summaryrefslogtreecommitdiffstats
path: root/kernel/sched/fair.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r--kernel/sched/fair.c644
1 files changed, 377 insertions, 267 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 7e9bd0b1fa9..d3c73122219 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -1017,7 +1017,7 @@ bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
static unsigned long weighted_cpuload(const int cpu);
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
-static unsigned long power_of(int cpu);
+static unsigned long capacity_of(int cpu);
static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
/* Cached statistics for all CPUs within a node */
@@ -1026,11 +1026,11 @@ struct numa_stats {
unsigned long load;
/* Total compute capacity of CPUs on a node */
- unsigned long power;
+ unsigned long compute_capacity;
/* Approximate capacity in terms of runnable tasks on a node */
- unsigned long capacity;
- int has_capacity;
+ unsigned long task_capacity;
+ int has_free_capacity;
};
/*
@@ -1046,7 +1046,7 @@ static void update_numa_stats(struct numa_stats *ns, int nid)
ns->nr_running += rq->nr_running;
ns->load += weighted_cpuload(cpu);
- ns->power += power_of(cpu);
+ ns->compute_capacity += capacity_of(cpu);
cpus++;
}
@@ -1056,15 +1056,16 @@ static void update_numa_stats(struct numa_stats *ns, int nid)
* the @ns structure is NULL'ed and task_numa_compare() will
* not find this node attractive.
*
- * We'll either bail at !has_capacity, or we'll detect a huge imbalance
- * and bail there.
+ * We'll either bail at !has_free_capacity, or we'll detect a huge
+ * imbalance and bail there.
*/
if (!cpus)
return;
- ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
- ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
- ns->has_capacity = (ns->nr_running < ns->capacity);
+ ns->load = (ns->load * SCHED_CAPACITY_SCALE) / ns->compute_capacity;
+ ns->task_capacity =
+ DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
+ ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
}
struct task_numa_env {
@@ -1095,6 +1096,34 @@ static void task_numa_assign(struct task_numa_env *env,
env->best_cpu = env->dst_cpu;
}
+static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
+ long src_load, long dst_load,
+ struct task_numa_env *env)
+{
+ long imb, old_imb;
+
+ /* We care about the slope of the imbalance, not the direction. */
+ if (dst_load < src_load)
+ swap(dst_load, src_load);
+
+ /* Is the difference below the threshold? */
+ imb = dst_load * 100 - src_load * env->imbalance_pct;
+ if (imb <= 0)
+ return false;
+
+ /*
+ * The imbalance is above the allowed threshold.
+ * Compare it with the old imbalance.
+ */
+ if (orig_dst_load < orig_src_load)
+ swap(orig_dst_load, orig_src_load);
+
+ old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;
+
+ /* Would this change make things worse? */
+ return (old_imb > imb);
+}
+
/*
* This checks if the overall compute and NUMA accesses of the system would
* be improved if the source tasks was migrated to the target dst_cpu taking
@@ -1107,7 +1136,8 @@ static void task_numa_compare(struct task_numa_env *env,
struct rq *src_rq = cpu_rq(env->src_cpu);
struct rq *dst_rq = cpu_rq(env->dst_cpu);
struct task_struct *cur;
- long dst_load, src_load;
+ long orig_src_load, src_load;
+ long orig_dst_load, dst_load;
long load;
long imp = (groupimp > 0) ? groupimp : taskimp;
@@ -1166,8 +1196,8 @@ static void task_numa_compare(struct task_numa_env *env,
if (!cur) {
/* Is there capacity at our destination? */
- if (env->src_stats.has_capacity &&
- !env->dst_stats.has_capacity)
+ if (env->src_stats.has_free_capacity &&
+ !env->dst_stats.has_free_capacity)
goto unlock;
goto balance;
@@ -1181,13 +1211,13 @@ static void task_numa_compare(struct task_numa_env *env,
* In the overloaded case, try and keep the load balanced.
*/
balance:
- dst_load = env->dst_stats.load;
- src_load = env->src_stats.load;
+ orig_dst_load = env->dst_stats.load;
+ orig_src_load = env->src_stats.load;
- /* XXX missing power terms */
+ /* XXX missing capacity terms */
load = task_h_load(env->p);
- dst_load += load;
- src_load -= load;
+ dst_load = orig_dst_load + load;
+ src_load = orig_src_load - load;
if (cur) {
load = task_h_load(cur);
@@ -1195,11 +1225,8 @@ balance:
src_load += load;
}
- /* make src_load the smaller */
- if (dst_load < src_load)
- swap(dst_load, src_load);
-
- if (src_load * env->imbalance_pct < dst_load * 100)
+ if (load_too_imbalanced(orig_src_load, orig_dst_load,
+ src_load, dst_load, env))
goto unlock;
assign:
@@ -1275,8 +1302,8 @@ static int task_numa_migrate(struct task_struct *p)
groupimp = group_weight(p, env.dst_nid) - groupweight;
update_numa_stats(&env.dst_stats, env.dst_nid);
- /* If the preferred nid has capacity, try to use it. */
- if (env.dst_stats.has_capacity)
+ /* If the preferred nid has free capacity, try to use it. */
+ if (env.dst_stats.has_free_capacity)
task_numa_find_cpu(&env, taskimp, groupimp);
/* No space available on the preferred nid. Look elsewhere. */
@@ -1301,7 +1328,16 @@ static int task_numa_migrate(struct task_struct *p)
if (env.best_cpu == -1)
return -EAGAIN;
- sched_setnuma(p, env.dst_nid);
+ /*
+ * If the task is part of a workload that spans multiple NUMA nodes,
+ * and is migrating into one of the workload's active nodes, remember
+ * this node as the task's preferred numa node, so the workload can
+ * settle down.
+ * A task that migrated to a second choice node will be better off
+ * trying for a better one later. Do not set the preferred node here.
