summaryrefslogtreecommitdiffstats
path: root/mm/vmscan.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/vmscan.c')
-rw-r--r--mm/vmscan.c585
1 files changed, 384 insertions, 201 deletions
diff --git a/mm/vmscan.c b/mm/vmscan.c
index fa6a85378ee..99b3ac7771a 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -546,7 +546,6 @@ int remove_mapping(struct address_space *mapping, struct page *page)
void putback_lru_page(struct page *page)
{
int lru;
- int active = !!TestClearPageActive(page);
int was_unevictable = PageUnevictable(page);
VM_BUG_ON(PageLRU(page));
@@ -561,8 +560,8 @@ redo:
* unevictable page on [in]active list.
* We know how to handle that.
*/
- lru = active + page_lru_base_type(page);
- lru_cache_add_lru(page, lru);
+ lru = page_lru_base_type(page);
+ lru_cache_add(page);
} else {
/*
* Put unevictable pages directly on zone's unevictable
@@ -669,6 +668,35 @@ static enum page_references page_check_references(struct page *page,
return PAGEREF_RECLAIM;
}
+/* Check if a page is dirty or under writeback */
+static void page_check_dirty_writeback(struct page *page,
+ bool *dirty, bool *writeback)
+{
+ struct address_space *mapping;
+
+ /*
+ * Anonymous pages are not handled by flushers and must be written
+ * from reclaim context. Do not stall reclaim based on them
+ */
+ if (!page_is_file_cache(page)) {
+ *dirty = false;
+ *writeback = false;
+ return;
+ }
+
+ /* By default assume that the page flags are accurate */
+ *dirty = PageDirty(page);
+ *writeback = PageWriteback(page);
+
+ /* Verify dirty/writeback state if the filesystem supports it */
+ if (!page_has_private(page))
+ return;
+
+ mapping = page_mapping(page);
+ if (mapping && mapping->a_ops->is_dirty_writeback)
+ mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
+}
+
/*
* shrink_page_list() returns the number of reclaimed pages
*/
@@ -677,16 +705,21 @@ static unsigned long shrink_page_list(struct list_head *page_list,
struct scan_control *sc,
enum ttu_flags ttu_flags,
unsigned long *ret_nr_dirty,
+ unsigned long *ret_nr_unqueued_dirty,
+ unsigned long *ret_nr_congested,
unsigned long *ret_nr_writeback,
+ unsigned long *ret_nr_immediate,
bool force_reclaim)
{
LIST_HEAD(ret_pages);
LIST_HEAD(free_pages);
int pgactivate = 0;
+ unsigned long nr_unqueued_dirty = 0;
unsigned long nr_dirty = 0;
unsigned long nr_congested = 0;
unsigned long nr_reclaimed = 0;
unsigned long nr_writeback = 0;
+ unsigned long nr_immediate = 0;
cond_resched();
@@ -696,6 +729,7 @@ static unsigned long shrink_page_list(struct list_head *page_list,
struct page *page;
int may_enter_fs;
enum page_references references = PAGEREF_RECLAIM_CLEAN;
+ bool dirty, writeback;
cond_resched();
@@ -723,25 +757,77 @@ static unsigned long shrink_page_list(struct list_head *page_list,
may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
+ /*
+ * The number of dirty pages determines if a zone is marked
+ * reclaim_congested which affects wait_iff_congested. kswapd
+ * will stall and start writing pages if the tail of the LRU
+ * is all dirty unqueued pages.
+ */
+ page_check_dirty_writeback(page, &dirty, &writeback);
+ if (dirty || writeback)
+ nr_dirty++;
+
+ if (dirty && !writeback)
+ nr_unqueued_dirty++;
+
+ /*
+ * Treat this page as congested if the underlying BDI is or if
+ * pages are cycling through the LRU so quickly that the
+ * pages marked for immediate reclaim are making it to the
+ * end of the LRU a second time.
