diff options
Diffstat (limited to 'include/xen/interface/xen.h')
-rw-r--r-- | include/xen/interface/xen.h | 447 |
1 files changed, 447 insertions, 0 deletions
diff --git a/include/xen/interface/xen.h b/include/xen/interface/xen.h new file mode 100644 index 00000000000..518a5bf79ed --- /dev/null +++ b/include/xen/interface/xen.h @@ -0,0 +1,447 @@ +/****************************************************************************** + * xen.h + * + * Guest OS interface to Xen. + * + * Copyright (c) 2004, K A Fraser + */ + +#ifndef __XEN_PUBLIC_XEN_H__ +#define __XEN_PUBLIC_XEN_H__ + +#include <asm/xen/interface.h> + +/* + * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS). + */ + +/* + * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5. + * EAX = return value + * (argument registers may be clobbered on return) + * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6. + * RAX = return value + * (argument registers not clobbered on return; RCX, R11 are) + */ +#define __HYPERVISOR_set_trap_table 0 +#define __HYPERVISOR_mmu_update 1 +#define __HYPERVISOR_set_gdt 2 +#define __HYPERVISOR_stack_switch 3 +#define __HYPERVISOR_set_callbacks 4 +#define __HYPERVISOR_fpu_taskswitch 5 +#define __HYPERVISOR_sched_op 6 +#define __HYPERVISOR_dom0_op 7 +#define __HYPERVISOR_set_debugreg 8 +#define __HYPERVISOR_get_debugreg 9 +#define __HYPERVISOR_update_descriptor 10 +#define __HYPERVISOR_memory_op 12 +#define __HYPERVISOR_multicall 13 +#define __HYPERVISOR_update_va_mapping 14 +#define __HYPERVISOR_set_timer_op 15 +#define __HYPERVISOR_event_channel_op_compat 16 +#define __HYPERVISOR_xen_version 17 +#define __HYPERVISOR_console_io 18 +#define __HYPERVISOR_physdev_op_compat 19 +#define __HYPERVISOR_grant_table_op 20 +#define __HYPERVISOR_vm_assist 21 +#define __HYPERVISOR_update_va_mapping_otherdomain 22 +#define __HYPERVISOR_iret 23 /* x86 only */ +#define __HYPERVISOR_vcpu_op 24 +#define __HYPERVISOR_set_segment_base 25 /* x86/64 only */ +#define __HYPERVISOR_mmuext_op 26 +#define __HYPERVISOR_acm_op 27 +#define __HYPERVISOR_nmi_op 28 +#define __HYPERVISOR_sched_op_new 29 +#define __HYPERVISOR_callback_op 30 +#define __HYPERVISOR_xenoprof_op 31 +#define __HYPERVISOR_event_channel_op 32 +#define __HYPERVISOR_physdev_op 33 +#define __HYPERVISOR_hvm_op 34 + +/* + * VIRTUAL INTERRUPTS + * + * Virtual interrupts that a guest OS may receive from Xen. + */ +#define VIRQ_TIMER 0 /* Timebase update, and/or requested timeout. */ +#define VIRQ_DEBUG 1 /* Request guest to dump debug info. */ +#define VIRQ_CONSOLE 2 /* (DOM0) Bytes received on emergency console. */ +#define VIRQ_DOM_EXC 3 /* (DOM0) Exceptional event for some domain. */ +#define VIRQ_DEBUGGER 6 /* (DOM0) A domain has paused for debugging. */ +#define NR_VIRQS 8 + +/* + * MMU-UPDATE REQUESTS + * + * HYPERVISOR_mmu_update() accepts a list of (ptr, val) pairs. + * A foreigndom (FD) can be specified (or DOMID_SELF for none). + * Where the FD has some effect, it is described below. + * ptr[1:0] specifies the appropriate MMU_* command. + * + * ptr[1:0] == MMU_NORMAL_PT_UPDATE: + * Updates an entry in a page table. If updating an L1 table, and the new + * table entry is valid/present, the mapped frame must belong to the FD, if + * an FD has been specified. If attempting to map an I/O page then the + * caller assumes the privilege of the FD. + * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller. + * FD == DOMID_XEN: Map restricted areas of Xen's heap space. + * ptr[:2] -- Machine address of the page-table entry to modify. + * val -- Value to write. + * + * ptr[1:0] == MMU_MACHPHYS_UPDATE: + * Updates an entry in the machine->pseudo-physical mapping table. + * ptr[:2] -- Machine address within the frame whose mapping to modify. + * The frame must belong to the FD, if one is specified. + * val -- Value to write into the mapping entry. + */ +#define MMU_NORMAL_PT_UPDATE 0 /* checked '*ptr = val'. ptr is MA. */ +#define MMU_MACHPHYS_UPDATE 1 /* ptr = MA of frame to modify entry for */ + +/* + * MMU EXTENDED OPERATIONS + * + * HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures. + * A foreigndom (FD) can be specified (or DOMID_SELF for none). + * Where the FD has some effect, it is described below. + * + * cmd: MMUEXT_(UN)PIN_*_TABLE + * mfn: Machine frame number to be (un)pinned as a p.t. page. + * The frame must