+ */
+ if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
+ sched_setnuma(p, env.dst_nid);
/*
* Reset the scan period if the task is being rescheduled on an
@@ -1326,12 +1362,15 @@ static int task_numa_migrate(struct task_struct *p)
/* Attempt to migrate a task to a CPU on the preferred node. */
static void numa_migrate_preferred(struct task_struct *p)
{
+ unsigned long interval = HZ;
+
/* This task has no NUMA fault statistics yet */
if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
return;
/* Periodically retry migrating the task to the preferred node */
- p->numa_migrate_retry = jiffies + HZ;
+ interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
+ p->numa_migrate_retry = jiffies + interval;
/* Success if task is already running on preferred CPU */
if (task_node(p) == p->numa_preferred_nid)
@@ -1497,7 +1536,7 @@ static void task_numa_placement(struct task_struct *p)
/* If the task is part of a group prevent parallel updates to group stats */
if (p->numa_group) {
group_lock = &p->numa_group->lock;
- spin_lock(group_lock);
+ spin_lock_irq(group_lock);
}
/* Find the node with the highest number of faults */
@@ -1572,7 +1611,7 @@ static void task_numa_placement(struct task_struct *p)
}
}
- spin_unlock(group_lock);
+ spin_unlock_irq(group_lock);
}
/* Preferred node as the node with the most faults */
@@ -1677,7 +1716,8 @@ static void task_numa_group(struct task_struct *p, int cpupid, int flags,
if (!join)
return;
- double_lock(&my_grp->lock, &grp->lock);
+ BUG_ON(irqs_disabled());
+ double_lock_irq(&my_grp->lock, &grp->lock);
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
my_grp->faults[i] -= p->numa_faults_memory[i];
@@ -1691,7 +1731,7 @@ static void task_numa_group(struct task_struct *p, int cpupid, int flags,
grp->nr_tasks++;
spin_unlock(&my_grp->lock);
- spin_unlock(&grp->lock);
+ spin_unlock_irq(&grp->lock);
rcu_assign_pointer(p->numa_group, grp);
@@ -1710,14 +1750,14 @@ void task_numa_free(struct task_struct *p)
void *numa_faults = p->numa_faults_memory;
if (grp) {
- spin_lock(&grp->lock);
+ spin_lock_irq(&grp->lock);
for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
grp->faults[i] -= p->numa_faults_memory[i];
grp->total_faults -= p->total_numa_faults;
list_del(&p->numa_entry);
grp->nr_tasks--;
- spin_unlock(&grp->lock);
+ spin_unlock_irq(&grp->lock);
rcu_assign_pointer(p->numa_group, NULL);
put_numa_group(grp);
}
@@ -1737,6 +1777,7 @@ void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
struct task_struct *p = current;
bool migrated = flags & TNF_MIGRATED;
int cpu_node = task_node(current);
+ int local = !!(flags & TNF_FAULT_LOCAL);
int priv;
if (!numabalancing_enabled)
@@ -1785,6 +1826,17 @@ void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
task_numa_group(p, last_cpupid, flags, &priv);
}
+ /*
+ * If a workload spans multiple NUMA nodes, a shared fault that
+ * occurs wholly within the set of nodes that the workload is
+ * actively using should be counted as local. This allows the
+ * scan rate to slow down when a workload has settled down.
+ */
+ if (!priv && !local && p->numa_group &&
+ node_isset(cpu_node, p->numa_group->active_nodes) &&
+ node_isset(mem_node, p->numa_group->active_nodes))
+ local = 1;
+
task_numa_placement(p);
/*
@@ -1799,7 +1851,7 @@ void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
- p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
+ p->numa_faults_locality[local] += pages;
}
static void reset_ptenuma_scan(struct task_struct *p)
@@ -3173,10 +3225,12 @@ static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
* has not truly expired.
*
* Fortunately we can check determine whether this the case by checking
- * whether the global deadline has advanced.
+ * whether the global deadline has advanced. It is valid to compare
+ * cfs_b->runtime_expires without any locks since we only care about
+ * exact equality, so a partial write will still work.
*/
- if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
+ if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
/* extend local deadline, drift is bounded above by 2 ticks */
cfs_rq->runtime_expires += TICK_NSEC;
} else {
@@ -3300,7 +3354,7 @@ static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
}
if (!se)
- rq->nr_running -= task_delta;
+ sub_nr_running(rq, task_delta);
cfs_rq->throttled = 1;
cfs_rq->throttled_clock = rq_clock(rq);
@@ -3351,7 +3405,7 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
}
if (!se)
- rq->nr_running += task_delta;
+ add_nr_running(rq, task_delta);
/* determine whether we need to wake up potentially idle cpu */
if (rq->curr == rq->idle && rq->cfs.nr_running)
@@ -3405,21 +3459,21 @@ next:
static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
{
u64 runtime, runtime_expires;
- int idle = 1, throttled;
+ int throttled;
- raw_spin_lock(&cfs_b->lock);
/* no need to continue the timer with no bandwidth constraint */
if (cfs_b->quota == RUNTIME_INF)
- goto out_unlock;
+ goto out_deactivate;
throttled = !list_empty(&cfs_b->throttled_cfs_rq);
- /* idle depends on !throttled (for the case of a large deficit) */
- idle = cfs_b->idle && !throttled;
cfs_b->nr_periods += overrun;
- /* if we're going inactive then everything else can be deferred */
- if (idle)
- goto out_unlock;
+ /*
+ * idle depends on !throttled (for the case of a large deficit), and if
+ * we're going inactive then everything else can be deferred
+ */
+ if (cfs_b->idle && !throttled)
+ goto out_deactivate;
/*
* if we have relooped after returning idle once, we need to update our
@@ -3433,7 +3487,7 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
if (!throttled) {
/* mark as potentially idle for the upcoming period */
cfs_b->idle = 1;
- goto out_unlock;
+ return 0;
}
/* account preceding periods in which throttling occurred */
@@ -3473,12 +3527,12 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
* timer to remain active while there are any throttled entities.)
