summaryrefslogtreecommitdiffstats
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c166
1 files changed, 163 insertions, 3 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 4d4805eb37c..ebca767292d 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -21,6 +21,9 @@
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
#include <linux/mm.h>
+#include <linux/page-flags.h>
+#include <linux/bit_spinlock.h>
+#include <linux/rcupdate.h>
struct cgroup_subsys mem_cgroup_subsys;
@@ -31,7 +34,9 @@ struct cgroup_subsys mem_cgroup_subsys;
* to help the administrator determine what knobs to tune.
*
* TODO: Add a water mark for the memory controller. Reclaim will begin when
- * we hit the water mark.
+ * we hit the water mark. May be even add a low water mark, such that
+ * no reclaim occurs from a cgroup at it's low water mark, this is
+ * a feature that will be implemented much later in the future.
*/
struct mem_cgroup {
struct cgroup_subsys_state css;
@@ -49,6 +54,14 @@ struct mem_cgroup {
};
/*
+ * We use the lower bit of the page->page_cgroup pointer as a bit spin
+ * lock. We need to ensure that page->page_cgroup is atleast two
+ * byte aligned (based on comments from Nick Piggin)
+ */
+#define PAGE_CGROUP_LOCK_BIT 0x0
+#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
+
+/*
* A page_cgroup page is associated with every page descriptor. The
* page_cgroup helps us identify information about the cgroup
*/
@@ -56,6 +69,8 @@ struct page_cgroup {
struct list_head lru; /* per cgroup LRU list */
struct page *page;
struct mem_cgroup *mem_cgroup;
+ atomic_t ref_cnt; /* Helpful when pages move b/w */
+ /* mapped and cached states */
};
@@ -88,14 +103,157 @@ void mm_free_cgroup(struct mm_struct *mm)
css_put(&mm->mem_cgroup->css);
}
+static inline int page_cgroup_locked(struct page *page)
+{
+ return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
+ &page->page_cgroup);
+}
+
void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
{
- page->page_cgroup = (unsigned long)pc;
+ int locked;
+
+ /*
+ * While resetting the page_cgroup we might not hold the
+ * page_cgroup lock. free_hot_cold_page() is an example
+ * of such a scenario
+ */
+ if (pc)
+ VM_BUG_ON(!page_cgroup_locked(page));
+ locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
+ page->page_cgroup = ((unsigned long)pc | locked);
}
struct page_cgroup *page_get_page_cgroup(struct page *page)
{
- return page->page_cgroup;
+ return (struct page_cgroup *)
+ (page->page_cgroup & ~PAGE_CGROUP_LOCK);
+}
+
+void __always_inline lock_page_cgroup(struct page *page)
+{
+ bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
+ VM_BUG_ON(!page_cgroup_locked(page));
+}
+
+void __always_inline unlock_page_cgroup(struct page *page)
+{
+ bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
+}
+
+/*
+ * Charge the memory controller for page usage.
+ * Return
+ * 0 if the charge was successful
+ * < 0 if the cgroup is over its limit
+ */
+int mem_cgroup_charge(struct page *page, struct mm_struct *mm)
+{
+ struct mem_cgroup *mem;
+ struct page_cgroup *pc, *race_pc;
+
+ /*
+ * Should page_cgroup's go to their own slab?
+ * One could optimize the performance of the charging routine
+ * by saving a bit in the page_flags and using it as a lock
+ * to see if the cgroup page already has a page_cgroup associated
+ * with it
+ */
+ lock_page_cgroup(page);
+ pc = page_get_page_cgroup(page);
+ /*
+ * The page_cgroup exists and the page has already been accounted
+ */
+ if (pc) {
+ atomic_inc(&pc->ref_cnt);
+ goto done;
+ }
+
+ unlock_page_cgroup(page);
+
+ pc = kzalloc(sizeof(struct page_cgroup), GFP_KERNEL);
+ if (pc == NULL)
+ goto err;
+
+ rcu_read_lock();
+ /*
+ * We always charge the cgroup the mm_struct belongs to
+ * the mm_struct's mem_cgroup changes on task migration if the
+ * thread group leader migrates. It's possible that mm is not
+ * set, if so charge the init_mm (happens for pagecache usage).
+ */
+ if (!mm)
+ mm = &init_mm;
+
+ mem = rcu_dereference(mm->mem_cgroup);
+ /*
+ * For every charge from the cgroup, increment reference
+ * count
+ */
+ css_get(&mem->css);
+ rcu_read_unlock();
+
+ /*
+ * If we created the page_cgroup, we should free it on exceeding
+ * the cgroup limit.
+ */
+ if (res_counter_charge(&mem->res, 1)) {
+ css_put(&mem->css);
+ goto free_pc;
+ }
+
+ lock_page_cgroup(page);
+ /*
+ * Check if somebody else beat us to allocating the page_cgroup
+ */
+ race_pc = page_get_page_cgroup(page);
+ if (race_pc) {
+ kfree(pc);
+ pc = race_pc;
+ atomic_inc(&pc->ref_cnt);
+ res_counter_uncharge(&mem->res, 1);
+ css_put(&mem->css);
+ goto done;
+ }
+
+ atomic_set(&pc->ref_cnt, 1);
+ pc->mem_cgroup = mem;
+ pc->page = page;
+ page_assign_page_cgroup(page, pc);
+
+done:
+ unlock_page_cgroup(page);
+ return 0;
+free_pc:
+ kfree(pc);
+ return -ENOMEM;
+err:
+ unlock_page_cgroup(page);
+ return -ENOMEM;
+}
+
+/*
+ * Uncharging is always a welcome operation, we never complain, simply
+ * uncharge.
+ */
+void mem_cgroup_uncharge(struct page_cgroup *pc)
+{
+ struct mem_cgroup *mem;
+ struct page *page;
+
+ if (!pc)
+ return;
+
+ if (atomic_dec_and_test(&pc->ref_cnt)) {
+ page = pc->page;
+ lock_page_cgroup(page);
+ mem = pc->mem_cgroup;
+ css_put(&mem->css);
+ page_assign_page_cgroup(page, NULL);
+ unlock_page_cgroup(page);
+ res_counter_uncharge(&mem->res, 1);
+ kfree(pc);
+ }
}
static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
@@ -150,6 +308,8 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
return NULL;
res_counter_init(&mem->res);
+ INIT_LIST_HEAD(&mem->active_list);
+ INIT_LIST_HEAD(&mem->inactive_list);
return &mem->css;
}