diff options
Diffstat (limited to 'include/linux/firewire-cdev.h')
-rw-r--r-- | include/linux/firewire-cdev.h | 501 |
1 files changed, 407 insertions, 94 deletions
diff --git a/include/linux/firewire-cdev.h b/include/linux/firewire-cdev.h index 68f883b30a5..68c642d8843 100644 --- a/include/linux/firewire-cdev.h +++ b/include/linux/firewire-cdev.h @@ -30,12 +30,18 @@ #include <linux/types.h> #include <linux/firewire-constants.h> -#define FW_CDEV_EVENT_BUS_RESET 0x00 -#define FW_CDEV_EVENT_RESPONSE 0x01 -#define FW_CDEV_EVENT_REQUEST 0x02 -#define FW_CDEV_EVENT_ISO_INTERRUPT 0x03 -#define FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED 0x04 -#define FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED 0x05 +#define FW_CDEV_EVENT_BUS_RESET 0x00 +#define FW_CDEV_EVENT_RESPONSE 0x01 +#define FW_CDEV_EVENT_REQUEST 0x02 +#define FW_CDEV_EVENT_ISO_INTERRUPT 0x03 +#define FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED 0x04 +#define FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED 0x05 + +/* available since kernel version 2.6.36 */ +#define FW_CDEV_EVENT_REQUEST2 0x06 +#define FW_CDEV_EVENT_PHY_PACKET_SENT 0x07 +#define FW_CDEV_EVENT_PHY_PACKET_RECEIVED 0x08 +#define FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL 0x09 /** * struct fw_cdev_event_common - Common part of all fw_cdev_event_ types @@ -68,6 +74,10 @@ struct fw_cdev_event_common { * This event is sent when the bus the device belongs to goes through a bus * reset. It provides information about the new bus configuration, such as * new node ID for this device, new root ID, and others. + * + * If @bm_node_id is 0xffff right after bus reset it can be reread by an + * %FW_CDEV_IOC_GET_INFO ioctl after bus manager selection was finished. + * Kernels with ABI version < 4 do not set @bm_node_id. */ struct fw_cdev_event_bus_reset { __u64 closure; @@ -82,8 +92,9 @@ struct fw_cdev_event_bus_reset { /** * struct fw_cdev_event_response - Sent when a response packet was received - * @closure: See &fw_cdev_event_common; - * set by %FW_CDEV_IOC_SEND_REQUEST ioctl + * @closure: See &fw_cdev_event_common; set by %FW_CDEV_IOC_SEND_REQUEST + * or %FW_CDEV_IOC_SEND_BROADCAST_REQUEST + * or %FW_CDEV_IOC_SEND_STREAM_PACKET ioctl * @type: See &fw_cdev_event_common; always %FW_CDEV_EVENT_RESPONSE * @rcode: Response code returned by the remote node * @length: Data length, i.e. the response's payload size in bytes @@ -93,6 +104,11 @@ struct fw_cdev_event_bus_reset { * sent by %FW_CDEV_IOC_SEND_REQUEST ioctl. The payload data for responses * carrying data (read and lock responses) follows immediately and can be * accessed through the @data field. + * + * The event is also generated after conclusions of transactions that do not + * involve response packets. This includes unified write transactions, + * broadcast write transactions, and transmission of asynchronous stream + * packets. @rcode indicates success or failure of such transmissions. */ struct fw_cdev_event_response { __u64 closure; @@ -103,11 +119,46 @@ struct fw_cdev_event_response { }; /** - * struct fw_cdev_event_request - Sent on incoming request to an address region + * struct fw_cdev_event_request - Old version of &fw_cdev_event_request2 * @closure: See &fw_cdev_event_common; set by %FW_CDEV_IOC_ALLOCATE ioctl * @type: See &fw_cdev_event_common; always %FW_CDEV_EVENT_REQUEST + * @tcode: See &fw_cdev_event_request2 + * @offset: See &fw_cdev_event_request2 + * @handle: See &fw_cdev_event_request2 + * @length: See &fw_cdev_event_request2 + * @data: See &fw_cdev_event_request2 + * + * This event is sent instead of &fw_cdev_event_request2 if the kernel or + * the client implements ABI version <= 3. + * + * Unlike &fw_cdev_event_request2, the sender identity cannot be established, + * broadcast write requests cannot be distinguished from unicast writes, and + * @tcode of lock requests is %TCODE_LOCK_REQUEST. + * + * Requests to the FCP_REQUEST or FCP_RESPONSE register are responded to as + * with &fw_cdev_event_request2, except in kernel 2.6.32 and older which send + * the response packet of the client's %FW_CDEV_IOC_SEND_RESPONSE ioctl. + */ +struct fw_cdev_event_request { + __u64 closure; + __u32 type; + __u32 tcode; + __u64 offset; + __u32 handle; + __u32 length; + __u32 data[0]; +}; + +/** + * struct fw_cdev_event_request2 - Sent on incoming request to an address region + * @closure: See &fw_cdev_event_common; set by %FW_CDEV_IOC_ALLOCATE ioctl + * @type: See &fw_cdev_event_common; always %FW_CDEV_EVENT_REQUEST2 * @tcode: Transaction code of the incoming request * @offset: The offset into the 48-bit per-node address space + * @source_node_id: Sender node ID + * @destination_node_id: Destination node ID + * @card: The index of the card from which the request came + * @generation: Bus generation in which the request is valid * @handle: Reference to the kernel-side pending request * @length: Data length, i.e. the request's payload size in bytes * @data: Incoming data, if any @@ -120,12 +171,42 @@ struct fw_cdev_event_response { * * The payload data for requests carrying data (write and lock requests) * follows immediately and can be accessed through the @data field. + * + * Unlike &fw_cdev_event_request, @tcode of lock requests is one of the + * firewire-core specific %TCODE_LOCK_MASK_SWAP...%TCODE_LOCK_VENDOR_DEPENDENT, + * i.e. encodes the extended transaction code. + * + * @card may differ from &fw_cdev_get_info.card because requests are received + * from all cards of the Linux host. @source_node_id, @destination_node_id, and + * @generation pertain to that card. Destination node ID and bus generation may + * therefore differ from the corresponding fields of the last + * &fw_cdev_event_bus_reset. + * + * @destination_node_id may also differ from the current node ID because of a + * non-local bus ID part or in case of a broadcast write request. Note, a + * client must call an %FW_CDEV_IOC_SEND_RESPONSE ioctl even in case of a + * broadcast write request; the kernel will then release the kernel-side pending + * request but will not actually send a response packet. + * + * In case of a write request to FCP_REQUEST or FCP_RESPONSE, the kernel already + * sent a write response immediately after the request was received; in this + * case the client must still call an %FW_CDEV_IOC_SEND_RESPONSE ioctl to + * release the kernel-side pending request, though another response won't be + * sent. + * + * If the client subsequently needs to initiate requests to the sender node of + * an &fw_cdev_event_request2, it needs to use a device file with matching + * card index, node ID, and generation for outbound requests. */ -struct fw_cdev_event_request { +struct fw_cdev_event_request2 { __u64 closure; __u32 type; __u32 tcode; __u64 offset; + __u32 source_node_id; + __u32 destination_node_id; + __u32 card; + __u32 generation; __u32 handle; __u32 length; __u32 data[0]; @@ -141,26 +222,43 @@ struct fw_cdev_event_request { * @header: Stripped headers, if any * * This event is sent when the controller has completed an &fw_cdev_iso_packet - * with the %FW_CDEV_ISO_INTERRUPT bit set. In the receive case, the headers - * stripped of all packets up until and including the interrupt packet are - * returned in the @header field. The amount of header data per packet is as - * specified at iso context creation by &fw_cdev_create_iso_context.header_size. + * with the %FW_CDEV_ISO_INTERRUPT bit set. * - * In version 1 of this ABI, header data consisted of the 1394 isochronous - * packet header, followed by quadlets from the packet payload if - * &fw_cdev_create_iso_context.header_size > 4. + * Isochronous transmit events (context type %FW_CDEV_ISO_CONTEXT_TRANSMIT): * - * In version 2 of this ABI, header data consist of the 1394 isochronous - * packet header, followed by a timestamp quadlet if - * &fw_cdev_create_iso_context.header_size > 4, followed by quadlets from the - * packet payload if &fw_cdev_create_iso_context.header_size > 8. + * In version 3 and some implementations of version 2 of the ABI, &header_length + * is a multiple of 4 and &header contains timestamps of all packets up until + * the interrupt packet. The format of the timestamps is as described below for + * isochronous reception. In version 1 of the