*/
cfs_b->idle = 0;
-out_unlock:
- if (idle)
- cfs_b->timer_active = 0;
- raw_spin_unlock(&cfs_b->lock);
- return idle;
+ return 0;
+
+out_deactivate:
+ cfs_b->timer_active = 0;
+ return 1;
}
/* a cfs_rq won't donate quota below this amount */
@@ -3655,6 +3709,7 @@ static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
int overrun;
int idle = 0;
+ raw_spin_lock(&cfs_b->lock);
for (;;) {
now = hrtimer_cb_get_time(timer);
overrun = hrtimer_forward(timer, now, cfs_b->period);
@@ -3664,6 +3719,7 @@ static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
idle = do_sched_cfs_period_timer(cfs_b, overrun);
}
+ raw_spin_unlock(&cfs_b->lock);
return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}
@@ -3723,8 +3779,6 @@ static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
struct cfs_rq *cfs_rq;
for_each_leaf_cfs_rq(rq, cfs_rq) {
- struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
-
if (!cfs_rq->runtime_enabled)
continue;
@@ -3732,7 +3786,7 @@ static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
* clock_task is not advancing so we just need to make sure
* there's some valid quota amount
*/
- cfs_rq->runtime_remaining = cfs_b->quota;
+ cfs_rq->runtime_remaining = 1;
if (cfs_rq_throttled(cfs_rq))
unthrottle_cfs_rq(cfs_rq);
}
@@ -3883,7 +3937,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (!se) {
update_rq_runnable_avg(rq, rq->nr_running);
- inc_nr_running(rq);
+ add_nr_running(rq, 1);
}
hrtick_update(rq);
}
@@ -3943,7 +3997,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
}
if (!se) {
- dec_nr_running(rq);
+ sub_nr_running(rq, 1);
update_rq_runnable_avg(rq, 1);
}
hrtick_update(rq);
@@ -3989,9 +4043,9 @@ static unsigned long target_load(int cpu, int type)
return max(rq->cpu_load[type-1], total);
}
-static unsigned long power_of(int cpu)
+static unsigned long capacity_of(int cpu)
{
- return cpu_rq(cpu)->cpu_power;
+ return cpu_rq(cpu)->cpu_capacity;
}
static unsigned long cpu_avg_load_per_task(int cpu)
@@ -4013,8 +4067,8 @@ static void record_wakee(struct task_struct *p)
* about the boundary, really active task won't care
* about the loss.
*/
- if (jiffies > current->wakee_flip_decay_ts + HZ) {
- current->wakee_flips = 0;
+ if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
+ current->wakee_flips >>= 1;
current->wakee_flip_decay_ts = jiffies;
}
@@ -4234,12 +4288,12 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
s64 this_eff_load, prev_eff_load;
this_eff_load = 100;
- this_eff_load *= power_of(prev_cpu);
+ this_eff_load *= capacity_of(prev_cpu);
this_eff_load *= this_load +
effective_load(tg, this_cpu, weight, weight);
prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
- prev_eff_load *= power_of(this_cpu);
+ prev_eff_load *= capacity_of(this_cpu);
prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
balanced = this_eff_load <= prev_eff_load;
@@ -4315,8 +4369,8 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
avg_load += load;
}
- /* Adjust by relative CPU power of the group */
- avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
+ /* Adjust by relative CPU capacity of the group */
+ avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
if (local_group) {
this_load = avg_load;
@@ -4448,10 +4502,10 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
sd = tmp;
}
- if (affine_sd) {
- if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
- prev_cpu = cpu;
+ if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
+ prev_cpu = cpu;
+ if (sd_flag & SD_BALANCE_WAKE) {
new_cpu = select_idle_sibling(p, prev_cpu);
goto unlock;
}
@@ -4519,6 +4573,9 @@ migrate_task_rq_fair(struct task_struct *p, int next_cpu)
atomic_long_add(se->avg.load_avg_contrib,
&cfs_rq->removed_load);
}
+
+ /* We have migrated, no longer consider this task hot */
+ se->exec_start = 0;
}
#endif /* CONFIG_SMP */
@@ -4893,14 +4950,14 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp
*
* W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
*
- * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
+ * C_i is the compute capacity of cpu i, typically it is the
* fraction of 'recent' time available for SCHED_OTHER task execution. But it
* can also include other factors [XXX].