+ */
+ mapping = page_mapping(page);
+ if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
+ (writeback && PageReclaim(page)))
+ nr_congested++;
+
+ /*
+ * If a page at the tail of the LRU is under writeback, there
+ * are three cases to consider.
+ *
+ * 1) If reclaim is encountering an excessive number of pages
+ * under writeback and this page is both under writeback and
+ * PageReclaim then it indicates that pages are being queued
+ * for IO but are being recycled through the LRU before the
+ * IO can complete. Waiting on the page itself risks an
+ * indefinite stall if it is impossible to writeback the
+ * page due to IO error or disconnected storage so instead
+ * note that the LRU is being scanned too quickly and the
+ * caller can stall after page list has been processed.
+ *
+ * 2) Global reclaim encounters a page, memcg encounters a
+ * page that is not marked for immediate reclaim or
+ * the caller does not have __GFP_IO. In this case mark
+ * the page for immediate reclaim and continue scanning.
+ *
+ * __GFP_IO is checked because a loop driver thread might
+ * enter reclaim, and deadlock if it waits on a page for
+ * which it is needed to do the write (loop masks off
+ * __GFP_IO|__GFP_FS for this reason); but more thought
+ * would probably show more reasons.
+ *
+ * Don't require __GFP_FS, since we're not going into the
+ * FS, just waiting on its writeback completion. Worryingly,
+ * ext4 gfs2 and xfs allocate pages with
+ * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
+ * may_enter_fs here is liable to OOM on them.
+ *
+ * 3) memcg encounters a page that is not already marked
+ * PageReclaim. memcg does not have any dirty pages
+ * throttling so we could easily OOM just because too many
+ * pages are in writeback and there is nothing else to
+ * reclaim. Wait for the writeback to complete.
+ */
if (PageWriteback(page)) {
- /*
- * memcg doesn't have any dirty pages throttling so we
- * could easily OOM just because too many pages are in
- * writeback and there is nothing else to reclaim.
- *
- * Check __GFP_IO, certainly because a loop driver
- * thread might enter reclaim, and deadlock if it waits
- * on a page for which it is needed to do the write
- * (loop masks off __GFP_IO|__GFP_FS for this reason);
- * but more thought would probably show more reasons.
- *
- * Don't require __GFP_FS, since we're not going into
- * the FS, just waiting on its writeback completion.
- * Worryingly, ext4 gfs2 and xfs allocate pages with
- * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
- * testing may_enter_fs here is liable to OOM on them.
- */
- if (global_reclaim(sc) ||
+ /* Case 1 above */
+ if (current_is_kswapd() &&
+ PageReclaim(page) &&
+ zone_is_reclaim_writeback(zone)) {
+ nr_immediate++;
+ goto keep_locked;
+
+ /* Case 2 above */
+ } else if (global_reclaim(sc) ||
!PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
/*
* This is slightly racy - end_page_writeback()
@@ -756,9 +842,13 @@ static unsigned long shrink_page_list(struct list_head *page_list,
*/
SetPageReclaim(page);
nr_writeback++;
+
goto keep_locked;
+
+ /* Case 3 above */
+ } else {
+ wait_on_page_writeback(page);
}
- wait_on_page_writeback(page);
}
if (!force_reclaim)
@@ -784,9 +874,10 @@ static unsigned long shrink_page_list(struct list_head *page_list,
if (!add_to_swap(page, page_list))
goto activate_locked;
may_enter_fs = 1;
- }
- mapping = page_mapping(page);
+ /* Adding to swap updated mapping */
+ mapping = page_mapping(page);
+ }
/*
* The page is mapped into the page tables of one or more
@@ -806,16 +897,14 @@ static unsigned long shrink_page_list(struct list_head *page_list,
}
if (PageDirty(page)) {
- nr_dirty++;
-
/*
* Only kswapd can writeback filesystem pages to
- * avoid risk of stack overflow but do not writeback
- * unless under significant pressure.
