summaryrefslogtreecommitdiffstats
path: root/mm/memory.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memory.c')
-rw-r--r--mm/memory.c1223
1 files changed, 378 insertions, 845 deletions
diff --git a/mm/memory.c b/mm/memory.c
index 22dfa617bdd..d67fd9fcf1f 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -60,6 +60,7 @@
#include <linux/migrate.h>
#include <linux/string.h>
#include <linux/dma-debug.h>
+#include <linux/debugfs.h>
#include <asm/io.h>
#include <asm/pgalloc.h>
@@ -231,17 +232,18 @@ void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long
#endif
}
-void tlb_flush_mmu(struct mmu_gather *tlb)
+static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
{
- struct mmu_gather_batch *batch;
-
- if (!tlb->need_flush)
- return;
tlb->need_flush = 0;
tlb_flush(tlb);
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
tlb_table_flush(tlb);
#endif
+}
+
+static void tlb_flush_mmu_free(struct mmu_gather *tlb)
+{
+ struct mmu_gather_batch *batch;
for (batch = &tlb->local; batch; batch = batch->next) {
free_pages_and_swap_cache(batch->pages, batch->nr);
@@ -250,6 +252,14 @@ void tlb_flush_mmu(struct mmu_gather *tlb)
tlb->active = &tlb->local;
}
+void tlb_flush_mmu(struct mmu_gather *tlb)
+{
+ if (!tlb->need_flush)
+ return;
+ tlb_flush_mmu_tlbonly(tlb);
+ tlb_flush_mmu_free(tlb);
+}
+
/* tlb_finish_mmu
* Called at the end of the shootdown operation to free up any resources
* that were required.
@@ -688,11 +698,6 @@ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
-static inline bool is_cow_mapping(vm_flags_t flags)
-{
- return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
-}
-
/*
* vm_normal_page -- This function gets the "struct page" associated with a pte.
*
@@ -746,7 +751,7 @@ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn = pte_pfn(pte);
if (HAVE_PTE_SPECIAL) {
- if (likely(!pte_special(pte)))
+ if (likely(!pte_special(pte) || pte_numa(pte)))
goto check_pfn;
if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
return NULL;
@@ -772,14 +777,15 @@ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
}
}
- if (is_zero_pfn(pfn))
- return NULL;
check_pfn:
if (unlikely(pfn > highest_memmap_pfn)) {
print_bad_pte(vma, addr, pte, NULL);
return NULL;
}
+ if (is_zero_pfn(pfn))
+ return NULL;
+
/*
* NOTE! We still have PageReserved() pages in the page tables.
* eg. VDSO mappings can cause them to exist.
@@ -1126,8 +1132,10 @@ again:
if (PageAnon(page))
rss[MM_ANONPAGES]--;
else {
- if (pte_dirty(ptent))
+ if (pte_dirty(ptent)) {
+ force_flush = 1;
set_page_dirty(page);
+ }
if (pte_young(ptent) &&
likely(!(vma->vm_flags & VM_SEQ_READ)))
mark_page_accessed(page);
@@ -1136,9 +1144,10 @@ again:
page_remove_rmap(page);
if (unlikely(page_mapcount(page) < 0))
print_bad_pte(vma, addr, ptent, page);
- force_flush = !__tlb_remove_page(tlb, page);
- if (force_flush)
+ if (unlikely(!__tlb_remove_page(tlb, page))) {
+ force_flush = 1;
break;
+ }
continue;
}
/*
@@ -1173,18 +1182,11 @@ again:
add_mm_rss_vec(mm, rss);
arch_leave_lazy_mmu_mode();
- pte_unmap_unlock(start_pte, ptl);
- /*
- * mmu_gather ran out of room to batch pages, we break out of
- * the PTE lock to avoid doing the potential expensive TLB invalidate
- * and page-free while holding it.
- */
+ /* Do the actual TLB flush before dropping ptl */
if (force_flush) {
unsigned long old_end;
- force_flush = 0;
-
/*
* Flush the TLB just for the previous segment,
* then update the range to be the remaining
@@ -1192,11 +1194,21 @@ again:
*/
old_end = tlb->end;
tlb->end = addr;
-
- tlb_flush_mmu(tlb);
-
+ tlb_flush_mmu_tlbonly(tlb);
tlb->start = addr;
tlb->end = old_end;
+ }
+ pte_unmap_unlock(start_pte, ptl);
+
+ /*
+ * If we forced a TLB flush (either due to running out of
+ * batch buffers or because we needed to flush dirty TLB
+ * entries before releasing the ptl), free the batched
+ * memory too. Restart if we didn't do everything.
+ */
+ if (force_flush) {
+ force_flush = 0;
+ tlb_flush_mmu_free(tlb);
if (addr != end)
goto again;
@@ -1320,9 +1332,9 @@ static void unmap_single_vma(struct mmu_gather *tlb,
* It is undesirable to test vma->vm_file as it
* should be non-null for valid hugetlb area.
* However, vm_file will be NULL in the error
- * cleanup path of do_mmap_pgoff. When
+ * cleanup path of mmap_region. When
* hugetlbfs ->mmap method fails,
- * do_mmap_pgoff() nullifies vma->vm_file
+ * mmap_region() nullifies vma->vm_file
* before calling this function to clean up.
* Since no pte has actually been setup, it is
* safe to do nothing in this case.
