summaryrefslogtreecommitdiffstats
path: root/include/linux
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux')
-rw-r--r--include/linux/blkdev.h3
-rw-r--r--include/linux/clocksource.h3
-rw-r--r--include/linux/compat.h9
-rw-r--r--include/linux/dcache.h3
-rw-r--r--include/linux/dma_remapping.h2
-rw-r--r--include/linux/fs.h3
-rw-r--r--include/linux/ftrace_event.h2
-rw-r--r--include/linux/init_task.h4
-rw-r--r--include/linux/log2.h1
-rw-r--r--include/linux/mm.h1
-rw-r--r--include/linux/mmc/card.h6
-rw-r--r--include/linux/netdevice.h2
-rw-r--r--include/linux/pci-ats.h6
-rw-r--r--include/linux/pci.h2
-rw-r--r--include/linux/pci_ids.h4
-rw-r--r--include/linux/perf_event.h1
-rw-r--r--include/linux/pkt_sched.h6
-rw-r--r--include/linux/pm.h229
-rw-r--r--include/linux/pstore.h4
-rw-r--r--include/linux/shrinker.h2
-rw-r--r--include/linux/sigma.h13
-rw-r--r--include/linux/virtio_config.h2
-rw-r--r--include/linux/virtio_mmio.h2
23 files changed, 188 insertions, 122 deletions
diff --git a/include/linux/blkdev.h b/include/linux/blkdev.h
index c7a6d3b5bc7..94acd8172b5 100644
--- a/include/linux/blkdev.h
+++ b/include/linux/blkdev.h
@@ -805,9 +805,6 @@ extern void blk_unprep_request(struct request *);
*/
extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
spinlock_t *lock, int node_id);
-extern struct request_queue *blk_init_allocated_queue_node(struct request_queue *,
- request_fn_proc *,
- spinlock_t *, int node_id);
extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
extern struct request_queue *blk_init_allocated_queue(struct request_queue *,
request_fn_proc *, spinlock_t *);
diff --git a/include/linux/clocksource.h b/include/linux/clocksource.h
index 139c4db55f1..c86c940d1de 100644
--- a/include/linux/clocksource.h
+++ b/include/linux/clocksource.h
@@ -156,6 +156,7 @@ extern u64 timecounter_cyc2time(struct timecounter *tc,
* @mult: cycle to nanosecond multiplier
* @shift: cycle to nanosecond divisor (power of two)
* @max_idle_ns: max idle time permitted by the clocksource (nsecs)
+ * @maxadj maximum adjustment value to mult (~11%)
* @flags: flags describing special properties
* @archdata: arch-specific data
* @suspend: suspend function for the clocksource, if necessary
@@ -172,7 +173,7 @@ struct clocksource {
u32 mult;
u32 shift;
u64 max_idle_ns;
-
+ u32 maxadj;
#ifdef CONFIG_ARCH_CLOCKSOURCE_DATA
struct arch_clocksource_data archdata;
#endif
diff --git a/include/linux/compat.h b/include/linux/compat.h
index 154bf568301..66ed067fb72 100644
--- a/include/linux/compat.h
+++ b/include/linux/compat.h
@@ -552,5 +552,14 @@ extern ssize_t compat_rw_copy_check_uvector(int type,
extern void __user *compat_alloc_user_space(unsigned long len);
+asmlinkage ssize_t compat_sys_process_vm_readv(compat_pid_t pid,
+ const struct compat_iovec __user *lvec,
+ unsigned long liovcnt, const struct compat_iovec __user *rvec,
+ unsigned long riovcnt, unsigned long flags);
+asmlinkage ssize_t compat_sys_process_vm_writev(compat_pid_t pid,
+ const struct compat_iovec __user *lvec,
+ unsigned long liovcnt, const struct compat_iovec __user *rvec,
+ unsigned long riovcnt, unsigned long flags);
+
#endif /* CONFIG_COMPAT */
#endif /* _LINUX_COMPAT_H */
diff --git a/include/linux/dcache.h b/include/linux/dcache.h
index 4df92619936..ed9f74f6c51 100644
--- a/include/linux/dcache.h
+++ b/include/linux/dcache.h
@@ -339,7 +339,8 @@ extern int d_validate(struct dentry *, struct dentry *);
*/