belong to the FD, if one is specified. + * + * cmd: MMUEXT_NEW_BASEPTR + * mfn: Machine frame number of new page-table base to install in MMU. + * + * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only] + * mfn: Machine frame number of new page-table base to install in MMU + * when in user space. + * + * cmd: MMUEXT_TLB_FLUSH_LOCAL + * No additional arguments. Flushes local TLB. + * + * cmd: MMUEXT_INVLPG_LOCAL + * linear_addr: Linear address to be flushed from the local TLB. + * + * cmd: MMUEXT_TLB_FLUSH_MULTI + * vcpumask: Pointer to bitmap of VCPUs to be flushed. + * + * cmd: MMUEXT_INVLPG_MULTI + * linear_addr: Linear address to be flushed. + * vcpumask: Pointer to bitmap of VCPUs to be flushed. + * + * cmd: MMUEXT_TLB_FLUSH_ALL + * No additional arguments. Flushes all VCPUs' TLBs. + * + * cmd: MMUEXT_INVLPG_ALL + * linear_addr: Linear address to be flushed from all VCPUs' TLBs. + * + * cmd: MMUEXT_FLUSH_CACHE + * No additional arguments. Writes back and flushes cache contents. + * + * cmd: MMUEXT_SET_LDT + * linear_addr: Linear address of LDT base (NB. must be page-aligned). + * nr_ents: Number of entries in LDT. + */ +#define MMUEXT_PIN_L1_TABLE 0 +#define MMUEXT_PIN_L2_TABLE 1 +#define MMUEXT_PIN_L3_TABLE 2 +#define MMUEXT_PIN_L4_TABLE 3 +#define MMUEXT_UNPIN_TABLE 4 +#define MMUEXT_NEW_BASEPTR 5 +#define MMUEXT_TLB_FLUSH_LOCAL 6 +#define MMUEXT_INVLPG_LOCAL 7 +#define MMUEXT_TLB_FLUSH_MULTI 8 +#define MMUEXT_INVLPG_MULTI 9 +#define MMUEXT_TLB_FLUSH_ALL 10 +#define MMUEXT_INVLPG_ALL 11 +#define MMUEXT_FLUSH_CACHE 12 +#define MMUEXT_SET_LDT 13 +#define MMUEXT_NEW_USER_BASEPTR 15 + +#ifndef __ASSEMBLY__ +struct mmuext_op { + unsigned int cmd; + union { + /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR */ + unsigned long mfn; + /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */ + unsigned long linear_addr; + } arg1; + union { + /* SET_LDT */ + unsigned int nr_ents; + /* TLB_FLUSH_MULTI, INVLPG_MULTI */ + void *vcpumask; + } arg2; +}; +DEFINE_GUEST_HANDLE_STRUCT(mmuext_op); +#endif + +/* These are passed as 'flags' to update_va_mapping. They can be ORed. */ +/* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap. */ +/* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer. */ +#define UVMF_NONE (0UL<<0) /* No flushing at all. */ +#define UVMF_TLB_FLUSH (1UL<<0) /* Flush entire TLB(s). */ +#define UVMF_INVLPG (2UL<<0) /* Flush only one entry. */ +#define UVMF_FLUSHTYPE_MASK (3UL<<0) +#define UVMF_MULTI (0UL<<2) /* Flush subset of TLBs. */ +#define UVMF_LOCAL (0UL<<2) /* Flush local TLB. */ +#define UVMF_ALL (1UL<<2) /* Flush all TLBs. */ + +/* + * Commands to HYPERVISOR_console_io(). + */ +#define CONSOLEIO_write 0 +#define CONSOLEIO_read 1 + +/* + * Commands to HYPERVISOR_vm_assist(). + */ +#define VMASST_CMD_enable 0 +#define VMASST_CMD_disable 1 +#define VMASST_TYPE_4gb_segments 0 +#define VMASST_TYPE_4gb_segments_notify 1 +#define VMASST_TYPE_writable_pagetables 2 +#define VMASST_TYPE_pae_extended_cr3 3 +#define MAX_VMASST_TYPE 3 + +#ifndef __ASSEMBLY__ + +typedef uint16_t domid_t; + +/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */ +#define DOMID_FIRST_RESERVED (0x7FF0U) + +/* DOMID_SELF is used in certain contexts to refer to oneself. */ +#define DOMID_SELF (0x7FF0U) + +/* + * DOMID_IO is used to restrict page-table updates to mapping I/O memory. + * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO + * is useful to ensure that no mappings to the OS's own heap are accidentally + * installed. (e.g., in Linux this could cause havoc as reference counts + * aren't adjusted on the I/O-mapping code path). + * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can + * be specified by any calling domain. + */ +#define DOMID_IO (0x7FF1U) + +/* + * DOMID_XEN is used to allow privileged domains to map restricted parts of + * Xen's heap space (e.g., the machine_to_phys table). + * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if + * the caller is privileged. + */ +#define DOMID_XEN (0x7FF2U) + +/* + * Send an array of these to HYPERVISOR_mmu_update(). + * NB. The fields are natural pointer/address size for this architecture. + */ +struct mmu_update { + uint64_t ptr; /* Machine address of PTE. */ + uint64_t val; /* New contents of PTE. */ +}; +DEFINE_GUEST_HANDLE_STRUCT(mmu_update); + +/* + * Send an array of these to