@@ -1441,617 +1453,6 @@ int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);
-/**
- * follow_page_mask - look up a page descriptor from a user-virtual address
- * @vma: vm_area_struct mapping @address
- * @address: virtual address to look up
- * @flags: flags modifying lookup behaviour
- * @page_mask: on output, *page_mask is set according to the size of the page
- *
- * @flags can have FOLL_ flags set, defined in <linux/mm.h>
- *
- * Returns the mapped (struct page *), %NULL if no mapping exists, or
- * an error pointer if there is a mapping to something not represented
- * by a page descriptor (see also vm_normal_page()).
- */
-struct page *follow_page_mask(struct vm_area_struct *vma,
- unsigned long address, unsigned int flags,
- unsigned int *page_mask)
-{
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *ptep, pte;
- spinlock_t *ptl;
- struct page *page;
- struct mm_struct *mm = vma->vm_mm;
-
- *page_mask = 0;
-
- page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
- if (!IS_ERR(page)) {
- BUG_ON(flags & FOLL_GET);
- goto out;
- }
-
- page = NULL;
- pgd = pgd_offset(mm, address);
- if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
- goto no_page_table;
-
- pud = pud_offset(pgd, address);
- if (pud_none(*pud))
- goto no_page_table;
- if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
- if (flags & FOLL_GET)
- goto out;
- page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
- goto out;
- }
- if (unlikely(pud_bad(*pud)))
- goto no_page_table;
-
- pmd = pmd_offset(pud, address);
- if (pmd_none(*pmd))
- goto no_page_table;
- if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
- page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
- if (flags & FOLL_GET) {
- /*
- * Refcount on tail pages are not well-defined and
- * shouldn't be taken. The caller should handle a NULL
- * return when trying to follow tail pages.
- */
- if (PageHead(page))
- get_page(page);
- else {
- page = NULL;
- goto out;
- }
- }
- goto out;
- }
- if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
- goto no_page_table;
- if (pmd_trans_huge(*pmd)) {
- if (flags & FOLL_SPLIT) {
- split_huge_page_pmd(vma, address, pmd);
- goto split_fallthrough;
- }
- ptl = pmd_lock(mm, pmd);
- if (likely(pmd_trans_huge(*pmd))) {
- if (unlikely(pmd_trans_splitting(*pmd))) {
- spin_unlock(ptl);
- wait_split_huge_page(vma->anon_vma, pmd);
- } else {
- page = follow_trans_huge_pmd(vma, address,
- pmd, flags);
- spin_unlock(ptl);
- *page_mask = HPAGE_PMD_NR - 1;
- goto out;
- }
- } else
- spin_unlock(ptl);
- /* fall through */
- }
-split_fallthrough:
- if (unlikely(pmd_bad(*pmd)))
- goto no_page_table;
-
- ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
-
- pte = *ptep;
- if (!pte_present(pte)) {
- swp_entry_t entry;
- /*
- * KSM's break_ksm() relies upon recognizing a ksm page
- * even while it is being migrated, so for that case we
- * need migration_entry_wait().
- */
- if (likely(!(flags & FOLL_MIGRATION)))
- goto no_page;
- if (pte_none(pte) || pte_file(pte))
- goto no_page;
- entry = pte_to_swp_entry(pte);
- if (!is_migration_entry(entry))
- goto no_page;
- pte_unmap_unlock(ptep, ptl);
- migration_entry_wait(mm, pmd, address);
- goto split_fallthrough;
- }
- if ((flags & FOLL_NUMA) && pte_numa(pte))
- goto no_page;
- if ((flags & FOLL_WRITE) && !pte_write(pte))
- goto unlock;
-
- page = vm_normal_page(vma, address, pte);
- if (unlikely(!page)) {
- if ((flags & FOLL_DUMP) ||
- !is_zero_pfn(pte_pfn(pte)))
- goto bad_page;
- page = pte_page(pte);
- }
-
- if (flags & FOLL_GET)
- get_page_foll(page);
- if (flags & FOLL_TOUCH) {
- if ((flags & FOLL_WRITE) &&
- !pte_dirty(pte) && !PageDirty(page))
- set_page_dirty(page);
- /*
- * pte_mkyoung() would be more correct here, but atomic care
- * is needed to avoid losing the dirty bit: it is easier to use
- * mark_page_accessed().
- */
- mark_page_accessed(page);
- }
- if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
- /*
- * The preliminary mapping check is mainly to avoid the
- * pointless overhead of lock_page on the ZERO_PAGE
- * which might bounce very badly if there is contention.
- *
- * If the page is already locked, we don't need to
- * handle it now - vmscan will handle it later if and
- * when it attempts to reclaim the page.
- */
- if (page->mapping && trylock_page(page)) {
- lru_add_drain(); /* push cached pages to LRU */
- /*
- * Because we lock page here, and migration is
- * blocked by the pte's page reference, and we
- * know the page is still mapped, we don't even
- * need to check for file-cache page truncation.
- */
- mlock_vma_page(page);
- unlock_page(page);
- }
- }
-unlock:
- pte_unmap_unlock(ptep, ptl);
-out:
- return page;
-
-bad_page:
- pte_unmap_unlock(ptep, ptl);
- return ERR_PTR(-EFAULT);
-
-no_page:
- pte_unmap_unlock(ptep, ptl);
- if (!pte_none(pte))
- return page;
-
-no_page_table:
- /*
- * When core dumping an enormous anonymous area that nobody
- * has touched so far, we don't want to allocate unnecessary pages or
- * page tables. Return error instead of NULL to skip handle_mm_fault,
- * then get_dump_page() will return NULL to leave a hole in the dump.
- * But we can only make this optimization where a hole would surely
- * be zero-filled if handle_mm_fault() actually did handle it.