extern char *dynamic_dname(struct dentry *, char *, int, const char *, ...);
-extern char *__d_path(const struct path *path, struct path *root, char *, int);
+extern char *__d_path(const struct path *, const struct path *, char *, int);
+extern char *d_absolute_path(const struct path *, char *, int);
extern char *d_path(const struct path *, char *, int);
extern char *d_path_with_unreachable(const struct path *, char *, int);
extern char *dentry_path_raw(struct dentry *, char *, int);
diff --git a/include/linux/dma_remapping.h b/include/linux/dma_remapping.h
index ef90cbd8e17..57c9a8ae4f2 100644
--- a/include/linux/dma_remapping.h
+++ b/include/linux/dma_remapping.h
@@ -31,6 +31,7 @@ extern void free_dmar_iommu(struct intel_iommu *iommu);
extern int iommu_calculate_agaw(struct intel_iommu *iommu);
extern int iommu_calculate_max_sagaw(struct intel_iommu *iommu);
extern int dmar_disabled;
+extern int intel_iommu_enabled;
#else
static inline int iommu_calculate_agaw(struct intel_iommu *iommu)
{
@@ -44,6 +45,7 @@ static inline void free_dmar_iommu(struct intel_iommu *iommu)
{
}
#define dmar_disabled (1)
+#define intel_iommu_enabled (0)
#endif
diff --git a/include/linux/fs.h b/include/linux/fs.h
index e3130220ce3..e0bc4ffb8e7 100644
--- a/include/linux/fs.h
+++ b/include/linux/fs.h
@@ -393,8 +393,8 @@ struct inodes_stat_t {
#include <linux/semaphore.h>
#include <linux/fiemap.h>
#include <linux/rculist_bl.h>
-#include <linux/shrinker.h>
#include <linux/atomic.h>
+#include <linux/shrinker.h>
#include <asm/byteorder.h>
@@ -1942,6 +1942,7 @@ extern int fd_statfs(int, struct kstatfs *);
extern int statfs_by_dentry(struct dentry *, struct kstatfs *);
extern int freeze_super(struct super_block *super);
extern int thaw_super(struct super_block *super);
+extern bool our_mnt(struct vfsmount *mnt);
extern int current_umask(void);
diff --git a/include/linux/ftrace_event.h b/include/linux/ftrace_event.h
index 96efa6794ea..c3da42dd22b 100644
--- a/include/linux/ftrace_event.h
+++ b/include/linux/ftrace_event.h
@@ -172,6 +172,7 @@ enum {
TRACE_EVENT_FL_FILTERED_BIT,
TRACE_EVENT_FL_RECORDED_CMD_BIT,
TRACE_EVENT_FL_CAP_ANY_BIT,
+ TRACE_EVENT_FL_NO_SET_FILTER_BIT,
};
enum {
@@ -179,6 +180,7 @@ enum {
TRACE_EVENT_FL_FILTERED = (1 << TRACE_EVENT_FL_FILTERED_BIT),
TRACE_EVENT_FL_RECORDED_CMD = (1 << TRACE_EVENT_FL_RECORDED_CMD_BIT),
TRACE_EVENT_FL_CAP_ANY = (1 << TRACE_EVENT_FL_CAP_ANY_BIT),
+ TRACE_EVENT_FL_NO_SET_FILTER = (1 << TRACE_EVENT_FL_NO_SET_FILTER_BIT),
};
struct ftrace_event_call {
diff --git a/include/linux/init_task.h b/include/linux/init_task.h
index 94b1e356c02..32574eef939 100644
--- a/include/linux/init_task.h
+++ b/include/linux/init_task.h
@@ -126,6 +126,8 @@ extern struct cred init_cred;
# define INIT_PERF_EVENTS(tsk)
#endif
+#define INIT_TASK_COMM "swapper"
+
/*
* INIT_TASK is used to set up the first task table, touch at
* your own risk!. Base=0, limit=0x1fffff (=2MB)
@@ -162,7 +164,7 @@ extern struct cred init_cred;
.group_leader = &tsk, \
RCU_INIT_POINTER(.real_cred, &init_cred), \
RCU_INIT_POINTER(.cred, &init_cred), \
- .comm = "swapper", \
+ .comm = INIT_TASK_COMM, \
.thread = INIT_THREAD, \
.fs = &init_fs, \
.files = &init_files, \
diff --git a/include/linux/log2.h b/include/linux/log2.h
index 25b808631cd..fd7ff3d91e6 100644
--- a/include/linux/log2.h
+++ b/include/linux/log2.h
@@ -185,7 +185,6 @@ unsigned long __rounddown_pow_of_two(unsigned long n)
#define rounddown_pow_of_two(n) \
( \
