diff options
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 561 |
1 files changed, 534 insertions, 27 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 6f46c94cc29..3ee2ae45125 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -27,12 +27,14 @@ #include <linux/smp_lock.h> #include <asm/mmu_context.h> #include <linux/interrupt.h> +#include <linux/capability.h> #include <linux/completion.h> #include <linux/kernel_stat.h> #include <linux/security.h> #include <linux/notifier.h> #include <linux/profile.h> #include <linux/suspend.h> +#include <linux/vmalloc.h> #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/smp.h> @@ -176,6 +178,13 @@ static unsigned int task_timeslice(task_t *p) #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \ < (long long) (sd)->cache_hot_time) +void __put_task_struct_cb(struct rcu_head *rhp) +{ + __put_task_struct(container_of(rhp, struct task_struct, rcu)); +} + +EXPORT_SYMBOL_GPL(__put_task_struct_cb); + /* * These are the runqueue data structures: */ @@ -512,7 +521,7 @@ static inline void sched_info_dequeued(task_t *t) * long it was waiting to run. We also note when it began so that we * can keep stats on how long its timeslice is. */ -static inline void sched_info_arrive(task_t *t) +static void sched_info_arrive(task_t *t) { unsigned long now = jiffies, diff = 0; struct runqueue *rq = task_rq(t); @@ -739,10 +748,14 @@ static int recalc_task_prio(task_t *p, unsigned long long now) unsigned long long __sleep_time = now - p->timestamp; unsigned long sleep_time; - if (__sleep_time > NS_MAX_SLEEP_AVG) - sleep_time = NS_MAX_SLEEP_AVG; - else - sleep_time = (unsigned long)__sleep_time; + if (unlikely(p->policy == SCHED_BATCH)) + sleep_time = 0; + else { + if (__sleep_time > NS_MAX_SLEEP_AVG) + sleep_time = NS_MAX_SLEEP_AVG; + else + sleep_time = (unsigned long)__sleep_time; + } if (likely(sleep_time > 0)) { /* @@ -994,7 +1007,7 @@ void kick_process(task_t *p) * We want to under-estimate the load of migration sources, to * balance conservatively. */ -static inline unsigned long __source_load(int cpu, int type, enum idle_type idle) +static unsigned long __source_load(int cpu, int type, enum idle_type idle) { runqueue_t *rq = cpu_rq(cpu); unsigned long running = rq->nr_running; @@ -1281,6 +1294,9 @@ static int try_to_wake_up(task_t *p, unsigned int state, int sync) } } + if (p->last_waker_cpu != this_cpu) + goto out_set_cpu; + if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed))) goto out_set_cpu; @@ -1351,6 +1367,8 @@ out_set_cpu: cpu = task_cpu(p); } + p->last_waker_cpu = this_cpu; + out_activate: #endif /* CONFIG_SMP */ if (old_state == TASK_UNINTERRUPTIBLE) { @@ -1432,9 +1450,12 @@ void fastcall sched_fork(task_t *p, int clone_flags) #ifdef CONFIG_SCHEDSTATS memset(&p->sched_info, 0, sizeof(p->sched_info)); #endif -#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) +#if defined(CONFIG_SMP) + p->last_waker_cpu = cpu; +#if defined(__ARCH_WANT_UNLOCKED_CTXSW) p->oncpu = 0; #endif +#endif #ifdef CONFIG_PREEMPT /* Want to start with kernel preemption disabled. */ task_thread_info(p)->preempt_count = 1; @@ -1849,7 +1870,7 @@ void sched_exec(void) * pull_task - move a task from a remote runqueue to the local runqueue. * Both runqueues must be locked. */ -static inline +static void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p, runqueue_t *this_rq, prio_array_t *this_array, int this_cpu) { @@ -1871,7 +1892,7 @@ void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p, /* * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? */ -static inline +static int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu, struct sched_domain *sd, enum idle_type idle, int *all_pinned) @@ -2357,7 +2378,7 @@ out_balanced: * idle_balance is called by schedule() if this_cpu is about to become * idle. Attempts to pull tasks from other CPUs. */ -static inline void idle_balance(int this_cpu, runqueue_t *this_rq) +static void idle_balance(int this_cpu, runqueue_t *this_rq) { struct sched_domain *sd; @@ -2741,7 +2762,7 @@ static inline void wakeup_busy_runqueue(runqueue_t *rq) resched_task(rq->idle); } -static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) +static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) { struct sched_domain *tmp, *sd = NULL; cpumask_t sibling_map; @@ -2795,7 +2816,7 @@ static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd) return p->time_slice * (100 - sd->per_cpu_gain) / 100; } -static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) +static int dependent_sleeper(int this_cpu, runqueue_t *this_rq) { struct sched_domain *tmp, *sd = NULL; cpumask_t sibling_map; @@ -3543,7 +3564,7 @@ void set_user_nice(task_t *p, long nice) * The RT priorities are set via sched_setscheduler(), but we still * allow the 'normal' nice value to be set - but as expected * it wont have any effect on scheduling until the task is - * not SCHED_NORMAL: + * not SCHED_NORMAL/SCHED_BATCH: */ if (rt_task(p)) { p->static_prio = NICE_TO_PRIO(nice); @@ -3689,10 +3710,16 @@ static void __setscheduler(struct task_struct *p, int policy, int prio) BUG_ON(p->array); p->policy = policy; p->rt_priority = prio; - if (policy != SCHED_NORMAL) + if (policy != SCHED_NORMAL && policy != SCHED_BATCH) { p->prio = MAX_RT_PRIO-1 - p->rt_priority; - else + } else { p->prio = p->static_prio; + /* + * SCHED_BATCH tasks are treated as perpetual CPU hogs: + */ + if (policy == SCHED_BATCH) + p->sleep_avg = 0; + } } /** @@ -3716,29 +3743,35 @@ recheck: if (policy < 0) policy = oldpolicy = p->policy; else if (policy != SCHED_FIFO && policy != SCHED_RR && - policy != SCHED_NORMAL) - return -EINVAL; + policy != SCHED_NORMAL && policy != SCHED_BATCH) + return -EINVAL; /* * Valid priorities for SCHED_FIFO and SCHED_RR are - * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0. + * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and + * SCHED_BATCH is 0. */ if (param->sched_priority < 0 || (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) return -EINVAL; - if ((policy == SCHED_NORMAL) != (param->sched_priority == 0)) + if ((policy == SCHED_NORMAL || policy == SCHED_BATCH) + != (param->sched_priority == 0)) return -EINVAL; /* * Allow unprivileged RT tasks to decrease priority: */ if (!capable(CAP_SYS_NICE)) { - /* can't change policy */ - if (policy != p->policy && - !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur) + /* + * can't change policy, except between SCHED_NORMAL + * and SCHED_BATCH: + */ + if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) && + (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) && + !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur) return -EPERM; /* can't increase priority */ - if (policy != SCHED_NORMAL && + if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) && param->sched_priority > p->rt_priority && param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur) @@ -3817,6 +3850,10 @@ do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) { + /* negative values for policy are not valid */ + if (policy < 0) + return -EINVAL; + return do_sched_setscheduler(pid, policy, param); } @@ -3972,12 +4009,12 @@ asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, * method, such as ACPI for e.g. */ -cpumask_t cpu_present_map; +cpumask_t cpu_present_map __read_mostly; EXPORT_SYMBOL(cpu_present_map); #ifndef CONFIG_SMP -cpumask_t cpu_online_map = CPU_MASK_ALL; -cpumask_t cpu_possible_map = CPU_MASK_ALL; +cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL; +cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL; #endif long sched_getaffinity(pid_t pid, cpumask_t *mask) @@ -4216,6 +4253,7 @@ asmlinkage long sys_sched_get_priority_max(int policy) ret = MAX_USER_RT_PRIO-1; break; case SCHED_NORMAL: + case SCHED_BATCH: ret = 0; break; } @@ -4239,6 +4277,7 @@ asmlinkage long sys_sched_get_priority_min(int policy) ret = 1; break; case SCHED_NORMAL: + case SCHED_BATCH: ret = 0; } return ret; @@ -4379,6 +4418,7 @@ void show_state(void) } while_each_thread(g, p); read_unlock(&tasklist_lock); + mutex_debug_show_all_locks(); } /** @@ -5073,7 +5113,470 @@ static void init_sched_build_groups(struct sched_group groups[], cpumask_t span, #define SD_NODES_PER_DOMAIN 16 +/* + * Self-tuning task migration cost measurement between source and target CPUs. + * + * This is done by measuring the cost of manipulating buffers of varying + * sizes. For a given buffer-size here are the steps that are taken: + * + * 1) the source CPU reads+dirties a shared buffer + * 2) the target CPU reads+dirties the same shared buffer + * + * We measure how long they take, in the following 4 scenarios: + * + * - source: CPU1, target: CPU2 | cost1 + * - source: CPU2, target: CPU1 | cost2 + * - source: CPU1, target: CPU1 | cost3 + * - source: CPU2, target: CPU2 | cost4 + * + * We then calculate the cost3+cost4-cost1-cost2 difference - this is + * the cost of migration. + * + * We then start off from a small buffer-size and iterate up to larger + * buffer sizes, in 5% steps - measuring each buffer-size separately, and + * doing a maximum search for the cost. (The maximum cost for a migration + * normally occurs when the working set size is around the effective cache + * size.) + */ +#define SEARCH_SCOPE 2 +#define MIN_CACHE_SIZE (64*1024U) +#define DEFAULT_CACHE_SIZE (5*1024*1024U) +#define ITERATIONS 2 +#define SIZE_THRESH 130 +#define COST_THRESH 130 + +/* + * The migration cost is a function of 'domain distance'. Domain + * distance is the number of steps a CPU has to iterate down its + * domain tree to share a domain with the other CPU. The farther + * two CPUs are from each other, the larger the distance gets. + * + * Note that we use the distance only to cache measurement results, + * the distance value is not used numerically otherwise. When two + * CPUs have the same distance it is assumed that the migration + * cost is the same. (this is a simplification but quite practical) + */ +#define MAX_DOMAIN_DISTANCE 32 + +static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] = + { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] = -1LL }; + +/* + * Allow override of migration cost - in units of microseconds. + * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost + * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs: + */ +static int __init migration_cost_setup(char *str) +{ + int ints[MAX_DOMAIN_DISTANCE+1], i; + + str = get_options(str, ARRAY_SIZE(ints), ints); + + printk("#ints: %d\n", ints[0]); + for (i = 1; i <= ints[0]; i++) { + migration_cost[i-1] = (unsigned long long)ints[i]*1000; + printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]); + } + return 1; +} + +__setup ("migration_cost=", migration_cost_setup); + +/* + * Global multiplier (divisor) for migration-cutoff values, + * in percentiles. E.g. use a value of 150 to get 1.5 times + * longer cache-hot cutoff times. + * + * (We scale it from 100 to 128 to long long handling easier.) + */ + +#define MIGRATION_FACTOR_SCALE 128 + +static unsigned int migration_factor = MIGRATION_FACTOR_SCALE; + +static int __init setup_migration_factor(char *str) +{ + get_option(&str, &migration_factor); + migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100; + return 1; +} + +__setup("migration_factor=", setup_migration_factor); + +/* + * Estimated distance of two CPUs, measured via the number of domains + * we have to pass for the two CPUs to be in the same span: + */ +static unsigned long domain_distance(int cpu1, int cpu2) +{ + unsigned long distance = 0; + struct sched_domain *sd; + + for_each_domain(cpu1, sd) { + WARN_ON(!cpu_isset(cpu1, sd->span)); + if (cpu_isset(cpu2, sd->span)) + return distance; + distance++; + } + if (distance >= MAX_DOMAIN_DISTANCE) { + WARN_ON(1); + distance = MAX_DOMAIN_DISTANCE-1; + } + + return distance; +} + +static unsigned int migration_debug; + +static int __init setup_migration_debug(char *str) +{ + get_option(&str, &migration_debug); + return 1; +} + +__setup("migration_debug=", setup_migration_debug); + +/* + * Maximum cache-size that the scheduler should try to measure. + * Architectures with larger caches should tune this up during + * bootup. Gets used in the domain-setup code (i.e. during SMP + * bootup). + */ +unsigned int max_cache_size; + +static int __init setup_max_cache_size(char *str) +{ + get_option(&str, &max_cache_size); + return 1; +} + +__setup("max_cache_size=", setup_max_cache_size); + +/* + * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This + * is the operation that is timed, so we try to generate unpredictable + * cachemisses that still end up filling the L2 cache: + */ +static void touch_cache(void *__cache, unsigned long __size) +{ + unsigned long size = __size/sizeof(long), chunk1 = size/3, + chunk2 = 2*size/3; + unsigned long *cache = __cache; + int i; + + for (i = 0; i < size/6; i += 8) { + switch (i % 6) { + case 0: cache[i]++; + case 1: cache[size-1-i]++; + case 2: cache[chunk1-i]++; + case 3: cache[chunk1+i]++; + case 4: cache[chunk2-i]++; + case 5: cache[chunk2+i]++; + } + } +} + +/* + * Measure the cache-cost of one task migration. Returns in units of nsec. + */ +static unsigned long long measure_one(void *cache, unsigned long size, + int source, int target) +{ + cpumask_t mask, saved_mask; + unsigned long long t0, t1, t2, t3, cost; + + saved_mask = current->cpus_allowed; + + /* + * Flush source caches to RAM and invalidate them: + */ + sched_cacheflush(); + + /* + * Migrate to the source CPU: + */ + mask = cpumask_of_cpu(source); + set_cpus_allowed(current, mask); + WARN_ON(smp_processor_id() != source); + + /* + * Dirty the working set: + */ + t0 = sched_clock(); + touch_cache(cache, size); + t1 = sched_clock(); + + /* + * Migrate to the target CPU, dirty the L2 cache and access + * the shared buffer. (which represents the working set + * of a migrated task.) + */ + mask = cpumask_of_cpu(target); + set_cpus_allowed(current, mask); + WARN_ON(smp_processor_id() != target); + + t2 = sched_clock(); + touch_cache(cache, size); + t3 = sched_clock(); + + cost = t1-t0 + t3-t2; + + if (migration_debug >= 2) + printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n", + source, target, t1-t0, t1-t0, t3-t2, cost); + /* + * Flush target caches to RAM and invalidate them: + */ + sched_cacheflush(); + + set_cpus_allowed(current, saved_mask); + + return cost; +} + +/* + * Measure a series of task migrations and return the average + * result. Since this code runs early during bootup the system + * is 'undisturbed' and the average latency makes sense. + * + * The algorithm in essence auto-detects the relevant cache-size, + * so it will properly detect different cachesizes for different + * cache-hierarchies, depending on how the CPUs are connected. + * + * Architectures can prime the upper limit of the search range via + * max_cache_size, otherwise the search range defaults to 20MB...64K. + */ +static unsigned long long +measure_cost(int cpu1, int cpu2, void *cache, unsigned int size) +{ + unsigned long long cost1, cost2; + int i; + + /* + * Measure the migration cost of 'size' bytes, over an + * average of 10 runs: + * + * (We perturb the cache size by a small (0..4k) + * value to compensate size/alignment related artifacts. + * We also subtract the cost of the operation done on + * the same CPU.) + */ + cost1 = 0; + + /* + * dry run, to make sure we start off cache-cold on cpu1, + * and to get any vmalloc pagefaults in advance: + */ + measure_one(cache, size, cpu1, cpu2); + for (i = 0; i < ITERATIONS; i++) + cost1 += measure_one(cache, size - i*1024, cpu1, cpu2); + + measure_one(cache, size, cpu2, cpu1); + for (i = 0; i < ITERATIONS; i++) + cost1 += measure_one(cache, size - i*1024, cpu2, cpu1); + + /* + * (We measure the non-migrating [cached] cost on both + * cpu1 and cpu2, to handle CPUs with different speeds) + */ + cost2 = 0; + + measure_one(cache, size, cpu1, cpu1); + for (i = 0; i < ITERATIONS; i++) + cost2 += measure_one(cache, size - i*1024, cpu1, cpu1); + + measure_one(cache, size, cpu2, cpu2); + for (i = 0; i < ITERATIONS; i++) + cost2 += measure_one(cache, size - i*1024, cpu2, cpu2); + + /* + * Get the per-iteration migration cost: + */ + do_div(cost1, 2*ITERATIONS); + do_div(cost2, 2*ITERATIONS); + + return cost1 - cost2; +} + +static unsigned long long measure_migration_cost(int cpu1, int cpu2) +{ + unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0; + unsigned int max_size, size, size_found = 0; + long long cost = 0, prev_cost; + void *cache; + + /* + * Search from max_cache_size*5 down to 64K - the real relevant + * cachesize has to lie somewhere inbetween. + */ + if (max_cache_size) { + max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE); + size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE); + } else { + /* + * Since we have no estimation about the relevant + * search range + */ + max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE; + size = MIN_CACHE_SIZE; + } + + if (!cpu_online(cpu1) || !cpu_online(cpu2)) { + printk("cpu %d and %d not both online!