int h)
return CARRY_ON;
}
- /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */
+ /*
+ * All contents of S[0] can be moved to the neighbors (L[0] & R[0]).
+ * Set parameters and return
+ */
if (is_leaf_removable(tb))
return CARRY_ON;
@@ -1820,7 +2018,8 @@ static int dc_check_balance_leaf(struct tree_balance *tb, int h)
return NO_BALANCING_NEEDED;
}
-/* Check whether current node S[h] is balanced when Decreasing its size by
+/*
+ * Check whether current node S[h] is balanced when Decreasing its size by
* Deleting or Cutting.
* Calculate parameters for balancing for current level h.
* Parameters:
@@ -1844,15 +2043,16 @@ static int dc_check_balance(struct tree_balance *tb, int h)
return dc_check_balance_leaf(tb, h);
}
-/* Check whether current node S[h] is balanced.
+/*
+ * Check whether current node S[h] is balanced.
* Calculate parameters for balancing for current level h.
* Parameters:
*
* tb tree_balance structure:
*
- * tb is a large structure that must be read about in the header file
- * at the same time as this procedure if the reader is to successfully
- * understand this procedure
+ * tb is a large structure that must be read about in the header
+ * file at the same time as this procedure if the reader is
+ * to successfully understand this procedure
*
* h current level of the node;
* inum item number in S[h];
@@ -1882,8 +2082,8 @@ static int check_balance(int mode,
RFALSE(mode == M_INSERT && !vn->vn_ins_ih,
"vs-8255: ins_ih can not be 0 in insert mode");
+ /* Calculate balance parameters when size of node is increasing. */
if (tb->insert_size[h] > 0)
- /* Calculate balance parameters when size of node is increasing. */
return ip_check_balance(tb, h);
/* Calculate balance parameters when size of node is decreasing. */
@@ -1911,21 +2111,23 @@ static int get_direct_parent(struct tree_balance *tb, int h)
PATH_OFFSET_POSITION(path, path_offset - 1) = 0;
return CARRY_ON;
}
- return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */
+ /* Root is changed and we must recalculate the path. */
+ return REPEAT_SEARCH;
}
+ /* Parent in the path is not in the tree. */
if (!B_IS_IN_TREE
(bh = PATH_OFFSET_PBUFFER(path, path_offset - 1)))
- return REPEAT_SEARCH; /* Parent in the path is not in the tree. */
+ return REPEAT_SEARCH;
if ((position =
PATH_OFFSET_POSITION(path,
path_offset - 1)) > B_NR_ITEMS(bh))
return REPEAT_SEARCH;
+ /* Parent in the path is not parent of the current node in the tree. */
if (B_N_CHILD_NUM(bh, position) !=
PATH_OFFSET_PBUFFER(path, path_offset)->b_blocknr)
- /* Parent in the path is not parent of the current node in the tree. */
return REPEAT_SEARCH;
if (buffer_locked(bh)) {
@@ -1936,10 +2138,15 @@ static int get_direct_parent(struct tree_balance *tb, int h)
return REPEAT_SEARCH;
}
- return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node. */
+ /*
+ * Parent in the path is unlocked and really parent
+ * of the current node.
+ */
+ return CARRY_ON;
}
-/* Using lnum[h] and rnum[h] we should determine what neighbors
+/*
+ * Using lnum[h] and rnum[h] we should determine what neighbors
* of S[h] we
* need in order to balance S[h], and get them if necessary.