+ * avoid risk of stack overflow but only writeback
+ * if many dirty pages have been encountered.
*/
if (page_is_file_cache(page) &&
(!current_is_kswapd() ||
- sc->priority >= DEF_PRIORITY - 2)) {
+ !zone_is_reclaim_dirty(zone))) {
/*
* Immediately reclaim when written back.
* Similar in principal to deactivate_page()
@@ -838,7 +927,6 @@ static unsigned long shrink_page_list(struct list_head *page_list,
/* Page is dirty, try to write it out here */
switch (pageout(page, mapping, sc)) {
case PAGE_KEEP:
- nr_congested++;
goto keep_locked;
case PAGE_ACTIVATE:
goto activate_locked;
@@ -946,22 +1034,16 @@ keep:
VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
}
- /*
- * Tag a zone as congested if all the dirty pages encountered were
- * backed by a congested BDI. In this case, reclaimers should just
- * back off and wait for congestion to clear because further reclaim
- * will encounter the same problem
- */
- if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
- zone_set_flag(zone, ZONE_CONGESTED);
-
free_hot_cold_page_list(&free_pages, 1);
list_splice(&ret_pages, page_list);
count_vm_events(PGACTIVATE, pgactivate);
mem_cgroup_uncharge_end();
*ret_nr_dirty += nr_dirty;
+ *ret_nr_congested += nr_congested;
+ *ret_nr_unqueued_dirty += nr_unqueued_dirty;
*ret_nr_writeback += nr_writeback;
+ *ret_nr_immediate += nr_immediate;
return nr_reclaimed;
}
@@ -973,7 +1055,7 @@ unsigned long reclaim_clean_pages_from_list(struct zone *zone,
.priority = DEF_PRIORITY,
.may_unmap = 1,
};
- unsigned long ret, dummy1, dummy2;
+ unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
struct page *page, *next;
LIST_HEAD(clean_pages);
@@ -985,8 +1067,8 @@ unsigned long reclaim_clean_pages_from_list(struct zone *zone,
}
ret = shrink_page_list(&clean_pages, zone, &sc,
- TTU_UNMAP|TTU_IGNORE_ACCESS,
- &dummy1, &dummy2, true);
+ TTU_UNMAP|TTU_IGNORE_ACCESS,
+ &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
list_splice(&clean_pages, page_list);
__mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
return ret;
@@ -1281,7 +1363,10 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
unsigned long nr_reclaimed = 0;
unsigned long nr_taken;
unsigned long nr_dirty = 0;
+ unsigned long nr_congested = 0;
+ unsigned long nr_unqueued_dirty = 0;
unsigned long nr_writeback = 0;
+ unsigned long nr_immediate = 0;
isolate_mode_t isolate_mode = 0;
int file = is_file_lru(lru);
struct zone *zone = lruvec_zone(lruvec);
@@ -1323,7 +1408,9 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
return 0;
nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
- &nr_dirty, &nr_writeback, false);
+ &nr_dirty, &nr_unqueued_dirty, &nr_congested,
+ &nr_writeback, &nr_immediate,
+ false);
spin_lock_irq(&zone->lru_lock);
@@ -1357,7 +1444,7 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
* same way balance_dirty_pages() manages.
*
* This scales the number of dirty pages that must be under writeback
- * before throttling depending on priority. It is a simple backoff
+ * before a zone gets flagged ZONE_WRITEBACK. It is a simple backoff
* function that has the most effect in the range DEF_PRIORITY to
* DEF_PRIORITY-2 which is the priority reclaim is considered to be
* in trouble and reclaim is considered to be in trouble.
@@ -1368,9 +1455,53 @@ shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
* ...
* DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
* isolated page is PageWriteback
+ *
+ * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
+ * of pages under pages flagged for immediate reclaim and stall if any
+ * are encountered in the nr_immediate check below.