ABI, &header_length was 0. * - * Behaviour of ver. 1 of this ABI is no longer available since ABI ver. 2. + * Isochronous receive events (context type %FW_CDEV_ISO_CONTEXT_RECEIVE): + * + * The headers stripped of all packets up until and including the interrupt + * packet are returned in the @header field. The amount of header data per + * packet is as specified at iso context creation by + * &fw_cdev_create_iso_context.header_size. + * + * Hence, _interrupt.header_length / _context.header_size is the number of + * packets received in this interrupt event. The client can now iterate + * through the mmap()'ed DMA buffer according to this number of packets and + * to the buffer sizes as the client specified in &fw_cdev_queue_iso. + * + * Since version 2 of this ABI, the portion for each packet in _interrupt.header + * consists of the 1394 isochronous packet header, followed by a timestamp + * quadlet if &fw_cdev_create_iso_context.header_size > 4, followed by quadlets + * from the packet payload if &fw_cdev_create_iso_context.header_size > 8. * - * Format of 1394 iso packet header: 16 bits len, 2 bits tag, 6 bits channel, - * 4 bits tcode, 4 bits sy, in big endian byte order. Format of timestamp: - * 16 bits invalid, 3 bits cycleSeconds, 13 bits cycleCount, in big endian byte - * order. + * Format of 1394 iso packet header: 16 bits data_length, 2 bits tag, 6 bits + * channel, 4 bits tcode, 4 bits sy, in big endian byte order. + * data_length is the actual received size of the packet without the four + * 1394 iso packet header bytes. + * + * Format of timestamp: 16 bits invalid, 3 bits cycleSeconds, 13 bits + * cycleCount, in big endian byte order. + * + * In version 1 of the ABI, no timestamp quadlet was inserted; instead, payload + * data followed directly after the 1394 is header if header_size > 4. + * Behaviour of ver. 1 of this ABI is no longer available since ABI ver. 2. */ struct fw_cdev_event_iso_interrupt { __u64 closure; @@ -171,6 +269,43 @@ struct fw_cdev_event_iso_interrupt { }; /** + * struct fw_cdev_event_iso_interrupt_mc - An iso buffer chunk was completed + * @closure: See &fw_cdev_event_common; + * set by %FW_CDEV_CREATE_ISO_CONTEXT ioctl + * @type: %FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL + * @completed: Offset into the receive buffer; data before this offest is valid + * + * This event is sent in multichannel contexts (context type + * %FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL) for &fw_cdev_iso_packet buffer + * chunks that have the %FW_CDEV_ISO_INTERRUPT bit set. Whether this happens + * when a packet is completed and/or when a buffer chunk is completed depends + * on the hardware implementation. + * + * The buffer is continuously filled with the following data, per packet: + * - the 1394 iso packet header as described at &fw_cdev_event_iso_interrupt, + * but in little endian byte order, + * - packet payload (as many bytes as specified in the data_length field of + * the 1394 iso packet header) in big endian byte order, + * - 0...3 padding bytes as needed to align the following trailer quadlet, + * - trailer quadlet, containing the reception timestamp as described at + * &fw_cdev_event_iso_interrupt, but in little endian byte order. + * + * Hence the per-packet size is data_length (rounded up to a multiple of 4) + 8. + * When processing the data, stop before a packet that would cross the + * @completed offset. + * + * A packet near the end of a buffer chunk will typically spill over into the + * next queued buffer chunk. It is the responsibility of the client to check + * for this condition, assemble a broken-up packet from its parts, and not to + * re-queue any buffer chunks in which as yet unread packet parts reside. + */ +struct fw_cdev_event_iso_interrupt_mc { + __u64 closure; + __u32 type; + __u32 completed; +}; + +/** * struct fw_cdev_event_iso_resource - Iso resources were allocated or freed * @closure: See &fw_cdev_event_common; * set by %FW_CDEV_IOC_(DE)ALLOCATE_ISO_RESOURCE(_ONCE) ioctl @@ -200,15 +335,45 @@ struct fw_cdev_event_iso_resource { }; /** + * struct fw_cdev_event_phy_packet - A PHY packet was