*
* To achieve this balance we define a measure of imbalance which follows
* directly from (1):
*
- * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
+ * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
*
* We them move tasks around to minimize the imbalance. In the continuous
* function space it is obvious this converges, in the discrete case we get
@@ -5069,6 +5126,7 @@ task_hot(struct task_struct *p, u64 now)
/* Returns true if the destination node has incurred more faults */
static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
{
+ struct numa_group *numa_group = rcu_dereference(p->numa_group);
int src_nid, dst_nid;
if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
@@ -5082,21 +5140,29 @@ static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
if (src_nid == dst_nid)
return false;
- /* Always encourage migration to the preferred node. */
- if (dst_nid == p->numa_preferred_nid)
- return true;
+ if (numa_group) {
+ /* Task is already in the group's interleave set. */
+ if (node_isset(src_nid, numa_group->active_nodes))
+ return false;
+
+ /* Task is moving into the group's interleave set. */
+ if (node_isset(dst_nid, numa_group->active_nodes))
+ return true;
- /* If both task and group weight improve, this move is a winner. */
- if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
- group_weight(p, dst_nid) > group_weight(p, src_nid))
+ return group_faults(p, dst_nid) > group_faults(p, src_nid);
+ }
+
+ /* Encourage migration to the preferred node. */
+ if (dst_nid == p->numa_preferred_nid)
return true;
- return false;
+ return task_faults(p, dst_nid) > task_faults(p, src_nid);
}
static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
+ struct numa_group *numa_group = rcu_dereference(p->numa_group);
int src_nid, dst_nid;
if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
@@ -5111,16 +5177,23 @@ static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
if (src_nid == dst_nid)
return false;
+ if (numa_group) {
+ /* Task is moving within/into the group's interleave set. */
+ if (node_isset(dst_nid, numa_group->active_nodes))
+ return false;
+
+ /* Task is moving out of the group's interleave set. */
+ if (node_isset(src_nid, numa_group->active_nodes))
+ return true;
+
+ return group_faults(p, dst_nid) < group_faults(p, src_nid);
+ }
+
/* Migrating away from the preferred node is always bad. */
if (src_nid == p->numa_preferred_nid)
return true;
- /* If either task or group weight get worse, don't do it. */
- if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
- group_weight(p, dst_nid) < group_weight(p, src_nid))
- return true;
-
- return false;
+ return task_faults(p, dst_nid) < task_faults(p, src_nid);
}
#else
@@ -5459,13 +5532,13 @@ struct sg_lb_stats {
unsigned long group_load; /* Total load over the CPUs of the group */
unsigned long sum_weighted_load; /* Weighted load of group's tasks */
unsigned long load_per_task;
- unsigned long group_power;
+ unsigned long group_capacity;
unsigned int sum_nr_running; /* Nr tasks running in the group */
- unsigned int group_capacity;
+ unsigned int group_capacity_factor;
unsigned int idle_cpus;
unsigned int group_weight;
int group_imb; /* Is there an imbalance in the group ? */
- int group_has_capacity; /* Is there extra capacity in the group? */
+ int group_has_free_capacity;
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
unsigned int nr_preferred_running;
@@ -5480,7 +5553,7 @@ struct sd_lb_stats {
struct sched_group *busiest; /* Busiest group in this sd */
struct sched_group *local; /* Local group in this sd */
unsigned long total_load; /* Total load of all groups in sd */
- unsigned long total_pwr; /* Total power of all groups in sd */
+ unsigned long total_capacity; /* Total capacity of all groups in sd */
unsigned long avg_load; /* Average load across all groups in sd */
struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
@@ -5499,7 +5572,7 @@ static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
.busiest = NULL,
.local = NULL,
.total_load = 0UL,
- .total_pwr = 0UL,
+ .total_capacity = 0UL,
.busiest_stat = {
.avg_load = 0UL,
},
@@ -5534,17 +5607,17 @@ static inline int get_sd_load_idx(struct sched_domain *sd,
return load_idx;
}
-static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
+static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
{
- return SCHED_POWER_SCALE;
+ return SCHED_CAPACITY_SCALE;
}
-unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
+unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
{
- return default_scale_freq_power(sd, cpu);
+ return default_scale_capacity(sd, cpu);
}
-static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
+static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
{
unsigned long weight = sd->span_weight;
unsigned long smt_gain = sd->smt_gain;
@@ -5554,15 +5627,16 @@ static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
return smt_gain;
}
-unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
+unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
{
- return default_scale_smt_power(sd, cpu);
+ return default_scale_smt_capacity(sd, cpu);
}
-static unsigned long scale_rt_power(int cpu)
+static unsigned long scale_rt_capacity(int cpu)
{
struct rq *rq = cpu_rq(cpu);
u64 total, available, age_stamp, avg;
+ s64 delta;
/*
* Since we're reading these variables without serialization make sure
@@ -5571,74 +5645,78 @@ static unsigned long scale_rt_power(int cpu)
age_stamp = ACCESS_ONCE(rq->age_stamp);
avg = ACCESS_ONCE(rq->rt_avg);
- total = sched_avg_period() + (rq_clock(rq) - age_stamp);