__builtin_constant_p(n) ? ( \
- (n == 1) ? 0 : \
(1UL << ilog2(n))) : \
__rounddown_pow_of_two(n) \
)
diff --git a/include/linux/mm.h b/include/linux/mm.h
index 3dc3a8c2c48..4baadd18f4a 100644
--- a/include/linux/mm.h
+++ b/include/linux/mm.h
@@ -10,6 +10,7 @@
#include <linux/mmzone.h>
#include <linux/rbtree.h>
#include <linux/prio_tree.h>
+#include <linux/atomic.h>
#include <linux/debug_locks.h>
#include <linux/mm_types.h>
#include <linux/range.h>
diff --git a/include/linux/mmc/card.h b/include/linux/mmc/card.h
index 415f2db414e..c8ef9bc54d5 100644
--- a/include/linux/mmc/card.h
+++ b/include/linux/mmc/card.h
@@ -218,6 +218,7 @@ struct mmc_card {
#define MMC_QUIRK_INAND_CMD38 (1<<6) /* iNAND devices have broken CMD38 */
#define MMC_QUIRK_BLK_NO_CMD23 (1<<7) /* Avoid CMD23 for regular multiblock */
#define MMC_QUIRK_BROKEN_BYTE_MODE_512 (1<<8) /* Avoid sending 512 bytes in */
+#define MMC_QUIRK_LONG_READ_TIME (1<<9) /* Data read time > CSD says */
/* byte mode */
unsigned int poweroff_notify_state; /* eMMC4.5 notify feature */
#define MMC_NO_POWER_NOTIFICATION 0
@@ -433,6 +434,11 @@ static inline int mmc_card_broken_byte_mode_512(const struct mmc_card *c)
return c->quirks & MMC_QUIRK_BROKEN_BYTE_MODE_512;
}
+static inline int mmc_card_long_read_time(const struct mmc_card *c)
+{
+ return c->quirks & MMC_QUIRK_LONG_READ_TIME;
+}
+
#define mmc_card_name(c) ((c)->cid.prod_name)
#define mmc_card_id(c) (dev_name(&(c)->dev))
diff --git a/include/linux/netdevice.h b/include/linux/netdevice.h
index cbeb5867cff..a82ad4dd306 100644
--- a/include/linux/netdevice.h
+++ b/include/linux/netdevice.h
@@ -2536,6 +2536,8 @@ extern void net_disable_timestamp(void);
extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
extern void dev_seq_stop(struct seq_file *seq, void *v);
+extern int dev_seq_open_ops(struct inode *inode, struct file *file,
+ const struct seq_operations *ops);
#endif
extern int netdev_class_create_file(struct class_attribute *class_attr);
diff --git a/include/linux/pci-ats.h b/include/linux/pci-ats.h
index e3d0b389024..7ef68724f0f 100644
--- a/include/linux/pci-ats.h
+++ b/include/linux/pci-ats.h
@@ -12,7 +12,7 @@ struct pci_ats {
unsigned int is_enabled:1; /* Enable bit is set */
};
-#ifdef CONFIG_PCI_IOV
+#ifdef CONFIG_PCI_ATS
extern int pci_enable_ats(struct pci_dev *dev, int ps);
extern void pci_disable_ats(struct pci_dev *dev);
@@ -29,7 +29,7 @@ static inline int pci_ats_enabled(struct pci_dev *dev)
return dev->ats && dev->ats->is_enabled;
}
-#else /* CONFIG_PCI_IOV */
+#else /* CONFIG_PCI_ATS */
static inline int pci_enable_ats(struct pci_dev *dev, int ps)
{
@@ -50,7 +50,7 @@ static inline int pci_ats_enabled(struct pci_dev *dev)
return 0;
}
-#endif /* CONFIG_PCI_IOV */
+#endif /* CONFIG_PCI_ATS */
#ifdef CONFIG_PCI_PRI
diff --git a/include/linux/pci.h b/include/linux/pci.h
index 337df0d5d5f..7cda65b5f79 100644
--- a/include/linux/pci.h
+++ b/include/linux/pci.h
@@ -338,7 +338,7 @@ struct pci_dev {
struct list_head msi_list;
#endif
struct pci_vpd *vpd;
-#ifdef CONFIG_PCI_IOV
+#ifdef CONFIG_PCI_ATS
union {
struct pci_sriov *sriov; /* SR-IOV capability related */
struct pci_dev *physfn; /* the PF this VF is associated with */
diff --git a/include/linux/pci_ids.h b/include/linux/pci_ids.h
index 172ba70306d..2aaee0ca9da 100644
--- a/include/linux/pci_ids.h
+++ b/include/linux/pci_ids.h
@@ -517,8 +517,12 @@
#define PCI_DEVICE_ID_AMD_11H_NB_DRAM 0x1302
#define PCI_DEVICE_ID_AMD_11H_NB_MISC 0x1303
