summaryrefslogtreecommitdiffstats
path: root/include/linux/lguest_launcher.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/lguest_launcher.h')
-rw-r--r--include/linux/lguest_launcher.h127
1 files changed, 127 insertions, 0 deletions
diff --git a/include/linux/lguest_launcher.h b/include/linux/lguest_launcher.h
new file mode 100644
index 00000000000..64167057944
--- /dev/null
+++ b/include/linux/lguest_launcher.h
@@ -0,0 +1,127 @@
+#ifndef _ASM_LGUEST_USER
+#define _ASM_LGUEST_USER
+/* Everything the "lguest" userspace program needs to know. */
+/* They can register up to 32 arrays of lguest_dma. */
+#define LGUEST_MAX_DMA 32
+/* At most we can dma 16 lguest_dma in one op. */
+#define LGUEST_MAX_DMA_SECTIONS 16
+
+/* How many devices? Assume each one wants up to two dma arrays per device. */
+#define LGUEST_MAX_DEVICES (LGUEST_MAX_DMA/2)
+
+/*D:200
+ * Lguest I/O
+ *
+ * The lguest I/O mechanism is the only way Guests can talk to devices. There
+ * are two hypercalls involved: SEND_DMA for output and BIND_DMA for input. In
+ * each case, "struct lguest_dma" describes the buffer: this contains 16
+ * addr/len pairs, and if there are fewer buffer elements the len array is
+ * terminated with a 0.
+ *
+ * I/O is organized by keys: BIND_DMA attaches buffers to a particular key, and
+ * SEND_DMA transfers to buffers bound to particular key. By convention, keys
+ * correspond to a physical address within the device's page. This means that
+ * devices will never accidentally end up with the same keys, and allows the
+ * Host use The Futex Trick (as we'll see later in our journey).
+ *
+ * SEND_DMA simply indicates a key to send to, and the physical address of the
+ * "struct lguest_dma" to send. The Host will write the number of bytes
+ * transferred into the "struct lguest_dma"'s used_len member.
+ *
+ * BIND_DMA indicates a key to bind to, a pointer to an array of "struct
+ * lguest_dma"s ready for receiving, the size of that array, and an interrupt
+ * to trigger when data is received. The Host will only allow transfers into
+ * buffers with a used_len of zero: it then sets used_len to the number of
+ * bytes transferred and triggers the interrupt for the Guest to process the
+ * new input. */
+struct lguest_dma
+{
+ /* 0 if free to be used, filled by the Host. */
+ u32 used_len;
+ unsigned long addr[LGUEST_MAX_DMA_SECTIONS];
+ u16 len[LGUEST_MAX_DMA_SECTIONS];
+};
+/*:*/
+
+/*D:460 This is the layout of a block device memory page. The Launcher sets up
+ * the num_sectors initially to tell the Guest the size of the disk. The Guest
+ * puts the type, sector and length of the request in the first three fields,
+ * then DMAs to the Host. The Host processes the request, sets up the result,
+ * then DMAs back to the Guest. */
+struct lguest_block_page
+{
+ /* 0 is a read, 1 is a write. */
+ int type;
+ u32 sector; /* Offset in device = sector * 512. */
+ u32 bytes; /* Length expected to be read/written in bytes */
+ /* 0 = pending, 1 = done, 2 = done, error */
+ int result;
+ u32 num_sectors; /* Disk length = num_sectors * 512 */
+};
+
+/*D:520 The network device is basically a memory page where all the Guests on
+ * the network publish their MAC (ethernet) addresses: it's an array of "struct
+ * lguest_net": */
+struct lguest_net
+{
+ /* Simply the mac address (with multicast bit meaning promisc). */
+ unsigned char mac[6];
+};
+/*:*/
+
+/* Where the Host expects the Guest to SEND_DMA console output to. */
+#define LGUEST_CONSOLE_DMA_KEY 0
+
+/*D:010
+ * Drivers
+ *
+ * The Guest needs devices to do anything useful. Since we don't let it touch
+ * real devices (think of the damage it could do!) we provide virtual devices.
+ * We could emulate a PCI bus with various devices on it, but that is a fairly
+ * complex burden for the Host and suboptimal for the Guest, so we have our own
+ * "lguest" bus and simple drivers.
+ *
+ * Devices are described by an array of LGUEST_MAX_DEVICES of these structs,
+ * placed by the Launcher just above the top of physical memory:
+ */
+struct lguest_device_desc {
+ /* The device type: console, network, disk etc. */
+ u16 type;
+#define LGUEST_DEVICE_T_CONSOLE 1
+#define LGUEST_DEVICE_T_NET 2
+#define LGUEST_DEVICE_T_BLOCK 3
+
+ /* The specific features of this device: these depends on device type
+ * except for LGUEST_DEVICE_F_RANDOMNESS. */
+ u16 features;
+#define LGUEST_NET_F_NOCSUM 0x4000 /* Don't bother checksumming */
+#define LGUEST_DEVICE_F_RANDOMNESS 0x8000 /* IRQ is fairly random */
+
+ /* This is how the Guest reports status of the device: the Host can set
+ * LGUEST_DEVICE_S_REMOVED to indicate removal, but the rest are only
+ * ever manipulated by the Guest, and only ever set. */
+ u16 status;
+/* 256 and above are device specific. */
+#define LGUEST_DEVICE_S_ACKNOWLEDGE 1 /* We have seen device. */
+#define LGUEST_DEVICE_S_DRIVER 2 /* We have found a driver */
+#define LGUEST_DEVICE_S_DRIVER_OK 4 /* Driver says OK! */
+#define LGUEST_DEVICE_S_REMOVED 8 /* Device has gone away. */
+#define LGUEST_DEVICE_S_REMOVED_ACK 16 /* Driver has been told. */
+#define LGUEST_DEVICE_S_FAILED 128 /* Something actually failed */
+
+ /* Each device exists somewhere in Guest physical memory, over some
+ * number of pages. */
+ u16 num_pages;
+ u32 pfn;
+};
+/*:*/
+
+/* Write command first word is a request. */
+enum lguest_req
+{
+ LHREQ_INITIALIZE, /* + pfnlimit, pgdir, start, pageoffset */
+ LHREQ_GETDMA, /* + addr (returns &lguest_dma, irq in ->used_len) */
+ LHREQ_IRQ, /* + irq */
+ LHREQ_BREAK, /* + on/off flag (on blocks until someone does off) */
+};
+#endif /* _ASM_LGUEST_USER */