HYPERVISOR_multicall(). + * NB. The fields are natural register size for this architecture. + */ +struct multicall_entry { + unsigned long op; + long result; + unsigned long args[6]; +}; +DEFINE_GUEST_HANDLE_STRUCT(multicall_entry); + +/* + * Event channel endpoints per domain: + * 1024 if a long is 32 bits; 4096 if a long is 64 bits. + */ +#define NR_EVENT_CHANNELS (sizeof(unsigned long) * sizeof(unsigned long) * 64) + +struct vcpu_time_info { + /* + * Updates to the following values are preceded and followed + * by an increment of 'version'. The guest can therefore + * detect updates by looking for changes to 'version'. If the + * least-significant bit of the version number is set then an + * update is in progress and the guest must wait to read a + * consistent set of values. The correct way to interact with + * the version number is similar to Linux's seqlock: see the + * implementations of read_seqbegin/read_seqretry. + */ + uint32_t version; + uint32_t pad0; + uint64_t tsc_timestamp; /* TSC at last update of time vals. */ + uint64_t system_time; /* Time, in nanosecs, since boot. */ + /* + * Current system time: + * system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul + * CPU frequency (Hz): + * ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift + */ + uint32_t tsc_to_system_mul; + int8_t tsc_shift; + int8_t pad1[3]; +}; /* 32 bytes */ + +struct vcpu_info { + /* + * 'evtchn_upcall_pending' is written non-zero by Xen to indicate + * a pending notification for a particular VCPU. It is then cleared + * by the guest OS /before/ checking for pending work, thus avoiding + * a set-and-check race. Note that the mask is only accessed by Xen + * on the CPU that is currently hosting the VCPU. This means that the + * pending and mask flags can be updated by the guest without special + * synchronisation (i.e., no need for the x86 LOCK prefix). + * This may seem suboptimal because if the pending flag is set by + * a different CPU then an IPI may be scheduled even when the mask + * is set. However, note: + * 1. The task of 'interrupt holdoff' is covered by the per-event- + * channel mask bits. A 'noisy' event that is continually being + * triggered can be masked at source at this very precise + * granularity. + * 2. The main purpose of the per-VCPU mask is therefore to restrict + * reentrant execution: whether for concurrency control, or to + * prevent unbounded stack usage. Whatever the purpose, we expect + * that the mask will be asserted only for short periods at a time, + * and so the likelihood of a 'spurious' IPI is suitably small. + * The mask is read before making an event upcall to the guest: a + * non-zero mask therefore guarantees that the VCPU will not receive + * an upcall activation. The mask is cleared when the VCPU requests + * to block: this avoids wakeup-waiting races. + */ + uint8_t evtchn_upcall_pending; + uint8_t evtchn_upcall_mask; + unsigned long evtchn_pending_sel; + struct arch_vcpu_info arch; + struct vcpu_time_info time; +}; /* 64 bytes (x86) */ + +/* + * Xen/kernel shared data -- pointer provided in start_info. + * NB. We expect that this struct is smaller than a page. + */ +struct shared_info { + struct vcpu_info vcpu_info[MAX_VIRT_CPUS]; + + /* + * A domain can create "event channels" on which it can send and receive + * asynchronous event notifications. There are three classes of event that + * are delivered by this mechanism: + * 1. Bi-directional inter- and intra-domain connections. Domains must + * arrange out-of-band to set up a connection (usually by allocating + * an unbound 'listener' port and avertising that via a storage service + * such as xenstore). + * 2. Physical interrupts. A domain with suitable hardware-access + * privileges can bind an event-channel port to a physical interrupt + * source. + * 3. Virtual interrupts ('events'). A domain can bind an event-channel + * port to a virtual interrupt source, such as the virtual-timer + * device or the emergency console. + * + * Event channels are addressed by a "port index". Each channel is + * associated with two bits of information: + * 1. PENDING -- notifies the domain that there is a pending notification + * to be processed. This bit is cleared by the guest. + * 2. MASK -- if this bit is clear then a 0->1 transition of PENDING + * will cause an asynchronous