#define PCI_DEVICE_ID_AMD_11H_NB_LINK 0x1304
+#define PCI_DEVICE_ID_AMD_15H_NB_F0 0x1600
+#define PCI_DEVICE_ID_AMD_15H_NB_F1 0x1601
+#define PCI_DEVICE_ID_AMD_15H_NB_F2 0x1602
#define PCI_DEVICE_ID_AMD_15H_NB_F3 0x1603
#define PCI_DEVICE_ID_AMD_15H_NB_F4 0x1604
+#define PCI_DEVICE_ID_AMD_15H_NB_F5 0x1605
#define PCI_DEVICE_ID_AMD_CNB17H_F3 0x1703
#define PCI_DEVICE_ID_AMD_LANCE 0x2000
#define PCI_DEVICE_ID_AMD_LANCE_HOME 0x2001
diff --git a/include/linux/perf_event.h b/include/linux/perf_event.h
index 1e9ebe5e009..b1f89122bf6 100644
--- a/include/linux/perf_event.h
+++ b/include/linux/perf_event.h
@@ -822,6 +822,7 @@ struct perf_event {
int mmap_locked;
struct user_struct *mmap_user;
struct ring_buffer *rb;
+ struct list_head rb_entry;
/* poll related */
wait_queue_head_t waitq;
diff --git a/include/linux/pkt_sched.h b/include/linux/pkt_sched.h
index c5336705921..7281d5acf2f 100644
--- a/include/linux/pkt_sched.h
+++ b/include/linux/pkt_sched.h
@@ -30,7 +30,7 @@
*/
struct tc_stats {
- __u64 bytes; /* NUmber of enqueues bytes */
+ __u64 bytes; /* Number of enqueued bytes */
__u32 packets; /* Number of enqueued packets */
__u32 drops; /* Packets dropped because of lack of resources */
__u32 overlimits; /* Number of throttle events when this
@@ -297,7 +297,7 @@ struct tc_htb_glob {
__u32 debug; /* debug flags */
/* stats */
- __u32 direct_pkts; /* count of non shapped packets */
+ __u32 direct_pkts; /* count of non shaped packets */
};
enum {
TCA_HTB_UNSPEC,
@@ -503,7 +503,7 @@ enum {
};
#define NETEM_LOSS_MAX (__NETEM_LOSS_MAX - 1)
-/* State transition probablities for 4 state model */
+/* State transition probabilities for 4 state model */
struct tc_netem_gimodel {
__u32 p13;
__u32 p31;
diff --git a/include/linux/pm.h b/include/linux/pm.h
index 5c4c8b18c8b..3f3ed83a9aa 100644
--- a/include/linux/pm.h
+++ b/include/linux/pm.h
@@ -54,118 +54,145 @@ typedef struct pm_message {
/**
* struct dev_pm_ops - device PM callbacks
*
- * Several driver power state transitions are externally visible, affecting
+ * Several device power state transitions are externally visible, affecting
* the state of pending I/O queues and (for drivers that touch hardware)
* interrupts, wakeups, DMA, and other hardware state. There may also be
- * internal transitions to various low power modes, which are transparent
+ * internal transitions to various low-power modes which are transparent
* to the rest of the driver stack (such as a driver that's ON gating off
* clocks which are not in active use).
*
- * The externally visible transitions are handled with the help of the following
- * callbacks included in this structure:
- *
- * @prepare: Prepare the device for the upcoming transition, but do NOT change
- * its hardware state. Prevent new children of the device from being
- * registered after @prepare() returns (the driver's subsystem and
- * generally the rest of the kernel is supposed to prevent new calls to the
- * probe method from being made too once @prepare() has succeeded). If
- * @prepare() detects a situation it cannot handle (e.g. registration of a
- * child already in progress), it may return -EAGAIN, so that the PM core
- * can execute it once again (e.g. after the new child has been registered)
- * to recover from the race condition. This method is executed for all
- * kinds of suspend transitions and is followed by one of the suspend
- * callbacks: @suspend(), @freeze(), or @poweroff().