transmitted or received + * @closure: See &fw_cdev_event_common; set by %FW_CDEV_IOC_SEND_PHY_PACKET + * or %FW_CDEV_IOC_RECEIVE_PHY_PACKETS ioctl + * @type: %FW_CDEV_EVENT_PHY_PACKET_SENT or %..._RECEIVED + * @rcode: %RCODE_..., indicates success or failure of transmission + * @length: Data length in bytes + * @data: Incoming data + * + * If @type is %FW_CDEV_EVENT_PHY_PACKET_SENT, @length is 0 and @data empty, + * except in case of a ping packet: Then, @length is 4, and @data[0] is the + * ping time in 49.152MHz clocks if @rcode is %RCODE_COMPLETE. + * + * If @type is %FW_CDEV_EVENT_PHY_PACKET_RECEIVED, @length is 8 and @data + * consists of the two PHY packet quadlets, in host byte order. + */ +struct fw_cdev_event_phy_packet { + __u64 closure; + __u32 type; + __u32 rcode; + __u32 length; + __u32 data[0]; +}; + +/** * union fw_cdev_event - Convenience union of fw_cdev_event_ types - * @common: Valid for all types - * @bus_reset: Valid if @common.type == %FW_CDEV_EVENT_BUS_RESET - * @response: Valid if @common.type == %FW_CDEV_EVENT_RESPONSE - * @request: Valid if @common.type == %FW_CDEV_EVENT_REQUEST - * @iso_interrupt: Valid if @common.type == %FW_CDEV_EVENT_ISO_INTERRUPT - * @iso_resource: Valid if @common.type == + * @common: Valid for all types + * @bus_reset: Valid if @common.type == %FW_CDEV_EVENT_BUS_RESET + * @response: Valid if @common.type == %FW_CDEV_EVENT_RESPONSE + * @request: Valid if @common.type == %FW_CDEV_EVENT_REQUEST + * @request2: Valid if @common.type == %FW_CDEV_EVENT_REQUEST2 + * @iso_interrupt: Valid if @common.type == %FW_CDEV_EVENT_ISO_INTERRUPT + * @iso_interrupt_mc: Valid if @common.type == + * %FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL + * @iso_resource: Valid if @common.type == * %FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED or * %FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED + * @phy_packet: Valid if @common.type == + * %FW_CDEV_EVENT_PHY_PACKET_SENT or + * %FW_CDEV_EVENT_PHY_PACKET_RECEIVED * * Convenience union for userspace use. Events could be read(2) into an * appropriately aligned char buffer and then cast to this union for further @@ -223,8 +388,11 @@ union fw_cdev_event { struct fw_cdev_event_bus_reset bus_reset; struct fw_cdev_event_response response; struct fw_cdev_event_request request; + struct fw_cdev_event_request2 request2; /* added in 2.6.36 */ struct fw_cdev_event_iso_interrupt iso_interrupt; - struct fw_cdev_event_iso_resource iso_resource; + struct fw_cdev_event_iso_interrupt_mc iso_interrupt_mc; /* added in 2.6.36 */ + struct fw_cdev_event_iso_resource iso_resource; /* added in 2.6.30 */ + struct fw_cdev_event_phy_packet phy_packet; /* added in 2.6.36 */ }; /* available since kernel version 2.6.22 */ @@ -256,23 +424,46 @@ union fw_cdev_event { /* available since kernel version 2.6.34 */ #define FW_CDEV_IOC_GET_CYCLE_TIMER2 _IOWR('#', 0x14, struct fw_cdev_get_cycle_timer2) +/* available since kernel version 2.6.36 */ +#define FW_CDEV_IOC_SEND_PHY_PACKET _IOWR('#', 0x15, struct fw_cdev_send_phy_packet) +#define FW_CDEV_IOC_RECEIVE_PHY_PACKETS _IOW('#', 0x16, struct fw_cdev_receive_phy_packets) +#define FW_CDEV_IOC_SET_ISO_CHANNELS _IOW('#', 0x17, struct fw_cdev_set_iso_channels) + /* - * FW_CDEV_VERSION History + * ABI version history * 1 (2.6.22) - initial version + * (2.6.24) - added %FW_CDEV_IOC_GET_CYCLE_TIMER * 2 (2.6.30) - changed &fw_cdev_event_iso_interrupt.header if * &fw_cdev_create_iso_context.header_size is 8 or more + * - added %FW_CDEV_IOC_*_ISO_RESOURCE*, + * %FW_CDEV_IOC_GET_SPEED, %FW_CDEV_IOC_SEND_BROADCAST_REQUEST, + * %FW_CDEV_IOC_SEND_STREAM_PACKET * (2.6.32) - added time stamp to xmit &fw_cdev_event_iso_interrupt * (2.6.33) - IR has always packet-per-buffer semantics now, not one of * dual-buffer or packet-per-buffer depending on hardware + * - shared use and auto-response for FCP registers * 3 (2.6.34) - made &fw_cdev_get_cycle_timer reliable + * - added %FW_CDEV_IOC_GET_CYCLE_TIMER2 + * 4 (2.6.36) - added %FW_CDEV_EVENT_REQUEST2, %FW_CDEV_EVENT_PHY_PACKET_*, + * and &fw_cdev_allocate.region_end + * - implemented &fw_cdev_event_bus_reset.bm_node_id + * - added %FW_CDEV_IOC_SEND_PHY_PACKET, _RECEIVE_PHY_PACKETS + * - added %FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL, + * %FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL, and + * %FW_CDEV_IOC_SET_ISO_CHANNELS */ -#define FW_CDEV_VERSION 3 +#define FW_CDEV_VERSION 3 /* Meaningless; don't use this macro. */ /** * struct fw_cdev_get_info - General purpose information ioctl - * @version: The version field is just a running serial number. - * We never break backwards compatibility, but may add more - * structs and ioctls in later revisions. + * @version: The version field is just a running serial number. Both an + * input parameter (ABI version implemented by the client) and + * output parameter (ABI version implemented by the kernel). + * A client must not fill in an %FW_CDEV_VERSION defined from an + * included kernel header file but the actual version for which + * the client was implemented. This is necessary for forward + * compatibility. We never break backwards compatibility, but + * may add more structs, events, and ioctls in later revisions. * @rom_length: If @rom is non-zero, at most rom_length bytes of configuration * ROM will be copied into that user space address. In either * case, @rom_length is updated with the actual length of the @@ -339,28 +530,48 @@ struct fw_cdev_send_response { }; /** - * struct fw_cdev_allocate - Allocate a CSR address range + * struct fw_cdev_allocate - Allocate a CSR in an address range * @offset: Start offset of the address range * @closure: To be passed back to userspace in request events - * @length: Length of the address range, in bytes + * @length: Length of the CSR, in bytes * @handle: Handle to the allocation, written by the kernel + * @region_end: First address above the address range (added in ABI v4, 2.6.36) * * Allocate an address range in the 48-bit address space on the local node * (the controller). This allows userspace to listen for requests with an - * offset within that address range. When the kernel receives a request - * within the range, an &fw_cdev_event_request event will be written back. - * The @closure field is passed back to userspace in the response event. + * offset within that address range. Every time when the kernel receives a + * request within the range, an &fw_cdev_event_request2 event will be emitted. + * (If the kernel or the client implements ABI version <= 3, an + * &fw_cdev_event_request will be generated instead.) + * + * The @closure field is passed back to userspace in these request events. * The @handle field is an out parameter, returning a handle to the allocated * range to be used for later deallocation of the range. * * The address range is allocated on all local nodes. The address allocation - * is exclusive except for the FCP command and response registers. + * is exclusive except for the FCP command and response registers. If an + * exclusive address region is already in use, the ioctl fails with errno set + * to %EBUSY. + * + * If kernel and client implement ABI version >= 4, the kernel looks up a free + * spot of size @length inside [@offset..@region_end) and, if found, writes + * the start address of the new CSR back in @offset. I.e. @offset is an + * in and out parameter. If this automatic placement of a CSR in a bigger + * address range is not desired, the client simply needs to set @region_end + * = @offset + @length. + * + * If the kernel or the client implements ABI version <= 3, @region_end is + * ignored and effectively assumed to be @offset + @length. + * + * @region_end is only present in a kernel header >= 2.6.36. If necessary, + * this can for example be tested by #ifdef FW_CDEV_EVENT_REQUEST2. */ struct fw_cdev_allocate { __u64 offset; __u64 closure; __u32 length; __u32 handle; + __u64 region_end; /* available since kernel version 2.6.36 */ }; /** @@ -382,9 +593,14 @@ struct fw_cdev_deallocate { * Initiate a bus reset for the bus this device is on. The bus reset can be * either the original (long) bus reset or the arbitrated (short) bus reset * introduced in 1394a-2000. + * + * The ioctl returns immediately. A subsequent &fw_cdev_event_bus_reset + * indicates when the reset actually happened. Since ABI v4, this may be + * considerably later than the ioctl because the kernel ensures a grace period + * between subsequent bus resets as per IEEE 1394 bus management specification. */ struct fw_cdev_initiate_bus_reset { - __u32 type; /* FW_CDEV_SHORT_RESET or FW_CDEV_LONG_RESET */ + __u32 type; }; /** @@ -408,9 +624,10 @@ struct fw_cdev_initiate_bus_reset { * * @immediate, @key, and @data array elements are CPU-endian quadlets. * - * If successful, the kernel adds the descriptor and writes back a handle to the - * kernel-side object to be used for later removal of the descriptor block and - * immediate key. + * If successful, the kernel adds the descriptor and writes back a @handle to + * the kernel-side object to be used for later removal of the descriptor block + * and immediate key. The kernel will also generate a bus reset to signal the + * change of the configuration ROM to other nodes. * * This ioctl affects the configuration ROMs of all local nodes. * The ioctl only succeeds on device files which represent a local node. @@ -429,38 +646,50 @@ struct fw_cdev_add_descriptor { * descriptor was added * * Remove a descriptor block and accompanying immediate key from the local - * nodes' configuration ROMs. + * nodes' configuration ROMs. The kernel will also generate a bus reset to + * signal the change of the configuration ROM to other nodes. */ struct fw_cdev_remove_descriptor { __u32 handle; }; -#define FW_CDEV_ISO_CONTEXT_TRANSMIT 0 -#define FW_CDEV_ISO_CONTEXT_RECEIVE 1 +#define FW_CDEV_ISO_CONTEXT_TRANSMIT 0 +#define FW_CDEV_ISO_CONTEXT_RECEIVE 1 +#define FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL 2 /* added in 2.6.36 */ /** - * struct fw_cdev_create_iso_context - Create a context for isochronous IO - * @type: %FW_CDEV_ISO_CONTEXT_TRANSMIT or %FW_CDEV_ISO_CONTEXT_RECEIVE - * @header_size: Header size to strip for receive contexts - * @channel: Channel to bind to - * @speed: Speed for transmit contexts - * @closure: To be returned in &fw_cdev_event_iso_interrupt + * struct fw_cdev_create_iso_context - Create a context for isochronous I/O + * @type: %FW_CDEV_ISO_CONTEXT_TRANSMIT or %FW_CDEV_ISO_CONTEXT_RECEIVE or + * %FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL + * @header_size: Header size to strip in single-channel reception + * @channel: Channel to bind to in single-channel reception or transmission + * @speed: Transmission speed + * @closure: To be returned in &fw_cdev_event_iso_interrupt or + * &fw_cdev_event_iso_interrupt_multichannel * @handle: Handle to context, written back by kernel * * Prior to sending or receiving isochronous I/O, a context must be created. * The context records information about the transmit or receive configuration * and typically maps to an underlying hardware resource. A context is set up * for either sending or receiving. It is bound to a specific isochronous - * channel. + * @channel. + * + * In case of multichannel reception, @header_size and @channel are ignored + * and the channels are selected by %FW_CDEV_IOC_SET_ISO_CHANNELS. + * + * For %FW_CDEV_ISO_CONTEXT_RECEIVE contexts, @header_size must be at least 4 + * and must be a multiple of 4. It is ignored in other context types. + * + * @speed is ignored in receive context types. * * If a context was successfully created, the kernel writes back a handle to the * context, which must be passed in for subsequent operations on that context. * - * For receive contexts, @header_size must be at least 4 and must be a multiple - * of 4. - * - * Note that the effect of a @header_size > 4 depends on - * &fw_cdev_get_info.version, as documented at &fw_cdev_event_iso_interrupt. + * Limitations: + * No more than one iso context can be created per fd. + * The total number of contexts that all userspace and kernelspace drivers can + * create on a card at a time is a hardware limit, typically 4 or 8 contexts per + * direction, and of them at most one multichannel receive context. */ struct fw_cdev_create_iso_context { __u32 type; @@ -471,6 +700,22 @@ struct fw_cdev_create_iso_context { __u32 handle; }; +/** + * struct