+ delta = rq_clock(rq) - age_stamp;
+ if (unlikely(delta < 0))
+ delta = 0;
+
+ total = sched_avg_period() + delta;
if (unlikely(total < avg)) {
- /* Ensures that power won't end up being negative */
+ /* Ensures that capacity won't end up being negative */
available = 0;
} else {
available = total - avg;
}
- if (unlikely((s64)total < SCHED_POWER_SCALE))
- total = SCHED_POWER_SCALE;
+ if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
+ total = SCHED_CAPACITY_SCALE;
- total >>= SCHED_POWER_SHIFT;
+ total >>= SCHED_CAPACITY_SHIFT;
return div_u64(available, total);
}
-static void update_cpu_power(struct sched_domain *sd, int cpu)
+static void update_cpu_capacity(struct sched_domain *sd, int cpu)
{
unsigned long weight = sd->span_weight;
- unsigned long power = SCHED_POWER_SCALE;
+ unsigned long capacity = SCHED_CAPACITY_SCALE;
struct sched_group *sdg = sd->groups;
- if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
- if (sched_feat(ARCH_POWER))
- power *= arch_scale_smt_power(sd, cpu);
+ if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
+ if (sched_feat(ARCH_CAPACITY))
+ capacity *= arch_scale_smt_capacity(sd, cpu);
else
- power *= default_scale_smt_power(sd, cpu);
+ capacity *= default_scale_smt_capacity(sd, cpu);
- power >>= SCHED_POWER_SHIFT;
+ capacity >>= SCHED_CAPACITY_SHIFT;
}
- sdg->sgp->power_orig = power;
+ sdg->sgc->capacity_orig = capacity;
- if (sched_feat(ARCH_POWER))
- power *= arch_scale_freq_power(sd, cpu);
+ if (sched_feat(ARCH_CAPACITY))
+ capacity *= arch_scale_freq_capacity(sd, cpu);
else
- power *= default_scale_freq_power(sd, cpu);
+ capacity *= default_scale_capacity(sd, cpu);
- power >>= SCHED_POWER_SHIFT;
+ capacity >>= SCHED_CAPACITY_SHIFT;
- power *= scale_rt_power(cpu);
- power >>= SCHED_POWER_SHIFT;
+ capacity *= scale_rt_capacity(cpu);
+ capacity >>= SCHED_CAPACITY_SHIFT;
- if (!power)
- power = 1;
+ if (!capacity)
+ capacity = 1;
- cpu_rq(cpu)->cpu_power = power;
- sdg->sgp->power = power;
+ cpu_rq(cpu)->cpu_capacity = capacity;
+ sdg->sgc->capacity = capacity;
}
-void update_group_power(struct sched_domain *sd, int cpu)
+void update_group_capacity(struct sched_domain *sd, int cpu)
{
struct sched_domain *child = sd->child;
struct sched_group *group, *sdg = sd->groups;
- unsigned long power, power_orig;
+ unsigned long capacity, capacity_orig;
unsigned long interval;
interval = msecs_to_jiffies(sd->balance_interval);
interval = clamp(interval, 1UL, max_load_balance_interval);
- sdg->sgp->next_update = jiffies + interval;
+ sdg->sgc->next_update = jiffies + interval;
if (!child) {
- update_cpu_power(sd, cpu);
+ update_cpu_capacity(sd, cpu);
return;
}
- power_orig = power = 0;
+ capacity_orig = capacity = 0;
if (child->flags & SD_OVERLAP) {
/*
@@ -5647,31 +5725,31 @@ void update_group_power(struct sched_domain *sd, int cpu)
*/
for_each_cpu(cpu, sched_group_cpus(sdg)) {
- struct sched_group_power *sgp;
+ struct sched_group_capacity *sgc;
struct rq *rq = cpu_rq(cpu);
/*
- * build_sched_domains() -> init_sched_groups_power()
+ * build_sched_domains() -> init_sched_groups_capacity()
* gets here before we've attached the domains to the
* runqueues.
*
- * Use power_of(), which is set irrespective of domains
- * in update_cpu_power().
+ * Use capacity_of(), which is set irrespective of domains
+ * in update_cpu_capacity().
*
- * This avoids power/power_orig from being 0 and
+ * This avoids capacity/capacity_orig from being 0 and
* causing divide-by-zero issues on boot.
*
- * Runtime updates will correct power_orig.
+ * Runtime updates will correct capacity_orig.
*/
if (unlikely(!rq->sd)) {
- power_orig += power_of(cpu);
- power += power_of(cpu);
+ capacity_orig += capacity_of(cpu);
+ capacity += capacity_of(cpu);
continue;
}
- sgp = rq->sd->groups->sgp;
- power_orig += sgp->power_orig;
- power += sgp->power;
+ sgc = rq->sd->groups->sgc;
+ capacity_orig += sgc->capacity_orig;
+ capacity += sgc->capacity;
}
} else {
/*
@@ -5681,14 +5759,14 @@ void update_group_power(struct sched_domain *sd, int cpu)
group = child->groups;
do {
- power_orig += group->sgp->power_orig;
- power += group->sgp->power;
+ capacity_orig += group->sgc->capacity_orig;
+ capacity += group->sgc->capacity;
group = group->next;
} while (group != child->groups);
}
- sdg->sgp->power_orig = power_orig;
- sdg->sgp->power = power;
+ sdg->sgc->capacity_orig = capacity_orig;
+ sdg->sgc->capacity = capacity;
}
/*
@@ -5702,15 +5780,15 @@ static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
/*
- * Only siblings can have significantly less than SCHED_POWER_SCALE
+ * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
*/
- if (!(sd->flags & SD_SHARE_CPUPOWER))
+ if (!(sd->flags & SD_SHARE_CPUCAPACITY))
return 0;
/*
- * If ~90% of the cpu_power is still there, we're good.
+ * If ~90% of the cpu_capacity is still there, we're good.
*/
- if (group->sgp->power * 32 > group->sgp->power_orig * 29)
+ if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
return 1;
return 0;
@@ -5747,34 +5825,35 @@ fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
static inline int sg_imbalanced(struct sched_group *group)
{
- return group->sgp->imbalance;
+ return group->sgc->imbalance;
}
/*
- * Compute the group capacity.
+ * Compute the group capacity factor.
*
- * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
+ * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
* first dividing out the smt factor and computing the actual number of cores
- * and limit power unit capacity with that.
+ * and limit unit capacity with that.