*/
if (nr_writeback && nr_writeback >=
(nr_taken >> (DEF_PRIORITY - sc->priority)))
+ zone_set_flag(zone, ZONE_WRITEBACK);
+
+ /*
+ * memcg will stall in page writeback so only consider forcibly
+ * stalling for global reclaim
+ */
+ if (global_reclaim(sc)) {
+ /*
+ * Tag a zone as congested if all the dirty pages scanned were
+ * backed by a congested BDI and wait_iff_congested will stall.
+ */
+ if (nr_dirty && nr_dirty == nr_congested)
+ zone_set_flag(zone, ZONE_CONGESTED);
+
+ /*
+ * If dirty pages are scanned that are not queued for IO, it
+ * implies that flushers are not keeping up. In this case, flag
+ * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
+ * pages from reclaim context. It will forcibly stall in the
+ * next check.
+ */
+ if (nr_unqueued_dirty == nr_taken)
+ zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
+
+ /*
+ * In addition, if kswapd scans pages marked marked for
+ * immediate reclaim and under writeback (nr_immediate), it
+ * implies that pages are cycling through the LRU faster than
+ * they are written so also forcibly stall.
+ */
+ if (nr_unqueued_dirty == nr_taken || nr_immediate)
+ congestion_wait(BLK_RW_ASYNC, HZ/10);
+ }
+
+ /*
+ * Stall direct reclaim for IO completions if underlying BDIs or zone
+ * is congested. Allow kswapd to continue until it starts encountering
+ * unqueued dirty pages or cycling through the LRU too quickly.
+ */
+ if (!sc->hibernation_mode && !current_is_kswapd())
wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
@@ -1822,17 +1953,25 @@ out:
static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
{
unsigned long nr[NR_LRU_LISTS];
+ unsigned long targets[NR_LRU_LISTS];
unsigned long nr_to_scan;
enum lru_list lru;
unsigned long nr_reclaimed = 0;
unsigned long nr_to_reclaim = sc->nr_to_reclaim;
struct blk_plug plug;
+ bool scan_adjusted = false;
get_scan_count(lruvec, sc, nr);
+ /* Record the original scan target for proportional adjustments later */
+ memcpy(targets, nr, sizeof(nr));
+
blk_start_plug(&plug);
while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
nr[LRU_INACTIVE_FILE]) {
+ unsigned long nr_anon, nr_file, percentage;
+ unsigned long nr_scanned;
+
for_each_evictable_lru(lru) {
if (nr[lru]) {
nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
@@ -1842,17 +1981,60 @@ static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
lruvec, sc);
}
}
+
+ if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
+ continue;
+
/*
- * On large memory systems, scan >> priority can become
- * really large. This is fine for the starting priority;
- * we want to put equal scanning pressure on each zone.
- * However, if the VM has a harder time of freeing pages,
- * with multiple processes reclaiming pages, the total
- * freeing target can get unreasonably large.
+ * For global direct reclaim, reclaim only the number of pages
+ * requested. Less care is taken to scan proportionally as it
+ * is more important to minimise direct reclaim stall latency
+ * than it is to properly age the LRU lists.
*/
- if (nr_reclaimed >= nr_to_reclaim &&
- sc->priority < DEF_PRIORITY)
+ if (global_reclaim(sc) && !current_is_kswapd())
break;
+
+ /*
+ * For kswapd and memcg, reclaim at least the number of pages
+ * requested. Ensure that the anon and file LRUs shrink
+ * proportionally what was requested by get_scan_count(). We
+ * stop reclaiming one LRU and reduce the amount scanning
+ * proportional to the original scan target.