- * The PM core executes @prepare() for all devices before starting to
- * execute suspend callbacks for any of them, so drivers may assume all of
- * the other devices to be present and functional while @prepare() is being
- * executed. In particular, it is safe to make GFP_KERNEL memory
- * allocations from within @prepare(). However, drivers may NOT assume
- * anything about the availability of the user space at that time and it
- * is not correct to request firmware from within @prepare() (it's too
- * late to do that). [To work around this limitation, drivers may
- * register suspend and hibernation notifiers that are executed before the
- * freezing of tasks.]
+ * The externally visible transitions are handled with the help of callbacks
+ * included in this structure in such a way that two levels of callbacks are
+ * involved. First, the PM core executes callbacks provided by PM domains,
+ * device types, classes and bus types. They are the subsystem-level callbacks
+ * supposed to execute callbacks provided by device drivers, although they may
+ * choose not to do that. If the driver callbacks are executed, they have to
+ * collaborate with the subsystem-level callbacks to achieve the goals
+ * appropriate for the given system transition, given transition phase and the
+ * subsystem the device belongs to.
+ *
+ * @prepare: The principal role of this callback is to prevent new children of
+ * the device from being registered after it has returned (the driver's
+ * subsystem and generally the rest of the kernel is supposed to prevent
+ * new calls to the probe method from being made too once @prepare() has
+ * succeeded). If @prepare() detects a situation it cannot handle (e.g.
+ * registration of a child already in progress), it may return -EAGAIN, so
+ * that the PM core can execute it once again (e.g. after a new child has
+ * been registered) to recover from the race condition.
+ * This method is executed for all kinds of suspend transitions and is
+ * followed by one of the suspend callbacks: @suspend(), @freeze(), or
+ * @poweroff(). The PM core executes subsystem-level @prepare() for all
+ * devices before starting to invoke suspend callbacks for any of them, so
+ * generally devices may be assumed to be functional or to respond to
+ * runtime resume requests while @prepare() is being executed. However,
+ * device drivers may NOT assume anything about the availability of user
+ * space at that time and it is NOT valid to request firmware from within
+ * @prepare() (it's too late to do that). It also is NOT valid to allocate
+ * substantial amounts of memory from @prepare() in the GFP_KERNEL mode.
+ * [To work around these limitations, drivers may register suspend and
+ * hibernation notifiers to be executed before the freezing of tasks.]
*
* @complete: Undo the changes made by @prepare(). This method is executed for
* all kinds of resume transitions, following one of the resume callbacks:
* @resume(), @thaw(), @restore(). Also called if the state transition
- * fails before the driver's suspend callback (@suspend(), @freeze(),
- * @poweroff()) can be executed (e.g. if the suspend callback fails for one
+ * fails before the driver's suspend callback: @suspend(), @freeze() or
+ * @poweroff(), can be executed (e.g. if the suspend callback fails for one
* of the other devices that the PM core has unsuccessfully attempted to
* suspend earlier).
- * The PM core executes @complete() after it has executed the appropriate
- * resume callback for all devices.
+ * The PM core executes subsystem-level @complete() after it has executed
+ * the appropriate resume callbacks for all devices.
*
* @suspend: Executed before putting the system into a sleep state in which the
- * contents of main memory are preserved. Quiesce the device, put it into
- * a low power state appropriate for the upcoming system state (such as
- * PCI_D3hot), and enable wakeup events as appropriate.
+ * contents of main memory are preserved. The exact action to perform
+ * depends on the device's subsystem (PM domain, device type, class or bus
+ * type), but generally the device must be quiescent after subsystem-level
+ * @suspend() has returned, so that it doesn't do any I/O or DMA.
+ * Subsystem-level @suspend() is executed for all devices after invoking
+ * subsystem-level @prepare() for all of them.