* Returns: SCHEDULE_OCCURRED - schedule occurred while the function worked;
@@ -1997,7 +2204,7 @@ static int get_neighbors(struct tree_balance *tb, int h)
}
/* We need right neighbor to balance S[path_offset]. */
- if (tb->rnum[h]) { /* We need right neighbor to balance S[path_offset]. */
+ if (tb->rnum[h]) {
PROC_INFO_INC(sb, need_r_neighbor[h]);
bh = PATH_OFFSET_PBUFFER(tb->tb_path, path_offset);
@@ -2053,9 +2260,11 @@ static int get_virtual_node_size(struct super_block *sb, struct buffer_head *bh)
(max_num_of_entries - 1) * sizeof(__u16));
}
-/* maybe we should fail balancing we are going to perform when kmalloc
- fails several times. But now it will loop until kmalloc gets
- required memory */
+/*
+ * maybe we should fail balancing we are going to perform when kmalloc
+ * fails several times. But now it will loop until kmalloc gets
+ * required memory
+ */
static int get_mem_for_virtual_node(struct tree_balance *tb)
{
int check_fs = 0;
@@ -2064,8 +2273,8 @@ static int get_mem_for_virtual_node(struct tree_balance *tb)
size = get_virtual_node_size(tb->tb_sb, PATH_PLAST_BUFFER(tb->tb_path));
+ /* we have to allocate more memory for virtual node */
if (size > tb->vn_buf_size) {
- /* we have to allocate more memory for virtual node */
if (tb->vn_buf) {
/* free memory allocated before */
kfree(tb->vn_buf);
@@ -2079,10 +2288,12 @@ static int get_mem_for_virtual_node(struct tree_balance *tb)
/* get memory for virtual item */
buf = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
if (!buf) {
- /* getting memory with GFP_KERNEL priority may involve
- balancing now (due to indirect_to_direct conversion on
- dcache shrinking). So, release path and collected
- resources here */
+ /*
+ * getting memory with GFP_KERNEL priority may involve
+ * balancing now (due to indirect_to_direct conversion
+ * on dcache shrinking). So, release path and collected
+ * resources here
+ */
free_buffers_in_tb(tb);
buf = kmalloc(size, GFP_NOFS);
if (!buf) {
@@ -2168,8 +2379,10 @@ static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
for (i = tb->tb_path->path_length;
!locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i--) {
if (PATH_OFFSET_PBUFFER(tb->tb_path, i)) {
- /* if I understand correctly, we can only be sure the last buffer
- ** in the path is in the tree --clm
+ /*
+ * if I understand correctly, we can only
+ * be sure the last buffer in the path is
+ * in the tree --clm
*/
#ifdef CONFIG_REISERFS_CHECK
if (PATH_PLAST_BUFFER(tb->tb_path) ==
@@ -2256,13 +2469,15 @@ static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
}
}
}
- /* as far as I can tell, this is not required. The FEB list seems
- ** to be full of newly allocated nodes, which will never be locked,
- ** dirty, or anything else.
- ** To be safe, I'm putting in the checks and waits in. For the moment,
- ** they are needed to keep the code in journal.c from complaining
- ** about the buffer. That code is inside CONFIG_REISERFS_CHECK as well.
- ** --clm
+
+ /*
+ * as far as I can tell, this is not required. The FEB list
+ * seems to be full of newly allocated nodes, which will
+ * never be locked, dirty, or anything else.
+ * To be safe, I'm putting in the checks and waits in.
+ * For the moment, they are needed to keep the code in
+ * journal.c from complaining about the buffer.
+ * That code is inside CONFIG_REISERFS_CHECK as well. --clm
*/
for (i = 0; !locked && i < MAX_FEB_SIZE; i++) {
if (tb->FEB[i]) {
@@ -2300,7 +2515,8 @@ static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
return CARRY_ON;
}
-/* Prepare for balancing, that is
+/*
+ * Prepare for balancing, that is
* get all necessary parents, and neighbors;
* analyze what and where should be moved;
* get sufficient number of new nodes;
@@ -2309,13 +2525,14 @@ static int wait_tb_buffers_until_unlocked(struct tree_balance *tb)
* When ported to SMP kernels, only at the last moment after all needed nodes
* are collected in cache, will the resources be locked using the usual
* textbook ordered lock acquisition algorithms. Note that ensuring that
- * this code neither write locks what it does not need to write lock nor locks out of order
- * will be a pain in the butt that could have been avoided. Grumble grumble. -Hans
+ * this code neither write locks what it does not need to write lock nor locks
+ * out of order will be a pain in the butt that could have been avoided.
+ * Grumble grumble. -Hans
*
* fix is meant in the sense of render unchanging
*
- * Latency might be improved by first gathering a list of what buffers are needed
- * and then getting as many of them in parallel as possible? -Hans
+ * Latency might be improved by first gathering a list of what buffers
+ * are needed and then getting as many of them in parallel as possible? -Hans
*
* Parameters:
* op_mode i - insert, d - delete, c - cut (truncate), p - paste (append)
@@ -2335,8 +2552,9 @@ int fix_nodes(int op_mode, struct tree_balance *tb,
int ret, h, item_num = PATH_LAST_POSITION(tb->tb_path);
int pos_in_item;
- /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared
- ** during wait_tb_buffers_run
+ /*
+ * we set wait_tb_buffers_run when we have to restore any dirty
+ * bits cleared during wait_tb_buffers_run
*/
int wait_tb_buffers_run = 0;
struct buffer_head *tbS0 = PATH_PLAST_BUFFER(tb->tb_path);
@@ -2347,14 +2565,15 @@ int fix_nodes(int op_mode, struct tree_balance *tb,
tb->fs_gen = get_generation(tb->tb_sb);
- /* we prepare and log the super here so it will already be in the
- ** transaction when do_balance needs to change it.