*/
-static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
+static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
{
- unsigned int capacity, smt, cpus;
- unsigned int power, power_orig;
+ unsigned int capacity_factor, smt, cpus;
+ unsigned int capacity, capacity_orig;
- power = group->sgp->power;
- power_orig = group->sgp->power_orig;
+ capacity = group->sgc->capacity;
+ capacity_orig = group->sgc->capacity_orig;
cpus = group->group_weight;
- /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
- smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
- capacity = cpus / smt; /* cores */
+ /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
+ smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
+ capacity_factor = cpus / smt; /* cores */
- capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
- if (!capacity)
- capacity = fix_small_capacity(env->sd, group);
+ capacity_factor = min_t(unsigned,
+ capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
+ if (!capacity_factor)
+ capacity_factor = fix_small_capacity(env->sd, group);
- return capacity;
+ return capacity_factor;
}
/**
@@ -5814,9 +5893,9 @@ static inline void update_sg_lb_stats(struct lb_env *env,
sgs->idle_cpus++;
}
- /* Adjust by relative CPU power of the group */
- sgs->group_power = group->sgp->power;
- sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
+ /* Adjust by relative CPU capacity of the group */
+ sgs->group_capacity = group->sgc->capacity;
+ sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
if (sgs->sum_nr_running)
sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
@@ -5824,10 +5903,10 @@ static inline void update_sg_lb_stats(struct lb_env *env,
sgs->group_weight = group->group_weight;
sgs->group_imb = sg_imbalanced(group);
- sgs->group_capacity = sg_capacity(env, group);
+ sgs->group_capacity_factor = sg_capacity_factor(env, group);
- if (sgs->group_capacity > sgs->sum_nr_running)
- sgs->group_has_capacity = 1;
+ if (sgs->group_capacity_factor > sgs->sum_nr_running)
+ sgs->group_has_free_capacity = 1;
}
/**
@@ -5851,7 +5930,7 @@ static bool update_sd_pick_busiest(struct lb_env *env,
if (sgs->avg_load <= sds->busiest_stat.avg_load)
return false;
- if (sgs->sum_nr_running > sgs->group_capacity)
+ if (sgs->sum_nr_running > sgs->group_capacity_factor)
return true;
if (sgs->group_imb)
@@ -5931,8 +6010,8 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
sgs = &sds->local_stat;
if (env->idle != CPU_NEWLY_IDLE ||
- time_after_eq(jiffies, sg->sgp->next_update))
- update_group_power(env->sd, env->dst_cpu);
+ time_after_eq(jiffies, sg->sgc->next_update))
+ update_group_capacity(env->sd, env->dst_cpu);
}
update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
@@ -5942,17 +6021,17 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
/*
* In case the child domain prefers tasks go to siblings
- * first, lower the sg capacity to one so that we'll try
+ * first, lower the sg capacity factor to one so that we'll try
* and move all the excess tasks away. We lower the capacity
* of a group only if the local group has the capacity to fit
- * these excess tasks, i.e. nr_running < group_capacity. The
+ * these excess tasks, i.e. nr_running < group_capacity_factor. The
* extra check prevents the case where you always pull from the
* heaviest group when it is already under-utilized (possible
* with a large weight task outweighs the tasks on the system).
*/
if (prefer_sibling && sds->local &&
- sds->local_stat.group_has_capacity)
- sgs->group_capacity = min(sgs->group_capacity, 1U);
+ sds->local_stat.group_has_free_capacity)
+ sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
if (update_sd_pick_busiest(env, sds, sg, sgs)) {
sds->busiest = sg;
@@ -5962,7 +6041,7 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
next_group:
/* Now, start updating sd_lb_stats */
sds->total_load += sgs->group_load;
- sds->total_pwr += sgs->group_power;
+ sds->total_capacity += sgs->group_capacity;
sg = sg->next;
} while (sg != env->sd->groups);
@@ -6009,8 +6088,8 @@ static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
return 0;
env->imbalance = DIV_ROUND_CLOSEST(
- sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
- SCHED_POWER_SCALE);
+ sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
+ SCHED_CAPACITY_SCALE);
return 1;
}
@@ -6025,7 +6104,7 @@ static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
static inline
void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
{
- unsigned long tmp, pwr_now = 0, pwr_move = 0;
+ unsigned long tmp, capa_now = 0, capa_move = 0;
unsigned int imbn = 2;
unsigned long scaled_busy_load_per_task;
struct sg_lb_stats *local, *busiest;
@@ -6039,8 +6118,8 @@ void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
imbn = 1;
scaled_busy_load_per_task =
- (busiest->load_per_task * SCHED_POWER_SCALE) /
- busiest->group_power;
+ (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
+ busiest->group_capacity;
if (busiest->avg_load + scaled_busy_load_per_task >=
local->avg_load + (scaled_busy_load_per_task * imbn)) {
@@ -6050,38 +6129,38 @@ void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
/*
* OK, we don't have enough imbalance to justify moving tasks,
- * however we may be able to increase total CPU power used by
+ * however we may be able to increase total CPU capacity used by
* moving them.
*/
- pwr_now += busiest->group_power *
+ capa_now += busiest->group_capacity *
min(busiest->load_per_task, busiest->avg_load);
- pwr_now += local->group_power *
+ capa_now += local->group_capacity *
min(local->load_per_task, local->avg_load);
- pwr_now /= SCHED_POWER_SCALE;
+ capa_now /= SCHED_CAPACITY_SCALE;
/* Amount of load we'd subtract */
if (busiest->avg_load > scaled_busy_load_per_task) {
- pwr_move += busiest->group_power *
+ capa_move += busiest->group_capacity *
min(busiest->load_per_task,
busiest->avg_load - scaled_busy_load_per_task);
}
/* Amount of load we'd add */
- if (busiest->avg_load * busiest->group_power <
- busiest->load_per_task * SCHED_POWER_SCALE) {
- tmp = (busiest->avg_load * busiest->group_power) /
- local->group_power;
+ if (busiest->avg_load * busiest->group_capacity <
+ busiest->load_per_task * SCHED_CAPACITY_SCALE) {
+ tmp = (busiest->avg_load * busiest->group_capacity) /
+ local->group_capacity;
} else {
- tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
- local->group_power;
+ tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
+ local->group_capacity;
}
- pwr_move += local->group_power *
+ capa_move += local->group_capacity *
min(local->load_per_task, local->avg_load + tmp);
- pwr_move /= SCHED_POWER_SCALE;
+ capa_move /= SCHED_CAPACITY_SCALE;
/* Move if we gain throughput */
- if (pwr_move > pwr_now)
+ if (capa_move > capa_now)
env->imbalance = busiest->load_per_task;
}
@@ -6111,7 +6190,7 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
/*
* In the presence of smp nice balancing, certain scenarios can have
* max load less than avg load(as we skip the groups at or below
- * its cpu_power, while calculating max_load..)
+ * its cpu_capacity, while calculating max_load..)
*/
if (busiest->avg_load <= sds->avg_load ||
local->avg_load >= sds->avg_load) {
@@ -6126,10 +6205,10 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
* have to drop below capacity to reach cpu-load equilibrium.