*
* @resume: Executed after waking the system up from a sleep state in which the
- * contents of main memory were preserved. Put the device into the
- * appropriate state, according to the information saved in memory by the
- * preceding @suspend(). The driver starts working again, responding to
- * hardware events and software requests. The hardware may have gone
- * through a power-off reset, or it may have maintained state from the
- * previous suspend() which the driver may rely on while resuming. On most
- * platforms, there are no restrictions on availability of resources like
- * clocks during @resume().
+ * contents of main memory were preserved. The exact action to perform
+ * depends on the device's subsystem, but generally the driver is expected
+ * to start working again, responding to hardware events and software
+ * requests (the device itself may be left in a low-power state, waiting
+ * for a runtime resume to occur). The state of the device at the time its
+ * driver's @resume() callback is run depends on the platform and subsystem
+ * the device belongs to. On most platforms, there are no restrictions on
+ * availability of resources like clocks during @resume().
+ * Subsystem-level @resume() is executed for all devices after invoking
+ * subsystem-level @resume_noirq() for all of them.
*
* @freeze: Hibernation-specific, executed before creating a hibernation image.
- * Quiesce operations so that a consistent image can be created, but do NOT
- * otherwise put the device into a low power device state and do NOT emit
- * system wakeup events. Save in main memory the device settings to be
- * used by @restore() during the subsequent resume from hibernation or by
- * the subsequent @thaw(), if the creation of the image or the restoration
- * of main memory contents from it fails.
+ * Analogous to @suspend(), but it should not enable the device to signal
+ * wakeup events or change its power state. The majority of subsystems
+ * (with the notable exception of the PCI bus type) expect the driver-level
+ * @freeze() to save the device settings in memory to be used by @restore()
+ * during the subsequent resume from hibernation.
+ * Subsystem-level @freeze() is executed for all devices after invoking
+ * subsystem-level @prepare() for all of them.
*
* @thaw: Hibernation-specific, executed after creating a hibernation image OR
- * if the creation of the image fails. Also executed after a failing
+ * if the creation of an image has failed. Also executed after a failing
* attempt to restore the contents of main memory from such an image.
* Undo the changes made by the preceding @freeze(), so the device can be
* operated in the same way as immediately before the call to @freeze().
+ * Subsystem-level @thaw() is executed for all devices after invoking
+ * subsystem-level @thaw_noirq() for all of them. It also may be executed
+ * directly after @freeze() in case of a transition error.
*
* @poweroff: Hibernation-specific, executed after saving a hibernation image.
- * Quiesce the device, put it into a low power state appropriate for the
- * upcoming system state (such as PCI_D3hot), and enable wakeup events as
- * appropriate.
+ * Analogous to @suspend(), but it need not save the device's settings in
+ * memory.
+ * Subsystem-level @poweroff() is executed for all devices after invoking
+ * subsystem-level @prepare() for all of them.
*
* @restore: Hibernation-specific, executed after restoring the contents of main
- * memory from a hibernation image. Driver starts working again,
- * responding to hardware events and software requests. Drivers may NOT
- * make ANY assumptions about the hardware state right prior to @restore().
- * On most platforms, there are no restrictions on availability of
- * resources like clocks during @restore().
- *
- * @suspend_noirq: Complete the operations of ->suspend() by carrying out any
- * actions required for suspending the device that need interrupts to be
- * disabled
- *
- * @resume_noirq: Prepare for the execution of ->resume() by carrying out any
- * actions required for resuming the device that need interrupts to be
- * disabled
- *
- * @freeze_noirq: Complete the operations of ->freeze() by carrying out any
- * actions required for freezing the device that need interrupts to be
- * disabled
- *
- * @thaw_noirq: Prepare for the execution of ->thaw() by carrying out any
- * actions required for thawing the device that need interrupts to be
- * disabled
- *
- * @poweroff_noirq: Complete the operations of ->poweroff() by carrying out any
- * actions required for handling the device that need interrupts to be
- * disabled
- *
- * @restore_noirq: Prepare for the execution of ->restore() by carrying out any
- * actions required for restoring the operations of the device that need
- * interrupts to be disabled
+ * memory from a hibernation image, analogous to @resume().
+ *
+ * @suspend_noirq: Complete the actions started by @suspend(). Carry out any
+ * additional operations required for suspending the device that might be
+ * racing with its driver's interrupt handler, which is guaranteed not to
+ * run while @suspend_noirq() is being executed.