+ */
+ nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
+ nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
+
+ if (nr_file > nr_anon) {
+ unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
+ targets[LRU_ACTIVE_ANON] + 1;
+ lru = LRU_BASE;
+ percentage = nr_anon * 100 / scan_target;
+ } else {
+ unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
+ targets[LRU_ACTIVE_FILE] + 1;
+ lru = LRU_FILE;
+ percentage = nr_file * 100 / scan_target;
+ }
+
+ /* Stop scanning the smaller of the LRU */
+ nr[lru] = 0;
+ nr[lru + LRU_ACTIVE] = 0;
+
+ /*
+ * Recalculate the other LRU scan count based on its original
+ * scan target and the percentage scanning already complete
+ */
+ lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
+ nr_scanned = targets[lru] - nr[lru];
+ nr[lru] = targets[lru] * (100 - percentage) / 100;
+ nr[lru] -= min(nr[lru], nr_scanned);
+
+ lru += LRU_ACTIVE;
+ nr_scanned = targets[lru] - nr[lru];
+ nr[lru] = targets[lru] * (100 - percentage) / 100;
+ nr[lru] -= min(nr[lru], nr_scanned);
+
+ scan_adjusted = true;
}
blk_finish_plug(&plug);
sc->nr_reclaimed += nr_reclaimed;
@@ -2222,17 +2404,6 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
WB_REASON_TRY_TO_FREE_PAGES);
sc->may_writepage = 1;
}
-
- /* Take a nap, wait for some writeback to complete */
- if (!sc->hibernation_mode && sc->nr_scanned &&
- sc->priority < DEF_PRIORITY - 2) {
- struct zone *preferred_zone;
-
- first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
- &cpuset_current_mems_allowed,
- &preferred_zone);
- wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
- }
} while (--sc->priority >= 0);
out:
@@ -2601,6 +2772,91 @@ static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
}
/*
+ * kswapd shrinks the zone by the number of pages required to reach
+ * the high watermark.
+ *
+ * Returns true if kswapd scanned at least the requested number of pages to
+ * reclaim or if the lack of progress was due to pages under writeback.
+ * This is used to determine if the scanning priority needs to be raised.
+ */
+static bool kswapd_shrink_zone(struct zone *zone,
+ int classzone_idx,
+ struct scan_control *sc,
+ unsigned long lru_pages,
+ unsigned long *nr_attempted)
+{
+ unsigned long nr_slab;
+ int testorder = sc->order;
+ unsigned long balance_gap;
+ struct reclaim_state *reclaim_state = current->reclaim_state;
+ struct shrink_control shrink = {
+ .gfp_mask = sc->gfp_mask,
+ };
+ bool lowmem_pressure;
+
+ /* Reclaim above the high watermark. */
+ sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
+
+ /*
+ * Kswapd reclaims only single pages with compaction enabled. Trying
+ * too hard to reclaim until contiguous free pages have become
+ * available can hurt performance by evicting too much useful data
+ * from memory. Do not reclaim more than needed for compaction.
+ */
+ if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
+ compaction_suitable(zone, sc->order) !=
+ COMPACT_SKIPPED)
+ testorder = 0;
+
+ /*
+ * We put equal pressure on every zone, unless one zone has way too
+ * many pages free already. The "too many pages" is defined as the
+ * high wmark plus a "gap" where the gap is either the low
+ * watermark or 1% of the zone, whichever is smaller.
+ */
+ balance_gap = min(low_wmark_pages(zone),
+ (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
+ KSWAPD_ZONE_BALANCE_GAP_RATIO);
+
+ /*
+ * If there is no low memory pressure or the zone is balanced then no
+ * reclaim is necessary
+ */
+ lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
+ if (!lowmem_pressure && zone_balanced(zone, testorder,
+ balance_gap, classzone_idx))
+ return true;
+
+ shrink_zone(zone, sc);
+
+ reclaim_state->reclaimed_slab = 0;
+ nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages);
+ sc->nr_reclaimed += reclaim_state->reclaimed_slab;
+
+ /* Account for the number of pages attempted to reclaim */
+ *nr_attempted += sc->nr_to_reclaim;
+
+ if (nr_slab == 0 && !zone_reclaimable(zone))
+ zone->all_unreclaimable = 1;
+
+ zone_clear_flag(zone, ZONE_WRITEBACK);
+
+ /*
+ * If a zone reaches its high watermark, consider it to be no longer
+ * congested. It's possible there are dirty pages backed by congested
+ * BDIs but as pressure is relieved, speculatively avoid congestion
+ * waits.