fw_cdev_set_iso_channels - Select channels in multichannel reception + * @channels: Bitmask of channels to listen to + * @handle: Handle of the mutichannel receive context + * + * @channels is the bitwise or of 1ULL << n for each channel n to listen to. + * + * The ioctl fails with errno %EBUSY if there is already another receive context + * on a channel in @channels. In that case, the bitmask of all unoccupied + * channels is returned in @channels. + */ +struct fw_cdev_set_iso_channels { + __u64 channels; + __u32 handle; +}; + #define FW_CDEV_ISO_PAYLOAD_LENGTH(v) (v) #define FW_CDEV_ISO_INTERRUPT (1 << 16) #define FW_CDEV_ISO_SKIP (1 << 17) @@ -481,42 +726,72 @@ struct fw_cdev_create_iso_context { /** * struct fw_cdev_iso_packet - Isochronous packet - * @control: Contains the header length (8 uppermost bits), the sy field - * (4 bits), the tag field (2 bits), a sync flag (1 bit), - * a skip flag (1 bit), an interrupt flag (1 bit), and the + * @control: Contains the header length (8 uppermost bits), + * the sy field (4 bits), the tag field (2 bits), a sync flag + * or a skip flag (1 bit), an interrupt flag (1 bit), and the * payload length (16 lowermost bits) - * @header: Header and payload + * @header: Header and payload in case of a transmit context. * * &struct fw_cdev_iso_packet is used to describe isochronous packet queues. - * * Use the FW_CDEV_ISO_ macros to fill in @control. + * The @header array is empty in case of receive contexts. + * + * Context type %FW_CDEV_ISO_CONTEXT_TRANSMIT: + * + * @control.HEADER_LENGTH must be a multiple of 4. It specifies the numbers of + * bytes in @header that will be prepended to the packet's payload. These bytes + * are copied into the kernel and will not be accessed after the ioctl has + * returned. + * + * The @control.SY and TAG fields are copied to the iso packet header. These + * fields are specified by IEEE 1394a and IEC 61883-1. + * + * The @control.SKIP flag specifies that no packet is to be sent in a frame. + * When using this, all other fields except @control.INTERRUPT must be zero. + * + * When a packet with the @control.INTERRUPT flag set has been completed, an + * &fw_cdev_event_iso_interrupt event will be sent. + * + * Context type %FW_CDEV_ISO_CONTEXT_RECEIVE: + * + * @control.HEADER_LENGTH must be a multiple of the context's header_size. + * If the HEADER_LENGTH is larger than the context's header_size, multiple + * packets are queued for this entry. + * + * The @control.SY and TAG fields are ignored. + * + * If the @control.SYNC flag is set, the context drops all packets until a + * packet with a sy field is received which matches &fw_cdev_start_iso.sync. + * + * @control.PAYLOAD_LENGTH defines how many payload bytes can be received for + * one packet (in addition to payload quadlets that have been defined as headers + * and are stripped and returned in the &fw_cdev_event_iso_interrupt structure). + * If more bytes are received, the additional bytes are dropped. If less bytes + * are received, the remaining bytes in this part of the payload buffer will not + * be written to, not even by the next packet. I.e., packets received in + * consecutive frames will not necessarily be consecutive in memory. If an + * entry has queued multiple packets, the PAYLOAD_LENGTH is divided equally + * among them. * - * For transmit packets, the header length must be a multiple of 4 and specifies - * the numbers of bytes in @header that will be prepended to the packet's - * payload; these bytes are copied into the kernel and will not be accessed - * after the ioctl has returned. The sy and tag fields are copied to the iso - * packet header (these fields are specified by IEEE 1394a and IEC 61883-1). - * The skip flag specifies that no packet is to be sent in a frame; when using - * this, all other fields except the interrupt flag must be zero. - * - * For receive packets, the header length must be a multiple of the context's - * header size; if the header length is larger than the context's header size, - * multiple packets are queued for this entry. The sy and tag fields are - * ignored. If the sync flag is