diff options
Diffstat (limited to 'lib/prio_tree.c')
-rw-r--r-- | lib/prio_tree.c | 484 |
1 files changed, 484 insertions, 0 deletions
diff --git a/lib/prio_tree.c b/lib/prio_tree.c new file mode 100644 index 00000000000..ccfd850b0de --- /dev/null +++ b/lib/prio_tree.c @@ -0,0 +1,484 @@ +/* + * lib/prio_tree.c - priority search tree + * + * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> + * + * This file is released under the GPL v2. + * + * Based on the radix priority search tree proposed by Edward M. McCreight + * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 + * + * 02Feb2004 Initial version + */ + +#include <linux/init.h> +#include <linux/mm.h> +#include <linux/prio_tree.h> + +/* + * A clever mix of heap and radix trees forms a radix priority search tree (PST) + * which is useful for storing intervals, e.g, we can consider a vma as a closed + * interval of file pages [offset_begin, offset_end], and store all vmas that + * map a file in a PST. Then, using the PST, we can answer a stabbing query, + * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a + * given input interval X (a set of consecutive file pages), in "O(log n + m)" + * time where 'log n' is the height of the PST, and 'm' is the number of stored + * intervals (vmas) that overlap (map) with the input interval X (the set of + * consecutive file pages). + * + * In our implementation, we store closed intervals of the form [radix_index, + * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST + * is designed for storing intervals with unique radix indices, i.e., each + * interval have different radix_index. However, this limitation can be easily + * overcome by using the size, i.e., heap_index - radix_index, as part of the + * index, so we index the tree using [(radix_index,size), heap_index]. + * + * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit + * machine, the maximum height of a PST can be 64. We can use a balanced version + * of the priority search tree to optimize the tree height, but the balanced + * tree proposed by McCreight is too complex and memory-hungry for our purpose. + */ + +/* + * The following macros are used for implementing prio_tree for i_mmap + */ + +#define RADIX_INDEX(vma) ((vma)->vm_pgoff) +#define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) +/* avoid overflow */ +#define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) + + +static void get_index(const struct prio_tree_root *root, + const struct prio_tree_node *node, + unsigned long *radix, unsigned long *heap) +{ + if (root->raw) { + struct vm_area_struct *vma = prio_tree_entry( + node, struct vm_area_struct, shared.prio_tree_node); + + *radix = RADIX_INDEX(vma); + *heap = HEAP_INDEX(vma); + } + else { + *radix = node->start; + *heap = node->last; + } +} + +static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; + +void __init prio_tree_init(void) +{ + unsigned int i; + + for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) + index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; + index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; +} + +/* + * Maximum heap_index that can be stored in a PST with index_bits bits + */ +static inline unsigned long prio_tree_maxindex(unsigned int bits) +{ + return index_bits_to_maxindex[bits - 1]; +} + +/* + * Extend a priority search tree so that it can store a node with heap_index + * max_heap_index. In the worst case, this algorithm takes O((log n)^2). + * However, this function is used rarely and the common case performance is + * not bad. + */ +static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, + struct prio_tree_node *node, unsigned long max_heap_index) +{ + struct prio_tree_node *first = NULL, *prev, *last = NULL; + + if (max_heap_index > prio_tree_maxindex(root->index_bits)) + root->index_bits++; + + while (max_heap_index > prio_tree_maxindex(root->index_bits)) { + root->index_bits++; + + if (prio_tree_empty(root)) + continue; + + if (first == NULL) { + first = root->prio_tree_node; + prio_tree_remove(root, root->prio_tree_node); + INIT_PRIO_TREE_NODE(first); + last = first; + } else { + prev = last; + last = root->prio_tree_node; + prio_tree_remove(root, root->prio_tree_node); + INIT_PRIO_TREE_NODE(last); + prev->left = last; + last->parent = prev; + } + } + + INIT_PRIO_TREE_NODE(node); + + if (first) { + node->left = first; + first->parent = node; + } else + last = node; + + if (!prio_tree_empty(root)) { + last->left = root->prio_tree_node; + last->left->parent = last; + } + + root->prio_tree_node = node; + return node; +} + +/* + * Replace a prio_tree_node with a new node and return the old node + */ +struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, + struct prio_tree_node *old, struct prio_tree_node *node) +{ + INIT_PRIO_TREE_NODE(node); + + if (prio_tree_root(old)) { + BUG_ON(root->prio_tree_node != old); + /* + * We can reduce root->index_bits here. However, it is complex + * and does not help much to improve performance (IMO). + */ + node->parent = node; + root->prio_tree_node = node; + } else { + node->parent = old->parent; + if (old->parent->left == old) + old->parent->left = node; + else + old->parent->right = node; + } + + if (!prio_tree_left_empty(old)) { + node->left = old->left; + old->left->parent = node; + } + + if (!prio_tree_right_empty(old)) { + node->right = old->right; + old->right->parent = node; + } + + return old; +} + +/* + * Insert a prio_tree_node @node into a radix priority search tree @root. The + * algorithm typically takes O(log n) time where 'log n' is the number of bits + * required to represent the maximum heap_index. In the worst case, the algo + * can take O((log n)^2) - check prio_tree_expand. + * + * If a prior node with same radix_index and heap_index is already found in + * the tree, then returns the address of the prior node. Otherwise, inserts + * @node into the tree and returns @node. + */ +struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, + struct prio_tree_node *node) +{ + struct prio_tree_node *cur, *res = node; + unsigned long radix_index, heap_index; + unsigned long r_index, h_index, index, mask; + int size_flag = 0; + + get_index(root, node, &radix_index, &heap_index); + + if (prio_tree_empty(root) || + heap_index > prio_tree_maxindex(root->index_bits)) + return prio_tree_expand(root, node, heap_index); + + cur = root->prio_tree_node; + mask = 1UL << (root->index_bits - 1); + + while (mask) { + get_index(root, cur, &r_index, &h_index); + + if (r_index == radix_index && h_index == heap_index) + return cur; + + if (h_index < heap_index || + (h_index == heap_index && r_index > radix_index)) { + struct prio_tree_node *tmp = node; + node = prio_tree_replace(root, cur, node); + cur = tmp; + /* swap indices */ + index = r_index; + r_index = radix_index; + radix_index = index; + index = h_index; + h_index = heap_index; + heap_index = index; + } + + if (size_flag) + index = heap_index - radix_index; + else + index = radix_index; + + if (index & mask) { + if (prio_tree_right_empty(cur)) { + INIT_PRIO_TREE_NODE(node); + cur->right = node; + node->parent = cur; + return res; + } else + cur = cur->right; + } else { + if (prio_tree_left_empty(cur)) { + INIT_PRIO_TREE_NODE(node); + cur->left = node; + node->parent = cur; + return res; + } else + cur = cur->left; + } + + mask >>= 1; + + if (!mask) { + mask = 1UL << (BITS_PER_LONG - 1); + size_flag = 1; + } + } + /* Should not reach here */ + BUG(); + return NULL; +} + +/* + * Remove a prio_tree_node @node from a radix priority search tree @root. The + * algorithm takes O(log n) time where 'log n' is the number of bits required + * to represent the maximum heap_index. + */ +void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) +{ + struct prio_tree_node *cur; + unsigned long r_index, h_index_right, h_index_left; + + cur = node; + + while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { + if (!prio_tree_left_empty(cur)) + get_index(root, cur->left, &r_index, &h_index_left); + else { + cur = cur->right; + continue; + } + + if (!prio_tree_right_empty(cur)) + get_index(root, cur->right, &r_index, &h_index_right); + else { + cur = cur->left; + continue; + } + + /* both h_index_left and h_index_right cannot be 0 */ + if (h_index_left >= h_index_right) + cur = cur->left; + else + cur = cur->right; + } + + if (prio_tree_root(cur)) { + BUG_ON(root->prio_tree_node != cur); + __INIT_PRIO_TREE_ROOT(root, root->raw); + return; + } + + if (cur->parent->right == cur) + cur->parent->right = cur->parent; + else + cur->parent->left = cur->parent; + + while (cur != node) + cur = prio_tree_replace(root, cur->parent, cur); +} + +/* + * Following functions help to enumerate all prio_tree_nodes in the tree that + * overlap with the input interval X [radix_index, heap_index]. The enumeration + * takes O(log n + m) time where 'log n' is the height of the tree (which is + * proportional to # of bits required to represent the maximum heap_index) and + * 'm' is the number of prio_tree_nodes that overlap the interval X. + */ + +static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, + unsigned long *r_index, unsigned long *h_index) +{ + if (prio_tree_left_empty(iter->cur)) + return NULL; + + get_index(iter->root, iter->cur->left, r_index, h_index); + + if (iter->r_index <= *h_index) { + iter->cur = iter->cur->left; + iter->mask >>= 1; + if (iter->mask) { + if (iter->size_level) + iter->size_level++; + } else { + if (iter->size_level) { + BUG_ON(!prio_tree_left_empty(iter->cur)); + BUG_ON(!prio_tree_right_empty(iter->cur)); + iter->size_level++; + iter->mask = ULONG_MAX; + } else { + iter->size_level = 1; + iter->mask = 1UL << (BITS_PER_LONG - 1); + } + } + return iter->cur; + } + + return NULL; +} + +static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, + unsigned long *r_index, unsigned long *h_index) +{ + unsigned long value; + + if (prio_tree_right_empty(iter->cur)) + return NULL; + + if (iter->size_level) + value = iter->value; + else + value = iter->value | iter->mask; + + if (iter->h_index < value) + return NULL; + + get_index(iter->root, iter->cur->right, r_index, h_index); + + if (iter->r_index <= *h_index) { + iter->cur = iter->cur->right; + iter->mask >>= 1; + iter->value = value; + if (iter->mask) { + if (iter->size_level) + iter->size_level++; + } else { + if (iter->size_level) { + BUG_ON(!prio_tree_left_empty(iter->cur)); + BUG_ON(!prio_tree_right_empty(iter->cur)); + iter->size_level++; + iter->mask = ULONG_MAX; + } else { + iter->size_level = 1; + iter->mask = 1UL << (BITS_PER_LONG - 1); + } + } + return iter->cur; + } + + return NULL; +} + +static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) +{ + iter->cur = iter->cur->parent; + if (iter->mask == ULONG_MAX) + iter->mask = 1UL; + else if (iter->size_level == 1) + iter->mask = 1UL; + else + iter->mask <<= 1; + if (iter->size_level) + iter->size_level--; + if (!iter->size_level && (iter->value & iter->mask)) + iter->value ^= iter->mask; + return iter->cur; +} + +static inline int overlap(struct prio_tree_iter *iter, + unsigned long r_index, unsigned long h_index) +{ + return iter->h_index >= r_index && iter->r_index <= h_index; +} + +/* + * prio_tree_first: + * + * Get the first prio_tree_node that overlaps with the interval [radix_index, + * heap_index]. Note that always radix_index <= heap_index. We do a pre-order + * traversal of the tree. + */ +static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) +{ + struct prio_tree_root *root; + unsigned long r_index, h_index; + + INIT_PRIO_TREE_ITER(iter); + + root = iter->root; + if (prio_tree_empty(root)) + return NULL; + + get_index(root, root->prio_tree_node, &r_index, &h_index); + + if (iter->r_index > h_index) + return NULL; + + iter->mask = 1UL << (root->index_bits - 1); + iter->cur = root->prio_tree_node; + + while (1) { + if (overlap(iter, r_index, h_index)) + return iter->cur; + + if (prio_tree_left(iter, &r_index, &h_index)) + continue; + + if (prio_tree_right(iter, &r_index, &h_index)) + continue; + + break; + } + return NULL; +} + +/* + * prio_tree_next: + * + * Get the next prio_tree_node that overlaps with the input interval in iter + */ +struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) +{ + unsigned long r_index, h_index; + + if (iter->cur == NULL) + return prio_tree_first(iter); + +repeat: + while (prio_tree_left(iter, &r_index, &h_index)) + if (overlap(iter, r_index, h_index)) + return iter->cur; + + while (!prio_tree_right(iter, &r_index, &h_index)) { + while (!prio_tree_root(iter->cur) && + iter->cur->parent->right == iter->cur) + prio_tree_parent(iter); + + if (prio_tree_root(iter->cur)) + return NULL; + + prio_tree_parent(iter); + } + + if (overlap(iter, r_index, h_index)) + return iter->cur; + + goto repeat; +} |