+ */
+ if (!zone->all_unreclaimable &&
+ zone_balanced(zone, testorder, 0, classzone_idx)) {
+ zone_clear_flag(zone, ZONE_CONGESTED);
+ zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
+ }
+
+ return sc->nr_scanned >= sc->nr_to_reclaim;
+}
+
+/*
* For kswapd, balance_pgdat() will work across all this node's zones until
* they are all at high_wmark_pages(zone).
*
@@ -2624,35 +2880,28 @@ static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
int *classzone_idx)
{
- bool pgdat_is_balanced = false;
int i;
int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
- struct reclaim_state *reclaim_state = current->reclaim_state;
unsigned long nr_soft_reclaimed;
unsigned long nr_soft_scanned;
struct scan_control sc = {
.gfp_mask = GFP_KERNEL,
+ .priority = DEF_PRIORITY,
.may_unmap = 1,
.may_swap = 1,
- /*
- * kswapd doesn't want to be bailed out while reclaim. because
- * we want to put equal scanning pressure on each zone.
- */
- .nr_to_reclaim = ULONG_MAX,
+ .may_writepage = !laptop_mode,
.order = order,
.target_mem_cgroup = NULL,
};
- struct shrink_control shrink = {
- .gfp_mask = sc.gfp_mask,
- };
-loop_again:
- sc.priority = DEF_PRIORITY;
- sc.nr_reclaimed = 0;
- sc.may_writepage = !laptop_mode;
count_vm_event(PAGEOUTRUN);
do {
unsigned long lru_pages = 0;
+ unsigned long nr_attempted = 0;
+ bool raise_priority = true;
+ bool pgdat_needs_compaction = (order > 0);
+
+ sc.nr_reclaimed = 0;
/*
* Scan in the highmem->dma direction for the highest
@@ -2689,23 +2938,46 @@ loop_again:
end_zone = i;
break;
} else {
- /* If balanced, clear the congested flag */
+ /*
+ * If balanced, clear the dirty and congested
+ * flags
+ */
zone_clear_flag(zone, ZONE_CONGESTED);
+ zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
}
}
- if (i < 0) {
- pgdat_is_balanced = true;
+ if (i < 0)
goto out;
- }
for (i = 0; i <= end_zone; i++) {
struct zone *zone = pgdat->node_zones + i;
+ if (!populated_zone(zone))
+ continue;
+
lru_pages += zone_reclaimable_pages(zone);
+
+ /*
+ * If any zone is currently balanced then kswapd will
+ * not call compaction as it is expected that the
+ * necessary pages are already available.
+ */
+ if (pgdat_needs_compaction &&
+ zone_watermark_ok(zone, order,
+ low_wmark_pages(zone),
+ *classzone_idx, 0))
+ pgdat_needs_compaction = false;
}
/*
+ * If we're getting trouble reclaiming, start doing writepage
+ * even in laptop mode.
+ */
+ if (sc.priority < DEF_PRIORITY - 2)
+ sc.may_writepage = 1;
+
+ /*
* Now scan the zone in the dma->highmem direction, stopping
* at the last zone which needs scanning.
*
@@ -2716,8 +2988,6 @@ loop_again:
*/
for (i = 0; i <= end_zone; i++) {
struct zone *zone = pgdat->node_zones + i;
- int nr_slab, testorder;
- unsigned long balance_gap;
if (!populated_zone(zone))
continue;
@@ -2738,65 +3008,14 @@ loop_again:
sc.nr_reclaimed += nr_soft_reclaimed;
/*
- * We put equal pressure on every zone, unless
- * one zone has way too many pages free
- * already. The "too many pages" is defined
- * as the high wmark plus a "gap" where the
- * gap is either the low watermark or 1%
- * of the zone, whichever is smaller.