- */
- if ((flags & FOLL_DUMP) &&
- (!vma->vm_ops || !vma->vm_ops->fault))
- return ERR_PTR(-EFAULT);
- return page;
-}
-
-static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
-{
- return stack_guard_page_start(vma, addr) ||
- stack_guard_page_end(vma, addr+PAGE_SIZE);
-}
-
-/**
- * __get_user_pages() - pin user pages in memory
- * @tsk: task_struct of target task
- * @mm: mm_struct of target mm
- * @start: starting user address
- * @nr_pages: number of pages from start to pin
- * @gup_flags: flags modifying pin behaviour
- * @pages: array that receives pointers to the pages pinned.
- * Should be at least nr_pages long. Or NULL, if caller
- * only intends to ensure the pages are faulted in.
- * @vmas: array of pointers to vmas corresponding to each page.
- * Or NULL if the caller does not require them.
- * @nonblocking: whether waiting for disk IO or mmap_sem contention
- *
- * Returns number of pages pinned. This may be fewer than the number
- * requested. If nr_pages is 0 or negative, returns 0. If no pages
- * were pinned, returns -errno. Each page returned must be released
- * with a put_page() call when it is finished with. vmas will only
- * remain valid while mmap_sem is held.
- *
- * Must be called with mmap_sem held for read or write.
- *
- * __get_user_pages walks a process's page tables and takes a reference to
- * each struct page that each user address corresponds to at a given
- * instant. That is, it takes the page that would be accessed if a user
- * thread accesses the given user virtual address at that instant.
- *
- * This does not guarantee that the page exists in the user mappings when
- * __get_user_pages returns, and there may even be a completely different
- * page there in some cases (eg. if mmapped pagecache has been invalidated
- * and subsequently re faulted). However it does guarantee that the page
- * won't be freed completely. And mostly callers simply care that the page
- * contains data that was valid *at some point in time*. Typically, an IO
- * or similar operation cannot guarantee anything stronger anyway because
- * locks can't be held over the syscall boundary.
- *
- * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
- * the page is written to, set_page_dirty (or set_page_dirty_lock, as
- * appropriate) must be called after the page is finished with, and
- * before put_page is called.
- *
- * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
- * or mmap_sem contention, and if waiting is needed to pin all pages,
- * *@nonblocking will be set to 0.
- *
- * In most cases, get_user_pages or get_user_pages_fast should be used
- * instead of __get_user_pages. __get_user_pages should be used only if
- * you need some special @gup_flags.
- */
-long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long start, unsigned long nr_pages,
- unsigned int gup_flags, struct page **pages,
- struct vm_area_struct **vmas, int *nonblocking)
-{
- long i;
- unsigned long vm_flags;
- unsigned int page_mask;
-
- if (!nr_pages)
- return 0;
-
- VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
-
- /*
- * Require read or write permissions.
- * If FOLL_FORCE is set, we only require the "MAY" flags.
- */
- vm_flags = (gup_flags & FOLL_WRITE) ?
- (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
- vm_flags &= (gup_flags & FOLL_FORCE) ?
- (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
-
- /*
- * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
- * would be called on PROT_NONE ranges. We must never invoke
- * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
- * page faults would unprotect the PROT_NONE ranges if
- * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
- * bitflag. So to avoid that, don't set FOLL_NUMA if
- * FOLL_FORCE is set.
- */
- if (!(gup_flags & FOLL_FORCE))
- gup_flags |= FOLL_NUMA;
-
- i = 0;
-
- do {
- struct vm_area_struct *vma;
-
- vma = find_extend_vma(mm, start);
- if (!vma && in_gate_area(mm, start)) {
- unsigned long pg = start & PAGE_MASK;
- pgd_t *pgd;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
-
- /* user gate pages are read-only */
- if (gup_flags & FOLL_WRITE)
- return i ? : -EFAULT;
- if (pg > TASK_SIZE)
- pgd = pgd_offset_k(pg);
- else
- pgd = pgd_offset_gate(mm, pg);
- BUG_ON(pgd_none(*pgd));
- pud = pud_offset(pgd, pg);
- BUG_ON(pud_none(*pud));
- pmd = pmd_offset(pud, pg);
- if (pmd_none(*pmd))
- return i ? : -EFAULT;
- VM_BUG_ON(pmd_trans_huge(*pmd));
- pte = pte_offset_map(pmd, pg);
- if (pte_none(*pte)) {
- pte_unmap(pte);
- return i ? : -EFAULT;
- }
- vma = get_gate_vma(mm);
- if (pages) {
- struct page *page;
-
- page = vm_normal_page(vma, start, *pte);
- if (!page) {
- if (!(gup_flags & FOLL_DUMP) &&
- is_zero_pfn(pte_pfn(*pte)))
- page = pte_page(*pte);
- else {
- pte_unmap(pte);
- return i ? : -EFAULT;
- }
- }
- pages[i] = page;
- get_page(page);
- }
- pte_unmap(pte);
- page_mask = 0;
- goto next_page;
- }
-
- if (!vma ||
- (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
- !(vm_flags & vma->vm_flags))
- return i ? : -EFAULT;
-
- if (is_vm_hugetlb_page(vma)) {
- i = follow_hugetlb_page(mm, vma, pages, vmas,
- &start, &nr_pages, i, gup_flags);
- continue;
- }
-
- do {
- struct page *page;
- unsigned int foll_flags = gup_flags;
- unsigned int page_increm;
-
- /*
- * If we have a pending SIGKILL, don't keep faulting
- * pages and potentially allocating memory.