+ * It generally is expected that the device will be in a low-power state
+ * (appropriate for the target system sleep state) after subsystem-level
+ * @suspend_noirq() has returned successfully. If the device can generate
+ * system wakeup signals and is enabled to wake up the system, it should be
+ * configured to do so at that time. However, depending on the platform
+ * and device's subsystem, @suspend() may be allowed to put the device into
+ * the low-power state and configure it to generate wakeup signals, in
+ * which case it generally is not necessary to define @suspend_noirq().
+ *
+ * @resume_noirq: Prepare for the execution of @resume() by carrying out any
+ * operations required for resuming the device that might be racing with
+ * its driver's interrupt handler, which is guaranteed not to run while
+ * @resume_noirq() is being executed.
+ *
+ * @freeze_noirq: Complete the actions started by @freeze(). Carry out any
+ * additional operations required for freezing the device that might be
+ * racing with its driver's interrupt handler, which is guaranteed not to
+ * run while @freeze_noirq() is being executed.
+ * The power state of the device should not be changed by either @freeze()
+ * or @freeze_noirq() and it should not be configured to signal system
+ * wakeup by any of these callbacks.
+ *
+ * @thaw_noirq: Prepare for the execution of @thaw() by carrying out any
+ * operations required for thawing the device that might be racing with its
+ * driver's interrupt handler, which is guaranteed not to run while
+ * @thaw_noirq() is being executed.
+ *
+ * @poweroff_noirq: Complete the actions started by @poweroff(). Analogous to
+ * @suspend_noirq(), but it need not save the device's settings in memory.
+ *
+ * @restore_noirq: Prepare for the execution of @restore() by carrying out any
+ * operations required for thawing the device that might be racing with its
+ * driver's interrupt handler, which is guaranteed not to run while
+ * @restore_noirq() is being executed. Analogous to @resume_noirq().
*
* All of the above callbacks, except for @complete(), return error codes.
* However, the error codes returned by the resume operations, @resume(),
- * @thaw(), @restore(), @resume_noirq(), @thaw_noirq(), and @restore_noirq() do
+ * @thaw(), @restore(), @resume_noirq(), @thaw_noirq(), and @restore_noirq(), do
* not cause the PM core to abort the resume transition during which they are
- * returned. The error codes returned in that cases are only printed by the PM
+ * returned. The error codes returned in those cases are only printed by the PM
* core to the system logs for debugging purposes. Still, it is recommended
* that drivers only return error codes from their resume methods in case of an
* unrecoverable failure (i.e. when the device being handled refuses to resume
@@ -174,31 +201,43 @@ typedef struct pm_message {
* their children.
*
* It is allowed to unregister devices while the above callbacks are being
- * executed. However, it is not allowed to unregister a device from within any
- * of its own callbacks.
+ * executed. However, a callback routine must NOT try to unregister the device
+ * it was called for, although it may unregister children of that device (for
+ * example, if it detects that a child was unplugged while the system was
+ * asleep).
+ *
+ * Refer to Documentation/power/devices.txt for more information about the role
+ * of the above callbacks in the system suspend process.
*
- * There also are the following callbacks related to run-time power management
- * of devices:
+ * There also are callbacks related to runtime power management of devices.
+ * Again, these callbacks are executed by the PM core only for subsystems
+ * (PM domains, device types, classes and bus types) and the subsystem-level
+ * callbacks are supposed to invoke the driver callbacks. Moreover, the exact
+ * actions to be performed by a device driver's callbacks generally depend on
+ * the platform and subsystem the device belongs to.
*
* @runtime_suspend: Prepare the device for a condition in which it won't be
* able to communicate with the CPU(s) and RAM due to power management.
- * This need not mean that the device should be put into a low power state.
+ * This need not mean that the device should be put into a low-power state.
* For example, if the device is behind a link which is about to be turned
* off, the device may remain at full power. If the device does go to low
- * power and is capable of generating run-time wake-up events, remote
- * wake-up (i.e., a hardware mechanism allowing the device to request a
- * change of its power state via a wake-up event, such as PCI PME) should
- * be enabled for it.
+ * power and is capable of generating runtime wakeup events, remote wakeup
+ * (i.e., a hardware mechanism allowing the device to request a change of
+ * its power state via an interrupt) should be enabled for it.
*
* @runtime_resume: Put the device into the fully active state in response to a
- * wake-up event generated by hardware or at the request of software. If
- * necessary, put the device into the full power state and restore its
+ * wakeup event generated by hardware or at the request of software. If
+ * necessary, put the device into the full-power state and restore its
* registers, so that it is fully operational.