- ** This way do_balance won't have to schedule when trying to prepare
- ** the super for logging
+ /*
+ * we prepare and log the super here so it will already be in the
+ * transaction when do_balance needs to change it.
+ * This way do_balance won't have to schedule when trying to prepare
+ * the super for logging
*/
reiserfs_prepare_for_journal(tb->tb_sb,
SB_BUFFER_WITH_SB(tb->tb_sb), 1);
- journal_mark_dirty(tb->transaction_handle, tb->tb_sb,
+ journal_mark_dirty(tb->transaction_handle,
SB_BUFFER_WITH_SB(tb->tb_sb));
if (FILESYSTEM_CHANGED_TB(tb))
return REPEAT_SEARCH;
@@ -2408,7 +2627,7 @@ int fix_nodes(int op_mode, struct tree_balance *tb,
#endif
if (get_mem_for_virtual_node(tb) == REPEAT_SEARCH)
- // FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat
+ /* FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat */
return REPEAT_SEARCH;
/* Starting from the leaf level; for all levels h of the tree. */
@@ -2427,7 +2646,10 @@ int fix_nodes(int op_mode, struct tree_balance *tb,
goto repeat;
if (h != MAX_HEIGHT - 1)
tb->insert_size[h + 1] = 0;
- /* ok, analysis and resource gathering are complete */
+ /*
+ * ok, analysis and resource gathering
+ * are complete
+ */
break;
}
goto repeat;
@@ -2437,15 +2659,19 @@ int fix_nodes(int op_mode, struct tree_balance *tb,
if (ret != CARRY_ON)
goto repeat;
- /* No disk space, or schedule occurred and analysis may be
- * invalid and needs to be redone. */
+ /*
+ * No disk space, or schedule occurred and analysis may be
+ * invalid and needs to be redone.
+ */
ret = get_empty_nodes(tb, h);
if (ret != CARRY_ON)
goto repeat;
+ /*
+ * We have a positive insert size but no nodes exist on this
+ * level, this means that we are creating a new root.
+ */
if (!PATH_H_PBUFFER(tb->tb_path, h)) {
- /* We have a positive insert size but no nodes exist on this
- level, this means that we are creating a new root. */
RFALSE(tb->blknum[h] != 1,
"PAP-8350: creating new empty root");
@@ -2453,11 +2679,13 @@ int fix_nodes(int op_mode, struct tree_balance *tb,
if (h < MAX_HEIGHT - 1)
tb->insert_size[h + 1] = 0;
} else if (!PATH_H_PBUFFER(tb->tb_path, h + 1)) {
+ /*
+ * The tree needs to be grown, so this node S[h]
+ * which is the root node is split into two nodes,
+ * and a new node (S[h+1]) will be created to
+ * become the root node.
+ */
if (tb->blknum[h] > 1) {
- /* The tree needs to be grown, so this node S[h]
- which is the root node is split into two nodes,
- and a new node (S[h+1]) will be created to
- become the root node. */
RFALSE(h == MAX_HEIGHT - 1,
"PAP-8355: attempt to create too high of a tree");
@@ -2487,12 +2715,14 @@ int fix_nodes(int op_mode, struct tree_balance *tb,
goto repeat;
}
- repeat:
- // fix_nodes was unable to perform its calculation due to
- // filesystem got changed under us, lack of free disk space or i/o
- // failure. If the first is the case - the search will be
- // repeated. For now - free all resources acquired so far except
- // for the new allocated nodes
+repeat:
+ /*
+ * fix_nodes was unable to perform its calculation due to
+ * filesystem got changed under us, lack of free disk space or i/o
+ * failure. If the first is the case - the search will be
+ * repeated. For now - free all resources acquired so far except
+ * for the new allocated nodes
+ */
{
int i;
@@ -2548,8 +2778,6 @@ int fix_nodes(int op_mode, struct tree_balance *tb,
}
-/* Anatoly will probably forgive me renaming tb to tb. I just
- wanted to make lines shorter */
void unfix_nodes(struct tree_balance *tb)
{
int i;
@@ -2578,8 +2806,10 @@ void unfix_nodes(struct tree_balance *tb)
for (i = 0; i < MAX_FEB_SIZE; i++) {
if (tb->FEB[i]) {
b_blocknr_t blocknr = tb->FEB[i]->b_blocknr;
- /* de-allocated block which was not used by balancing and
- bforget about buffer for it */
+ /*
+ * de-allocated block which was not used by
+ * balancing and bforget about buffer for it
+ */
brelse(tb->FEB[i]);
reiserfs_free_block(tb->transaction_handle, NULL,
blocknr, 0);