- */
- if (unlikely(fatal_signal_pending(current)))
- return i ? i : -ERESTARTSYS;
-
- cond_resched();
- while (!(page = follow_page_mask(vma, start,
- foll_flags, &page_mask))) {
- int ret;
- unsigned int fault_flags = 0;
-
- /* For mlock, just skip the stack guard page. */
- if (foll_flags & FOLL_MLOCK) {
- if (stack_guard_page(vma, start))
- goto next_page;
- }
- if (foll_flags & FOLL_WRITE)
- fault_flags |= FAULT_FLAG_WRITE;
- if (nonblocking)
- fault_flags |= FAULT_FLAG_ALLOW_RETRY;
- if (foll_flags & FOLL_NOWAIT)
- fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
-
- ret = handle_mm_fault(mm, vma, start,
- fault_flags);
-
- if (ret & VM_FAULT_ERROR) {
- if (ret & VM_FAULT_OOM)
- return i ? i : -ENOMEM;
- if (ret & (VM_FAULT_HWPOISON |
- VM_FAULT_HWPOISON_LARGE)) {
- if (i)
- return i;
- else if (gup_flags & FOLL_HWPOISON)
- return -EHWPOISON;
- else
- return -EFAULT;
- }
- if (ret & VM_FAULT_SIGBUS)
- return i ? i : -EFAULT;
- BUG();
- }
-
- if (tsk) {
- if (ret & VM_FAULT_MAJOR)
- tsk->maj_flt++;
- else
- tsk->min_flt++;
- }
-
- if (ret & VM_FAULT_RETRY) {
- if (nonblocking)
- *nonblocking = 0;
- return i;
- }
-
- /*
- * The VM_FAULT_WRITE bit tells us that
- * do_wp_page has broken COW when necessary,
- * even if maybe_mkwrite decided not to set
- * pte_write. We can thus safely do subsequent
- * page lookups as if they were reads. But only
- * do so when looping for pte_write is futile:
- * in some cases userspace may also be wanting
- * to write to the gotten user page, which a
- * read fault here might prevent (a readonly
- * page might get reCOWed by userspace write).
- */
- if ((ret & VM_FAULT_WRITE) &&
- !(vma->vm_flags & VM_WRITE))
- foll_flags &= ~FOLL_WRITE;
-
- cond_resched();
- }
- if (IS_ERR(page))
- return i ? i : PTR_ERR(page);
- if (pages) {
- pages[i] = page;
-
- flush_anon_page(vma, page, start);
- flush_dcache_page(page);
- page_mask = 0;
- }
-next_page:
- if (vmas) {
- vmas[i] = vma;
- page_mask = 0;
- }
- page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
- if (page_increm > nr_pages)
- page_increm = nr_pages;
- i += page_increm;
- start += page_increm * PAGE_SIZE;
- nr_pages -= page_increm;
- } while (nr_pages && start < vma->vm_end);
- } while (nr_pages);
- return i;
-}
-EXPORT_SYMBOL(__get_user_pages);
-
-/*
- * fixup_user_fault() - manually resolve a user page fault
- * @tsk: the task_struct to use for page fault accounting, or
- * NULL if faults are not to be recorded.
- * @mm: mm_struct of target mm
- * @address: user address
- * @fault_flags:flags to pass down to handle_mm_fault()
- *
- * This is meant to be called in the specific scenario where for locking reasons
- * we try to access user memory in atomic context (within a pagefault_disable()
- * section), this returns -EFAULT, and we want to resolve the user fault before
- * trying again.
- *
- * Typically this is meant to be used by the futex code.
- *
- * The main difference with get_user_pages() is that this function will
- * unconditionally call handle_mm_fault() which will in turn perform all the
- * necessary SW fixup of the dirty and young bits in the PTE, while
- * handle_mm_fault() only guarantees to update these in the struct page.
- *
- * This is important for some architectures where those bits also gate the
- * access permission to the page because they are maintained in software. On
- * such architectures, gup() will not be enough to make a subsequent access
- * succeed.
- *
- * This should be called with the mm_sem held for read.
- */
-int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long address, unsigned int fault_flags)
-{
- struct vm_area_struct *vma;
- int ret;
-
- vma = find_extend_vma(mm, address);
- if (!vma || address < vma->vm_start)
- return -EFAULT;
-
- ret = handle_mm_fault(mm, vma, address, fault_flags);
- if (ret & VM_FAULT_ERROR) {
- if (ret & VM_FAULT_OOM)
- return -ENOMEM;
- if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
- return -EHWPOISON;
- if (ret & VM_FAULT_SIGBUS)
- return -EFAULT;
- BUG();
- }
- if (tsk) {
- if (ret & VM_FAULT_MAJOR)
- tsk->maj_flt++;
- else
- tsk->min_flt++;
- }
- return 0;
-}
-
-/*
- * get_user_pages() - pin user pages in memory
- * @tsk: the task_struct to use for page fault accounting, or
- * NULL if faults are not to be recorded.
- * @mm: mm_struct of target mm
- * @start: starting user address
- * @nr_pages: number of pages from start to pin
- * @write: whether pages will be written to by the caller
- * @force: whether to force write access even if user mapping is
- * readonly. This will result in the page being COWed even
- * in MAP_SHARED mappings. You do not want this.
- * @pages: array that receives pointers to the pages pinned.
- * Should be at least nr_pages long. Or NULL, if caller
- * only intends to ensure the pages are faulted in.
- * @vmas: array of pointers to vmas corresponding to each page.
- * Or NULL if the caller does not require them.