\n", cpu1, cpu2); + return 0; + } + + /* + * Allocate the working set: + */ + cache = vmalloc(max_size); + if (!cache) { + printk("could not vmalloc %d bytes for cache!\n", 2*max_size); + return 1000000; // return 1 msec on very small boxen + } + + while (size <= max_size) { + prev_cost = cost; + cost = measure_cost(cpu1, cpu2, cache, size); + + /* + * Update the max: + */ + if (cost > 0) { + if (max_cost < cost) { + max_cost = cost; + size_found = size; + } + } + /* + * Calculate average fluctuation, we use this to prevent + * noise from triggering an early break out of the loop: + */ + fluct = abs(cost - prev_cost); + avg_fluct = (avg_fluct + fluct)/2; + + if (migration_debug) + printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n", + cpu1, cpu2, size, + (long)cost / 1000000, + ((long)cost / 100000) % 10, + (long)max_cost / 1000000, + ((long)max_cost / 100000) % 10, + domain_distance(cpu1, cpu2), + cost, avg_fluct); + + /* + * If we iterated at least 20% past the previous maximum, + * and the cost has dropped by more than 20% already, + * (taking fluctuations into account) then we assume to + * have found the maximum and break out of the loop early: + */ + if (size_found && (size*100 > size_found*SIZE_THRESH)) + if (cost+avg_fluct <= 0 || + max_cost*100 > (cost+avg_fluct)*COST_THRESH) { + + if (migration_debug) + printk("-> found max.\n"); + break; + } + /* + * Increase the cachesize in 5% steps: + */ + size = size * 20 / 19; + } + + if (migration_debug) + printk("[%d][%d] working set size found: %d, cost: %Ld\n", + cpu1, cpu2, size_found, max_cost); + + vfree(cache); + + /* + * A task is considered 'cache cold' if at least 2 times + * the worst-case cost of migration has passed. + * + * (this limit is only listened to if the load-balancing + * situation is 'nice' - if there is a large imbalance we + * ignore it for the sake of CPU utilization and + * processing fairness.) + */ + return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE; +} + +static void calibrate_migration_costs(const cpumask_t *cpu_map) +{ + int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id(); + unsigned long j0, j1, distance, max_distance = 0; + struct sched_domain *sd; + + j0 = jiffies; + + /* + * First pass - calculate the cacheflush times: + */ + for_each_cpu_mask(cpu1, *cpu_map) { + for_each_cpu_mask(cpu2, *cpu_map) { + if (cpu1 == cpu2) + continue; + distance = domain_distance(cpu1, cpu2); + max_distance = max(max_distance, distance); + /* + * No result cached yet? + */ + if (migration_cost[distance] == -1LL) + migration_cost[distance] = + measure_migration_cost(cpu1, cpu2); + } + } + /* + * Second pass - update the sched domain hierarchy with + * the new cache-hot-time estimations: + */ + for_each_cpu_mask(cpu, *cpu_map) { + distance = 0; + for_each_domain(cpu, sd) { + sd->cache_hot_time = migration_cost[distance]; + distance++; + } + } + /* + * Print the matrix: + */ + if (migration_debug) + printk("migration: max_cache_size: %d, cpu: %d MHz:\n", + max_cache_size, +#ifdef CONFIG_X86 + cpu_khz/1000 +#else + -1 +#endif + ); + printk("migration_cost="); + for (distance = 0; distance <= max_distance; distance++) { + if (distance) + printk(","); + printk("%ld", (long)migration_cost[distance] / 1000); + } + printk("\n"); + j1 = jiffies; + if (migration_debug) + printk("migration: %ld seconds\n", (j1-j0)/HZ); + + /* + * Move back to the original CPU. NUMA-Q gets confused + * if we migrate to another quad during bootup. + */ + if (raw_smp_processor_id() != orig_cpu) { + cpumask_t mask = cpumask_of_cpu(orig_cpu), + saved_mask = current->cpus_allowed; + + set_cpus_allowed(current, mask); + set_cpus_allowed(current, saved_mask); + } +} + #ifdef CONFIG_NUMA + /** * find_next_best_node - find the next node to include in a sched_domain * @node: node whose sched_domain we're building @@ -5439,6 +5942,10 @@ next_sg: #endif cpu_attach_domain(sd, i); } + /* + * Tune cache-hot values: + */ + calibrate_migration_costs(cpu_map); } /* * Set up scheduler domains and groups. Callers must hold the hotplug lock. @@ -5505,7 +6012,7 @@ next_sg: * Detach sched domains from a group of cpus specified in cpu_map * These cpus will now be attached to the NULL domain */ -static inline void detach_destroy_domains(const cpumask_t *cpu_map) +static void detach_destroy_domains(const cpumask_t *cpu_map) { int i; |