upcall to be scheduled. This bit is only + * updated by the guest. It is read-only within Xen. If a channel + * becomes pending while the channel is masked then the 'edge' is lost + * (i.e., when the channel is unmasked, the guest must manually handle + * pending notifications as no upcall will be scheduled by Xen). + * + * To expedite scanning of pending notifications, any 0->1 pending + * transition on an unmasked channel causes a corresponding bit in a + * per-vcpu selector word to be set. Each bit in the selector covers a + * 'C long' in the PENDING bitfield array. + */ + unsigned long evtchn_pending[sizeof(unsigned long) * 8]; + unsigned long evtchn_mask[sizeof(unsigned long) * 8]; + + /* + * Wallclock time: updated only by control software. Guests should base + * their gettimeofday() syscall on this wallclock-base value. + */ + uint32_t wc_version; /* Version counter: see vcpu_time_info_t. */ + uint32_t wc_sec; /* Secs 00:00:00 UTC, Jan 1, 1970. */ + uint32_t wc_nsec; /* Nsecs 00:00:00 UTC, Jan 1, 1970. */ + + struct arch_shared_info arch; + +}; + +/* + * Start-of-day memory layout for the initial domain (DOM0): + * 1. The domain is started within contiguous virtual-memory region. + * 2. The contiguous region begins and ends on an aligned 4MB boundary. + * 3. The region start corresponds to the load address of the OS image. + * If the load address is not 4MB aligned then the address is rounded down. + * 4. This the order of bootstrap elements in the initial virtual region: + * a. relocated kernel image + * b. initial ram disk [mod_start, mod_len] + * c. list of allocated page frames [mfn_list, nr_pages] + * d. start_info_t structure [register ESI (x86)] + * e. bootstrap page tables [pt_base, CR3 (x86)] + * f. bootstrap stack [register ESP (x86)] + * 5. Bootstrap elements are packed together, but each is 4kB-aligned. + * 6. The initial ram disk may be omitted. + * 7. The list of page frames forms a contiguous 'pseudo-physical' memory + * layout for the domain. In particular, the bootstrap virtual-memory + * region is a 1:1 mapping to the first section of the pseudo-physical map. + * 8. All bootstrap elements are mapped read-writable for the guest OS. The + * only exception is the bootstrap page table, which is mapped read-only. + * 9. There is guaranteed to be at least 512kB padding after the final + * bootstrap element. If necessary, the bootstrap virtual region is + * extended by an extra 4MB to ensure this. + */ + +#define MAX_GUEST_CMDLINE 1024 +struct start_info { + /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME. */ + char magic[32]; /* "xen-<version>-<platform>". */ + unsigned long nr_pages; /* Total pages allocated to this domain. */ + unsigned long shared_info; /* MACHINE address of shared info struct. */ + uint32_t flags; /* SIF_xxx flags. */ + unsigned long store_mfn; /* MACHINE page number of shared page. */ + uint32_t store_evtchn; /* Event channel for store communication. */ + union { + struct { + unsigned long mfn; /* MACHINE page number of console page. */ + uint32_t evtchn; /* Event channel for console page. */ + } domU; + struct { + uint32_t info_off; /* Offset of console_info struct. */ + uint32_t info_size; /* Size of console_info struct from start.*/ + } dom0; + } console; + /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME). */ + unsigned long pt_base; /* VIRTUAL address of page directory. */ + unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames. */ + unsigned long mfn_list; /* VIRTUAL address of page-frame list. */ + unsigned long mod_start; /* VIRTUAL address of pre-loaded module. */ + unsigned long mod_len; /* Size (bytes) of pre-loaded module. */ + int8_t cmd_line[MAX_GUEST_CMDLINE]; +}; + +/* These flags are passed in the 'flags' field of start_info_t. */ +#define SIF_PRIVILEGED (1<<0) /* Is the domain privileged? */ +#define SIF_INITDOMAIN (1<<1) /* Is this the initial control domain? */ + +typedef uint64_t cpumap_t; + +typedef uint8_t xen_domain_handle_t[16]; + +/* Turn a plain number into a C unsigned long constant. */ +#define __mk_unsigned_long(x) x ## UL +#define mk_unsigned_long(x) __mk_unsigned_long(x) + +#else /* __ASSEMBLY__ */ + +/* In assembly code we cannot use C numeric constant suffixes. */ +#define mk_unsigned_long(x) x + +#endif /* !__ASSEMBLY__ */ + +#endif /* __XEN_PUBLIC_XEN_H__ */ |