*/
load_above_capacity =
- (busiest->sum_nr_running - busiest->group_capacity);
+ (busiest->sum_nr_running - busiest->group_capacity_factor);
- load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
- load_above_capacity /= busiest->group_power;
+ load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
+ load_above_capacity /= busiest->group_capacity;
}
/*
@@ -6144,9 +6223,9 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
/* How much load to actually move to equalise the imbalance */
env->imbalance = min(
- max_pull * busiest->group_power,
- (sds->avg_load - local->avg_load) * local->group_power
- ) / SCHED_POWER_SCALE;
+ max_pull * busiest->group_capacity,
+ (sds->avg_load - local->avg_load) * local->group_capacity
+ ) / SCHED_CAPACITY_SCALE;
/*
* if *imbalance is less than the average load per runnable task
@@ -6200,7 +6279,8 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
if (!sds.busiest || busiest->sum_nr_running == 0)
goto out_balanced;
- sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
+ sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
+ / sds.total_capacity;
/*
* If the busiest group is imbalanced the below checks don't
@@ -6211,8 +6291,8 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
goto force_balance;
/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
- if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
- !busiest->group_has_capacity)
+ if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
+ !busiest->group_has_free_capacity)
goto force_balance;
/*
@@ -6266,11 +6346,11 @@ static struct rq *find_busiest_queue(struct lb_env *env,
struct sched_group *group)
{
struct rq *busiest = NULL, *rq;
- unsigned long busiest_load = 0, busiest_power = 1;
+ unsigned long busiest_load = 0, busiest_capacity = 1;
int i;
for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
- unsigned long power, capacity, wl;
+ unsigned long capacity, capacity_factor, wl;
enum fbq_type rt;
rq = cpu_rq(i);
@@ -6298,34 +6378,34 @@ static struct rq *find_busiest_queue(struct lb_env *env,
if (rt > env->fbq_type)
continue;
- power = power_of(i);
- capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
- if (!capacity)
- capacity = fix_small_capacity(env->sd, group);
+ capacity = capacity_of(i);
+ capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
+ if (!capacity_factor)
+ capacity_factor = fix_small_capacity(env->sd, group);
wl = weighted_cpuload(i);
/*
* When comparing with imbalance, use weighted_cpuload()
- * which is not scaled with the cpu power.
+ * which is not scaled with the cpu capacity.
*/
- if (capacity && rq->nr_running == 1 && wl > env->imbalance)
+ if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
continue;
/*
* For the load comparisons with the other cpu's, consider
- * the weighted_cpuload() scaled with the cpu power, so that
- * the load can be moved away from the cpu that is potentially
- * running at a lower capacity.
+ * the weighted_cpuload() scaled with the cpu capacity, so
+ * that the load can be moved away from the cpu that is
+ * potentially running at a lower capacity.
*
- * Thus we're looking for max(wl_i / power_i), crosswise
+ * Thus we're looking for max(wl_i / capacity_i), crosswise
* multiplication to rid ourselves of the division works out
- * to: wl_i * power_j > wl_j * power_i; where j is our
- * previous maximum.
+ * to: wl_i * capacity_j > wl_j * capacity_i; where j is
+ * our previous maximum.
*/
- if (wl * busiest_power > busiest_load * power) {
+ if (wl * busiest_capacity > busiest_load * capacity) {
busiest_load = wl;
- busiest_power = power;
+ busiest_capacity = capacity;
busiest = rq;
}
}
@@ -6533,7 +6613,7 @@ more_balance:
* We failed to reach balance because of affinity.
*/
if (sd_parent) {
- int *group_imbalance = &sd_parent->groups->sgp->imbalance;
+ int *group_imbalance = &sd_parent->groups->sgc->imbalance;
if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
*group_imbalance = 1;
@@ -6639,27 +6719,62 @@ out:
return ld_moved;
}
+static inline unsigned long
+get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
+{
+ unsigned long interval = sd->balance_interval;
+
+ if (cpu_busy)
+ interval *= sd->busy_factor;
+
+ /* scale ms to jiffies */
+ interval = msecs_to_jiffies(interval);
+ interval = clamp(interval, 1UL, max_load_balance_interval);
+
+ return interval;
+}
+
+static inline void
+update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
+{
+ unsigned long interval, next;
+
+ interval = get_sd_balance_interval(sd, cpu_busy);
+ next = sd->last_balance + interval;
+
+ if (time_after(*next_balance, next))
+ *next_balance = next;
+}
+
/*
* idle_balance is called by schedule() if this_cpu is about to become
* idle. Attempts to pull tasks from other CPUs.
*/
static int idle_balance(struct rq *this_rq)
{
+ unsigned long next_balance = jiffies + HZ;
+ int this_cpu = this_rq->cpu;
struct sched_domain *sd;
int pulled_task = 0;
- unsigned long next_balance = jiffies + HZ;
u64 curr_cost = 0;
- int this_cpu = this_rq->cpu;
idle_enter_fair(this_rq);
+
/*
* We must set idle_stamp _before_ calling idle_balance(), such that we
* measure the duration of idle_balance() as idle time.
*/
this_rq->idle_stamp = rq_clock(this_rq);
- if (this_rq->avg_idle < sysctl_sched_migration_cost)
+ if (this_rq->avg_idle < sysctl_sched_migration_cost) {
+ rcu_read_lock();
+ sd = rcu_dereference_check_sched_domain(this_rq->sd);
+ if (sd)
+ update_next_balance(sd, 0, &next_balance);
+ rcu_read_unlock();
+
goto out;
+ }
/*
* Drop the rq->lock, but keep IRQ/preempt disabled.