- *
- * Returns number of pages pinned. This may be fewer than the number
- * requested. If nr_pages is 0 or negative, returns 0. If no pages
- * were pinned, returns -errno. Each page returned must be released
- * with a put_page() call when it is finished with. vmas will only
- * remain valid while mmap_sem is held.
- *
- * Must be called with mmap_sem held for read or write.
- *
- * get_user_pages walks a process's page tables and takes a reference to
- * each struct page that each user address corresponds to at a given
- * instant. That is, it takes the page that would be accessed if a user
- * thread accesses the given user virtual address at that instant.
- *
- * This does not guarantee that the page exists in the user mappings when
- * get_user_pages returns, and there may even be a completely different
- * page there in some cases (eg. if mmapped pagecache has been invalidated
- * and subsequently re faulted). However it does guarantee that the page
- * won't be freed completely. And mostly callers simply care that the page
- * contains data that was valid *at some point in time*. Typically, an IO
- * or similar operation cannot guarantee anything stronger anyway because
- * locks can't be held over the syscall boundary.
- *
- * If write=0, the page must not be written to. If the page is written to,
- * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
- * after the page is finished with, and before put_page is called.
- *
- * get_user_pages is typically used for fewer-copy IO operations, to get a
- * handle on the memory by some means other than accesses via the user virtual
- * addresses. The pages may be submitted for DMA to devices or accessed via
- * their kernel linear mapping (via the kmap APIs). Care should be taken to
- * use the correct cache flushing APIs.
- *
- * See also get_user_pages_fast, for performance critical applications.
- */
-long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
- unsigned long start, unsigned long nr_pages, int write,
- int force, struct page **pages, struct vm_area_struct **vmas)
-{
- int flags = FOLL_TOUCH;
-
- if (pages)
- flags |= FOLL_GET;
- if (write)
- flags |= FOLL_WRITE;
- if (force)
- flags |= FOLL_FORCE;
-
- return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
- NULL);
-}
-EXPORT_SYMBOL(get_user_pages);
-
-/**
- * get_dump_page() - pin user page in memory while writing it to core dump
- * @addr: user address
- *
- * Returns struct page pointer of user page pinned for dump,
- * to be freed afterwards by page_cache_release() or put_page().
- *
- * Returns NULL on any kind of failure - a hole must then be inserted into
- * the corefile, to preserve alignment with its headers; and also returns
- * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
- * allowing a hole to be left in the corefile to save diskspace.
- *
- * Called without mmap_sem, but after all other threads have been killed.
- */
-#ifdef CONFIG_ELF_CORE
-struct page *get_dump_page(unsigned long addr)
-{
- struct vm_area_struct *vma;
- struct page *page;
-
- if (__get_user_pages(current, current->mm, addr, 1,
- FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
- NULL) < 1)
- return NULL;
- flush_cache_page(vma, addr, page_to_pfn(page));
- return page;
-}
-#endif /* CONFIG_ELF_CORE */
-
pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
spinlock_t **ptl)
{
@@ -2587,6 +1988,38 @@ static inline void cow_user_page(struct page *dst, struct page *src, unsigned lo
}
/*
+ * Notify the address space that the page is about to become writable so that
+ * it can prohibit this or wait for the page to get into an appropriate state.
+ *
+ * We do this without the lock held, so that it can sleep if it needs to.
+ */
+static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
+ unsigned long address)
+{
+ struct vm_fault vmf;
+ int ret;
+
+ vmf.virtual_address = (void __user *)(address & PAGE_MASK);
+ vmf.pgoff = page->index;
+ vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
+ vmf.page = page;
+
+ ret = vma->vm_ops->page_mkwrite(vma, &vmf);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
+ return ret;
+ if (unlikely(!(ret & VM_FAULT_LOCKED))) {
+ lock_page(page);
+ if (!page->mapping) {
+ unlock_page(page);
+ return 0; /* retry */
+ }
+ ret |= VM_FAULT_LOCKED;
+ } else
+ VM_BUG_ON_PAGE(!PageLocked(page), page);
+ return ret;
+}
+
+/*
* This routine handles present pages, when users try to write
* to a shared page. It is done by copying the page to a new address
* and decrementing the shared-page counter for the old page.
@@ -2668,42 +2101,15 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
* get_user_pages(.write=1, .force=1).
*/
if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
- struct vm_fault vmf;
int tmp;
-
- vmf.virtual_address = (void __user *)(address &
- PAGE_MASK);
- vmf.pgoff = old_page->index;
- vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
- vmf.page = old_page;
-
- /*
- * Notify the address space that the page is about to
- * become writable so that it can prohibit this or wait
- * for the page to get into an appropriate state.
- *
- * We do this without the lock held, so that it can
- * sleep if it needs to.
- */
page_cache_get(old_page);
pte_unmap_unlock(page_table, ptl);
-
- tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
- if (unlikely(tmp &
- (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
- ret = tmp;
- goto unwritable_page;
+ tmp = do_page_mkwrite(vma, old_page, address);
+ if (unlikely(!tmp || (tmp &
+ (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
+ page_cache_release(old_page);
+ return tmp;
}
- if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
- lock_page(old_page);
- if (!old_page->mapping) {
- ret = 0; /* retry the fault */
- unlock_page(old_page);
- goto unwritable_page;
- }
- } else
- VM_BUG_ON_PAGE(!PageLocked(old_page), old_page);
-
/*
* Since we dropped the lock we need to revalidate
* the PTE as someone else may have changed it. If
@@ -2748,11 +2154,11 @@ reuse:
* bit after it clear all dirty ptes, but before a racing
* do_wp_page installs a dirty pte.