*
- * @runtime_idle: Device appears to be inactive and it might be put into a low
- * power state if all of the necessary conditions are satisfied. Check
+ * @runtime_idle: Device appears to be inactive and it might be put into a
+ * low-power state if all of the necessary conditions are satisfied. Check
* these conditions and handle the device as appropriate, possibly queueing
* a suspend request for it. The return value is ignored by the PM core.
+ *
+ * Refer to Documentation/power/runtime_pm.txt for more information about the
+ * role of the above callbacks in device runtime power management.
+ *
*/
struct dev_pm_ops {
diff --git a/include/linux/pstore.h b/include/linux/pstore.h
index ea567321ae3..2ca8cde5459 100644
--- a/include/linux/pstore.h
+++ b/include/linux/pstore.h
@@ -35,10 +35,12 @@ struct pstore_info {
spinlock_t buf_lock; /* serialize access to 'buf' */
char *buf;
size_t bufsize;
+ struct mutex read_mutex; /* serialize open/read/close */
int (*open)(struct pstore_info *psi);
int (*close)(struct pstore_info *psi);
ssize_t (*read)(u64 *id, enum pstore_type_id *type,
- struct timespec *time, struct pstore_info *psi);
+ struct timespec *time, char **buf,
+ struct pstore_info *psi);
int (*write)(enum pstore_type_id type, u64 *id,
unsigned int part, size_t size, struct pstore_info *psi);
int (*erase)(enum pstore_type_id type, u64 id,
diff --git a/include/linux/shrinker.h b/include/linux/shrinker.h
index a83833a1f7a..07ceb97d53f 100644
--- a/include/linux/shrinker.h
+++ b/include/linux/shrinker.h
@@ -35,7 +35,7 @@ struct shrinker {
/* These are for internal use */
struct list_head list;
- long nr; /* objs pending delete */
+ atomic_long_t nr_in_batch; /* objs pending delete */
};
#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
extern void register_shrinker(struct shrinker *);
diff --git a/include/linux/sigma.h b/include/linux/sigma.h
index e2accb3164d..d0de882c0d9 100644
--- a/include/linux/sigma.h
+++ b/include/linux/sigma.h
@@ -24,7 +24,7 @@ struct sigma_firmware {
struct sigma_firmware_header {
unsigned char magic[7];
u8 version;
- u32 crc;
+ __le32 crc;
};
enum {
@@ -40,19 +40,14 @@ enum {
struct sigma_action {
u8 instr;
u8 len_hi;
- u16 len;
- u16 addr;
+ __le16 len;
+ __be16 addr;
unsigned char payload[];
};
static inline u32 sigma_action_len(struct sigma_action *sa)
{
- return (sa->len_hi << 16) | sa->len;
-}
-
-static inline size_t sigma_action_size(struct sigma_action *sa, u32 payload_len)
-{
- return sizeof(*sa) + payload_len + (payload_len % 2);
+ return (sa->len_hi << 16) | le16_to_cpu(sa->len);
}
extern int process_sigma_firmware(struct i2c_client *client, const char *name);
diff --git a/include/linux/virtio_config.h b/include/linux/virtio_config.h
index add4790b21f..e9e72bda1b7 100644
--- a/include/linux/virtio_config.h
+++ b/include/linux/virtio_config.h
@@ -85,6 +85,8 @@
* @reset: reset the device
* vdev: the virtio device
* After this, status and feature negotiation must be done again
+ * Device must not be reset from its vq/config callbacks, or in
+ * parallel with being added/removed.
* @find_vqs: find virtqueues and instantiate them.
* vdev: the virtio_device
* nvqs: the number of virtqueues to find
diff --git a/include/linux/virtio_mmio.h b/include/linux/virtio_mmio.h
index 27c7edefbc8..5c7b6f0daef 100644
--- a/include/linux/virtio_mmio.h
+++ b/include/linux/virtio_mmio.h
@@ -63,7 +63,7 @@
#define VIRTIO_MMIO_GUEST_FEATURES 0x020
/* Activated features set selector - Write Only */
-#define VIRTIO_MMIO_GUEST_FEATURES_SET 0x024
+#define VIRTIO_MMIO_GUEST_FEATURES_SEL 0x024
/* Guest's memory page size in bytes - Write Only */
#define VIRTIO_MMIO_GUEST_PAGE_SIZE 0x028