set, the context drops all packets until - * a packet with a matching sy field is received (the sync value to wait for is - * specified in the &fw_cdev_start_iso structure). The payload length defines - * how many payload bytes can be received for one packet (in addition to payload - * quadlets that have been defined as headers and are stripped and returned in - * the &fw_cdev_event_iso_interrupt structure). If more bytes are received, the - * additional bytes are dropped. If less bytes are received, the remaining - * bytes in this part of the payload buffer will not be written to, not even by - * the next packet, i.e., packets received in consecutive frames will not - * necessarily be consecutive in memory. If an entry has queued multiple - * packets, the payload length is divided equally among them. - * - * When a packet with the interrupt flag set has been completed, the + * When a packet with the @control.INTERRUPT flag set has been completed, an * &fw_cdev_event_iso_interrupt event will be sent. An entry that has queued * multiple receive packets is completed when its last packet is completed. + * + * Context type %FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL: + * + * Here, &fw_cdev_iso_packet would be more aptly named _iso_buffer_chunk since + * it specifies a chunk of the mmap()'ed buffer, while the number and alignment + * of packets to be placed into the buffer chunk is not known beforehand. + * + * @control.PAYLOAD_LENGTH is the size of the buffer chunk and specifies room + * for header, payload, padding, and trailer bytes of one or more packets. + * It must be a multiple of 4. + * + * @control.HEADER_LENGTH, TAG and SY are ignored. SYNC is treated as described + * for single-channel reception. + * + * When a buffer chunk with the @control.INTERRUPT flag set has been filled + * entirely, an &fw_cdev_event_iso_interrupt_mc event will be sent. */ struct fw_cdev_iso_packet { __u32 control; @@ -525,9 +800,9 @@ struct fw_cdev_iso_packet { /** * struct fw_cdev_queue_iso - Queue isochronous packets for I/O - * @packets: Userspace pointer to packet data + * @packets: Userspace pointer to an array of &fw_cdev_iso_packet * @data: Pointer into mmap()'ed payload buffer - * @size: Size of packet data in bytes + * @size: Size of the @packets array, in bytes * @handle: Isochronous context handle * * Queue a number of isochronous packets for reception or transmission. @@ -540,6 +815,9 @@ struct fw_cdev_iso_packet { * The kernel may or may not queue all packets, but will write back updated * values of the @packets, @data and @size fields, so the ioctl can be * resubmitted easily. + * + * In case of a multichannel receive context, @data must be quadlet-aligned + * relative to the buffer start. */ struct fw_cdev_queue_iso { __u64 packets; @@ -698,4 +976,39 @@ struct fw_cdev_send_stream_packet { __u32 speed; }; +/** + * struct fw_cdev_send_phy_packet - send a PHY packet + * @closure: Passed back to userspace in the PHY-packet-sent event + * @data: First and second quadlet of the PHY packet + * @generation: The bus generation where packet is valid + * + * The %FW_CDEV_IOC_SEND_PHY_PACKET ioctl sends a PHY packet to all nodes + * on the same card as this device. After transmission, an + * %FW_CDEV_EVENT_PHY_PACKET_SENT event is generated. + * + * The payload @data[] shall be specified in host byte order. Usually, + * @data[1] needs to be the bitwise inverse of @data[0]. VersaPHY packets + * are an exception to this rule. + * + * The ioctl is only permitted on device files which represent a local node. + */ +struct fw_cdev_send_phy_packet { + __u64 closure; + __u32 data[2]; + __u32 generation; +}; + +/** + * struct fw_cdev_receive_phy_packets - start reception of PHY packets + * @closure: Passed back to userspace in phy packet events + * + * This ioctl activates issuing of %FW_CDEV_EVENT_PHY_PACKET_RECEIVED due to + * incoming PHY packets from any node on the same bus as the device. + * + * The ioctl is only permitted on device files which represent a local node. + */ +struct fw_cdev_receive_phy_packets { + __u64 closure; +}; + #endif /* _LINUX_FIREWIRE_CDEV_H */ |