*
- * __do_fault is protected similarly.
+ * do_shared_fault is protected similarly.
*/
if (!page_mkwrite) {
wait_on_page_locked(dirty_page);
- set_page_dirty_balance(dirty_page, page_mkwrite);
+ set_page_dirty_balance(dirty_page);
/* file_update_time outside page_lock */
if (vma->vm_file)
file_update_time(vma->vm_file);
@@ -2798,7 +2204,7 @@ gotten:
}
__SetPageUptodate(new_page);
- if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
+ if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
goto oom_free_new;
mmun_start = address & PAGE_MASK;
@@ -2892,10 +2298,6 @@ oom:
if (old_page)
page_cache_release(old_page);
return VM_FAULT_OOM;
-
-unwritable_page:
- page_cache_release(old_page);
- return ret;
}
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
@@ -3255,7 +2657,7 @@ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
*/
__SetPageUptodate(page);
- if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
+ if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
goto oom_free_page;
entry = mk_pte(page, vma->vm_page_prot);
@@ -3286,53 +2688,11 @@ oom:
return VM_FAULT_OOM;
}
-/*
- * __do_fault() tries to create a new page mapping. It aggressively
- * tries to share with existing pages, but makes a separate copy if
- * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
- * the next page fault.
- *
- * As this is called only for pages that do not currently exist, we
- * do not need to flush old virtual caches or the TLB.
- *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), and pte neither mapped nor locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
- */
-static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pmd_t *pmd,
- pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
+static int __do_fault(struct vm_area_struct *vma, unsigned long address,
+ pgoff_t pgoff, unsigned int flags, struct page **page)
{
- pte_t *page_table;
- spinlock_t *ptl;
- struct page *page;
- struct page *cow_page;
- pte_t entry;
- int anon = 0;
- struct page *dirty_page = NULL;
struct vm_fault vmf;
int ret;
- int page_mkwrite = 0;
-
- /*
- * If we do COW later, allocate page befor taking lock_page()
- * on the file cache page. This will reduce lock holding time.
- */
- if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
-
- if (unlikely(anon_vma_prepare(vma)))
- return VM_FAULT_OOM;
-
- cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
- if (!cow_page)
- return VM_FAULT_OOM;
-
- if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
- page_cache_release(cow_page);
- return VM_FAULT_OOM;
- }
- } else
- cow_page = NULL;
vmf.virtual_address = (void __user *)(address & PAGE_MASK);
vmf.pgoff = pgoff;
@@ -3340,151 +2700,315 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
vmf.page = NULL;
ret = vma->vm_ops->fault(vma, &vmf);
- if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
- VM_FAULT_RETRY)))
- goto uncharge_out;
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+ return ret;
if (unlikely(PageHWPoison(vmf.page))) {
if (ret & VM_FAULT_LOCKED)
unlock_page(vmf.page);
- ret = VM_FAULT_HWPOISON;
page_cache_release(vmf.page);
- goto uncharge_out;
+ return VM_FAULT_HWPOISON;
}
- /*
- * For consistency in subsequent calls, make the faulted page always
- * locked.
- */
if (unlikely(!(ret & VM_FAULT_LOCKED)))
lock_page(vmf.page);
else
VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
+ *page = vmf.page;
+ return ret;
+}
+
+/**
+ * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
+ *
+ * @vma: virtual memory area
+ * @address: user virtual address
+ * @page: page to map
+ * @pte: pointer to target page table entry
+ * @write: true, if new entry is writable
+ * @anon: true, if it's anonymous page
+ *
+ * Caller must hold page table lock relevant for @pte.
+ *
+ * Target users are page handler itself and implementations of
+ * vm_ops->map_pages.
+ */
+void do_set_pte(struct vm_area_struct *vma, unsigned long address,
+ struct page *page, pte_t *pte, bool write, bool anon)
+{
+ pte_t entry;
+
+ flush_icache_page(vma, page);
+ entry = mk_pte(page, vma->vm_page_prot);
+ if (write)
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
+ pte_mksoft_dirty(entry);
+ if (anon) {
+ inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
+ page_add_new_anon_rmap(page, vma, address);
+ } else {
+ inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
+ page_add_file_rmap(page);
+ }
+ set_pte_at(vma->vm_mm, address, pte, entry);
+
+ /* no need to invalidate: a not-present page won't be cached */
+ update_mmu_cache(vma, address, pte);
+}
+
+static unsigned long fault_around_bytes = 65536;
+
+/*
+ * fault_around_pages() and fault_around_mask() round down fault_around_bytes
+ * to nearest page order. It's what do_fault_around() expects to see.
+ */
+static inline unsigned long fault_around_pages(void)
+{
+ return rounddown_pow_of_two(fault_around_bytes) / PAGE_SIZE;
+}
+
+static inline unsigned long fault_around_mask(void)
+{
+ return ~(rounddown_pow_of_two(fault_around_bytes) - 1) & PAGE_MASK;
+}
+
+
+#ifdef CONFIG_DEBUG_FS
+static int fault_around_bytes_get(void *data, u64 *val)
+{
+ *val = fault_around_bytes;
+ return 0;
+}
+
+static int fault_around_bytes_set(void *data, u64 val)
+{
+ if (val / PAGE_SIZE > PTRS_PER_PTE)
+ return -EINVAL;
+ fault_around_bytes = val;
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
+ fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
+
+static int __init fault_around_debugfs(void)
+{
+ void *ret;
+
+ ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
+ &fault_around_bytes_fops);
+ if (!ret)
+ pr_warn("Failed to create fault_around_bytes in debugfs");
+ return 0;
+}
+late_initcall(fault_around_debugfs);
+#endif
+
+/*
+ * do_fault_around() tries to map few pages around the fault address. The hope
+ * is that the pages will be needed soon and this will lower the number of
+ * faults to handle.