@@ -6669,20 +6784,20 @@ static int idle_balance(struct rq *this_rq)
update_blocked_averages(this_cpu);
rcu_read_lock();
for_each_domain(this_cpu, sd) {
- unsigned long interval;
int continue_balancing = 1;
u64 t0, domain_cost;
if (!(sd->flags & SD_LOAD_BALANCE))
continue;
- if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
+ if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
+ update_next_balance(sd, 0, &next_balance);
break;
+ }
if (sd->flags & SD_BALANCE_NEWIDLE) {
t0 = sched_clock_cpu(this_cpu);
- /* If we've pulled tasks over stop searching: */
pulled_task = load_balance(this_cpu, this_rq,
sd, CPU_NEWLY_IDLE,
&continue_balancing);
@@ -6694,41 +6809,37 @@ static int idle_balance(struct rq *this_rq)
curr_cost += domain_cost;
}
- interval = msecs_to_jiffies(sd->balance_interval);
- if (time_after(next_balance, sd->last_balance + interval))
- next_balance = sd->last_balance + interval;
- if (pulled_task)
+ update_next_balance(sd, 0, &next_balance);
+
+ /*
+ * Stop searching for tasks to pull if there are
+ * now runnable tasks on this rq.
+ */
+ if (pulled_task || this_rq->nr_running > 0)
break;
}
rcu_read_unlock();
raw_spin_lock(&this_rq->lock);
+ if (curr_cost > this_rq->max_idle_balance_cost)
+ this_rq->max_idle_balance_cost = curr_cost;
+
/*
- * While browsing the domains, we released the rq lock.
- * A task could have be enqueued in the meantime
+ * While browsing the domains, we released the rq lock, a task could
+ * have been enqueued in the meantime. Since we're not going idle,
+ * pretend we pulled a task.
*/
- if (this_rq->cfs.h_nr_running && !pulled_task) {
+ if (this_rq->cfs.h_nr_running && !pulled_task)
pulled_task = 1;
- goto out;
- }
- if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
- /*
- * We are going idle. next_balance may be set based on
- * a busy processor. So reset next_balance.
- */
+out:
+ /* Move the next balance forward */
+ if (time_after(this_rq->next_balance, next_balance))
this_rq->next_balance = next_balance;
- }
- if (curr_cost > this_rq->max_idle_balance_cost)
- this_rq->max_idle_balance_cost = curr_cost;
-
-out:
/* Is there a task of a high priority class? */
- if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
- (this_rq->dl.dl_nr_running ||
- (this_rq->rt.rt_nr_running && !rt_rq_throttled(&this_rq->rt))))
+ if (this_rq->nr_running != this_rq->cfs.h_nr_running)
pulled_task = -1;
if (pulled_task) {
@@ -6889,7 +7000,7 @@ static inline void set_cpu_sd_state_busy(void)
goto unlock;
sd->nohz_idle = 0;
- atomic_inc(&sd->groups->sgp->nr_busy_cpus);
+ atomic_inc(&sd->groups->sgc->nr_busy_cpus);
unlock:
rcu_read_unlock();
}
@@ -6906,7 +7017,7 @@ void set_cpu_sd_state_idle(void)
goto unlock;
sd->nohz_idle = 1;
- atomic_dec(&sd->groups->sgp->nr_busy_cpus);
+ atomic_dec(&sd->groups->sgc->nr_busy_cpus);
unlock:
rcu_read_unlock();
}
@@ -7009,16 +7120,9 @@ static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
break;
}
- interval = sd->balance_interval;
- if (idle != CPU_IDLE)
- interval *= sd->busy_factor;
-
- /* scale ms to jiffies */
- interval = msecs_to_jiffies(interval);
- interval = clamp(interval, 1UL, max_load_balance_interval);
+ interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
need_serialize = sd->flags & SD_SERIALIZE;
-
if (need_serialize) {
if (!spin_trylock(&balancing))
goto out;
@@ -7034,6 +7138,7 @@ static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
}
sd->last_balance = jiffies;
+ interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
}
if (need_serialize)
spin_unlock(&balancing);
@@ -7091,12 +7196,17 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
rq = cpu_rq(balance_cpu);
- raw_spin_lock_irq(&rq->lock);
- update_rq_clock(rq);
- update_idle_cpu_load(rq);
- raw_spin_unlock_irq(&rq->lock);
-
- rebalance_domains(rq, CPU_IDLE);
+ /*
+ * If time for next balance is due,
+ * do the balance.
+ */
+ if (time_after_eq(jiffies, rq->next_balance)) {
+ raw_spin_lock_irq(&rq->lock);
+ update_rq_clock(rq);
+ update_idle_cpu_load(rq);
+ raw_spin_unlock_irq(&rq->lock);
+ rebalance_domains(rq, CPU_IDLE);
+ }
if (time_after(this_rq->next_balance, rq->next_balance))
this_rq->next_balance = rq->next_balance;
@@ -7111,7 +7221,7 @@ end:
* of an idle cpu is the system.
* - This rq has more than one task.
* - At any scheduler domain level, this cpu's scheduler group has multiple
- * busy cpu's exceeding the group's power.
+ * busy cpu's exceeding the group's capacity.
* - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
* domain span are idle.
*/
@@ -7119,7 +7229,7 @@ static inline int nohz_kick_needed(struct rq *rq)
{
unsigned long now = jiffies;
struct sched_domain *sd;
- struct sched_group_power *sgp;
+ struct sched_group_capacity *sgc;
int nr_busy, cpu = rq->cpu;
if (unlikely(rq->idle_balance))
@@ -7149,8 +7259,8 @@ static inline int nohz_kick_needed(struct rq *rq)
sd = rcu_dereference(per_cpu(sd_busy, cpu));
if (sd) {
- sgp = sd->groups->sgp;
- nr_busy = atomic_read(&sgp->nr_busy_cpus);
+ sgc = sd->groups->sgc;
+ nr_busy = atomic_read(&sgc->nr_busy_cpus);
if (nr_busy > 1)
goto need_kick_unlock;