+ *
+ * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
+ * not ready to be mapped: not up-to-date, locked, etc.
+ *
+ * This function is called with the page table lock taken. In the split ptlock
+ * case the page table lock only protects only those entries which belong to
+ * the page table corresponding to the fault address.
+ *
+ * This function doesn't cross the VMA boundaries, in order to call map_pages()
+ * only once.
+ *
+ * fault_around_pages() defines how many pages we'll try to map.
+ * do_fault_around() expects it to return a power of two less than or equal to
+ * PTRS_PER_PTE.
+ *
+ * The virtual address of the area that we map is naturally aligned to the
+ * fault_around_pages() value (and therefore to page order). This way it's
+ * easier to guarantee that we don't cross page table boundaries.
+ */
+static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
+ pte_t *pte, pgoff_t pgoff, unsigned int flags)
+{
+ unsigned long start_addr;
+ pgoff_t max_pgoff;
+ struct vm_fault vmf;
+ int off;
+
+ start_addr = max(address & fault_around_mask(), vma->vm_start);
+ off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
+ pte -= off;
+ pgoff -= off;
+
/*
- * Should we do an early C-O-W break?
+ * max_pgoff is either end of page table or end of vma
+ * or fault_around_pages() from pgoff, depending what is nearest.
*/
- page = vmf.page;
- if (flags & FAULT_FLAG_WRITE) {
- if (!(vma->vm_flags & VM_SHARED)) {
- page = cow_page;
- anon = 1;
- copy_user_highpage(page, vmf.page, address, vma);
- __SetPageUptodate(page);
- } else {
- /*
- * If the page will be shareable, see if the backing
- * address space wants to know that the page is about
- * to become writable
- */
- if (vma->vm_ops->page_mkwrite) {
- int tmp;
-
- unlock_page(page);
- vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
- tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
- if (unlikely(tmp &
- (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
- ret = tmp;
- goto unwritable_page;
- }
- if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
- lock_page(page);
- if (!page->mapping) {
- ret = 0; /* retry the fault */
- unlock_page(page);
- goto unwritable_page;
- }
- } else
- VM_BUG_ON_PAGE(!PageLocked(page), page);
- page_mkwrite = 1;
- }
- }
-
+ max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
+ PTRS_PER_PTE - 1;
+ max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
+ pgoff + fault_around_pages() - 1);
+
+ /* Check if it makes any sense to call ->map_pages */
+ while (!pte_none(*pte)) {
+ if (++pgoff > max_pgoff)
+ return;
+ start_addr += PAGE_SIZE;
+ if (start_addr >= vma->vm_end)
+ return;
+ pte++;
}
- page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+ vmf.virtual_address = (void __user *) start_addr;
+ vmf.pte = pte;
+ vmf.pgoff = pgoff;
+ vmf.max_pgoff = max_pgoff;
+ vmf.flags = flags;
+ vma->vm_ops->map_pages(vma, &vmf);
+}
+
+static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmd,
+ pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
+{
+ struct page *fault_page;
+ spinlock_t *ptl;
+ pte_t *pte;
+ int ret = 0;
/*
- * This silly early PAGE_DIRTY setting removes a race
- * due to the bad i386 page protection. But it's valid
- * for other architectures too.
- *
- * Note that if FAULT_FLAG_WRITE is set, we either now have
- * an exclusive copy of the page, or this is a shared mapping,
- * so we can make it writable and dirty to avoid having to
- * handle that later.
+ * Let's call ->map_pages() first and use ->fault() as fallback
+ * if page by the offset is not ready to be mapped (cold cache or
+ * something).
*/
- /* Only go through if we didn't race with anybody else... */
- if (likely(pte_same(*page_table, orig_pte))) {
- flush_icache_page(vma, page);
- entry = mk_pte(page, vma->vm_page_prot);
- if (flags & FAULT_FLAG_WRITE)
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
- pte_mksoft_dirty(entry);
- if (anon) {
- inc_mm_counter_fast(mm, MM_ANONPAGES);
- page_add_new_anon_rmap(page, vma, address);
- } else {
- inc_mm_counter_fast(mm, MM_FILEPAGES);
- page_add_file_rmap(page);
- if (flags & FAULT_FLAG_WRITE) {
- dirty_page = page;
- get_page(dirty_page);
- }
- }
- set_pte_at(mm, address, page_table, entry);
+ if (vma->vm_ops->map_pages && fault_around_pages() > 1) {
+ pte = pte_offset_map_lock(mm, pmd, address, &ptl);
+ do_fault_around(vma, address, pte, pgoff, flags);
+ if (!pte_same(*pte, orig_pte))
+ goto unlock_out;
+ pte_unmap_unlock(pte, ptl);
+ }
- /* no need to invalidate: a not-present page won't be cached */
- update_mmu_cache(vma, address, page_table);
- } else {
- if (cow_page)
- mem_cgroup_uncharge_page(cow_page);
- if (anon)
- page_cache_release(page);
- else
- anon = 1; /* no anon but release faulted_page */
+ ret = __do_fault(vma, address, pgoff, flags, &fault_page);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+ return ret;
+
+ pte = pte_offset_map_lock(mm, pmd, address, &ptl);
+ if (unlikely(!pte_same(*pte, orig_pte))) {
+ pte_unmap_unlock(pte, ptl);
+ unlock_page(fault_page);
+ page_cache_release(fault_page);
+ return ret;
}
+ do_set_pte(vma, address, fault_page, pte, false, false);
+ unlock_page(fault_page);
+unlock_out:
+ pte_unmap_unlock(pte, ptl);
+ return ret;
+}
- pte_unmap_unlock(page_table, ptl);
+static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmd,
+ pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
+{
+ struct page *fault_page, *new_page;
+ spinlock_t *ptl;
+ pte_t *pte;
+ int ret;
- if (dirty_page) {
- struct address_space *mapping = page->mapping;
- int dirtied = 0;
+ if (unlikely(anon_vma_prepare(vma)))
+ return VM_FAULT_OOM;
- if (set_page_dirty(dirty_page))
- dirtied = 1;
- unlock_page(dirty_page);
- put_page(dirty_page);
- if ((dirtied || page_mkwrite) && mapping) {
- /*
- * Some device drivers do not set page.mapping but still
- * dirty their pages
- */
- balance_dirty_pages_ratelimited(mapping);
- }
+ new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
+ if (!new_page)
+ return VM_FAULT_OOM;
- /* file_update_time outside page_lock */
- if (vma->vm_file && !page_mkwrite)
- file_update_time(vma->vm_file);
- } else {
- unlock_page(vmf.page);
- if (anon)
- page_cache_release(vmf.page);
+ if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
+ page_cache_release(new_page);
+ return VM_FAULT_OOM;
}
- return ret;
+ ret = __do_fault(vma, address, pgoff, flags, &fault_page);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+ goto uncharge_out;
-unwritable_page:
- page_cache_release(page);
+ copy_user_highpage(new_page, fault_page, address, vma);
+ __SetPageUptodate(new_page);
+
+ pte = pte_offset_map_lock(mm, pmd, address, &ptl);
+ if (unlikely(!pte_same(*pte, orig_pte))) {
+ pte_unmap_unlock(pte, ptl);
+ unlock_page(fault_page);
+ page_cache_release(fault_page);
+ goto uncharge_out;
+ }
+ do_set_pte(vma, address, new_page, pte, true, true);
+ pte_unmap_unlock(pte, ptl);
+ unlock_page(fault_page);
+ page_cache_release(fault_page);
return ret;
uncharge_out:
- /* fs's fault handler get error */
- if (cow_page) {
- mem_cgroup_uncharge_page(cow_page);
- page_cache_release(cow_page);
+ mem_cgroup_uncharge_page(new_page);
+ page_cache_release(new_page);
+ return ret;
+}
+
+static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pmd_t *pmd,
+ pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
+{
+ struct page *fault_page;
+ struct address_space *mapping;
+ spinlock_t *ptl;
+ pte_t *pte;
+ int dirtied = 0;
+ int ret, tmp;
+
+ ret = __do_fault(vma, address, pgoff, flags, &fault_page);
+ if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
+ return ret;
+
+ /*
+ * Check if the backing address space wants to know that the page is
+ * about to become writable
+ */
+ if (vma->vm_ops->page_mkwrite) {
+ unlock_page(fault_page);
+ tmp = do_page_mkwrite(vma, fault_page, address);
+ if (unlikely(!tmp ||
+ (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
+ page_cache_release(fault_page);
+ return tmp;
+ }
}
+
+ pte = pte_offset_map_lock(mm, pmd, address, &ptl);
+ if (unlikely(!pte_same(*pte, orig_pte))) {
+ pte_unmap_unlock(pte, ptl);
+ unlock_page(fault_page);
+ page_cache_release(fault_page);
+ return ret;
+ }
+ do_set_pte(vma, address, fault_page, pte, true, false);
+ pte_unmap_unlock(pte, ptl);
+
+ if (set_page_dirty(fault_page))
+ dirtied = 1;
+ mapping = fault_page->mapping;
+ unlock_page(fault_page);
+ if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
+ /*
+ * Some device drivers do not set page.mapping but still
+ * dirty their pages
+ */
+ balance_dirty_pages_ratelimited(mapping);
+ }
+
+ /* file_update_time outside page_lock */
+ if (vma->vm_file && !vma->vm_ops->page_mkwrite)
+ file_update_time(vma->vm_file);
+
return ret;
}
@@ -3496,7 +3020,13 @@ static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
pte_unmap(page_table);
- return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
+ if (!(flags & FAULT_FLAG_WRITE))
+ return do_read_fault(mm, vma, address, pmd, pgoff, flags,
+ orig_pte);
+ if (!(vma->vm_flags & VM_SHARED))
+ return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
+ orig_pte);
+ return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
}
/*
@@ -3528,10 +3058,16 @@ static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
}
pgoff = pte_to_pgoff(orig_pte);
- return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
+ if (!(flags & FAULT_FLAG_WRITE))
+ return do_read_fault(mm, vma, address, pmd, pgoff, flags,
+ orig_pte);
+ if (!(vma->vm_flags & VM_SHARED))
+ return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
+ orig_pte);
+ return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
}
-int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
+static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
unsigned long addr, int page_nid,
int *flags)
{
@@ -3546,7 +3082,7 @@ int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
return mpol_misplaced(page, vma, addr);
}
-int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
+static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
{
struct page *page = NULL;
@@ -3751,9 +3287,6 @@ static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
}
}
- /* THP should already have been handled */
- BUG_ON(pmd_numa(*pmd));
-
/*
* Use __pte_alloc instead of pte_alloc_map, because we can't
* run pte_offset_map on the pmd, if an huge pmd could