+ * There should be no need to raise the scanning
+ * priority if enough pages are already being scanned
+ * that that high watermark would be met at 100%
+ * efficiency.
*/
- balance_gap = min(low_wmark_pages(zone),
- (zone->managed_pages +
- KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
- KSWAPD_ZONE_BALANCE_GAP_RATIO);
- /*
- * Kswapd reclaims only single pages with compaction
- * enabled. Trying too hard to reclaim until contiguous
- * free pages have become available can hurt performance
- * by evicting too much useful data from memory.
- * Do not reclaim more than needed for compaction.
- */
- testorder = order;
- if (IS_ENABLED(CONFIG_COMPACTION) && order &&
- compaction_suitable(zone, order) !=
- COMPACT_SKIPPED)
- testorder = 0;
-
- if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
- !zone_balanced(zone, testorder,
- balance_gap, end_zone)) {
- shrink_zone(zone, &sc);
-
- reclaim_state->reclaimed_slab = 0;
- nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
- sc.nr_reclaimed += reclaim_state->reclaimed_slab;
-
- if (nr_slab == 0 && !zone_reclaimable(zone))
- zone->all_unreclaimable = 1;
- }
-
- /*
- * If we're getting trouble reclaiming, start doing
- * writepage even in laptop mode.
- */
- if (sc.priority < DEF_PRIORITY - 2)
- sc.may_writepage = 1;
-
- if (zone->all_unreclaimable) {
- if (end_zone && end_zone == i)
- end_zone--;
- continue;
- }
-
- if (zone_balanced(zone, testorder, 0, end_zone))
- /*
- * If a zone reaches its high watermark,
- * consider it to be no longer congested. It's
- * possible there are dirty pages backed by
- * congested BDIs but as pressure is relieved,
- * speculatively avoid congestion waits
- */
- zone_clear_flag(zone, ZONE_CONGESTED);
+ if (kswapd_shrink_zone(zone, end_zone, &sc,
+ lru_pages, &nr_attempted))
+ raise_priority = false;
}
/*
@@ -2808,74 +3027,38 @@ loop_again:
pfmemalloc_watermark_ok(pgdat))
wake_up(&pgdat->pfmemalloc_wait);
- if (pgdat_balanced(pgdat, order, *classzone_idx)) {
- pgdat_is_balanced = true;
- break; /* kswapd: all done */
- }
-
/*
- * We do this so kswapd doesn't build up large priorities for
- * example when it is freeing in parallel with allocators. It
- * matches the direct reclaim path behaviour in terms of impact
- * on zone->*_priority.
+ * Fragmentation may mean that the system cannot be rebalanced
+ * for high-order allocations in all zones. If twice the
+ * allocation size has been reclaimed and the zones are still
+ * not balanced then recheck the watermarks at order-0 to
+ * prevent kswapd reclaiming excessively. Assume that a
+ * process requested a high-order can direct reclaim/compact.
*/
- if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
- break;
- } while (--sc.priority >= 0);
-
-out:
- if (!pgdat_is_balanced) {
- cond_resched();
+ if (order && sc.nr_reclaimed >= 2UL << order)
+ order = sc.order = 0;
- try_to_freeze();
+ /* Check if kswapd should be suspending */
+ if (try_to_freeze() || kthread_should_stop())
+ break;
/*
- * Fragmentation may mean that the system cannot be
- * rebalanced for high-order allocations in all zones.
- * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
- * it means the zones have been fully scanned and are still
- * not balanced. For high-order allocations, there is
- * little point trying all over again as kswapd may
- * infinite loop.
- *
- * Instead, recheck all watermarks at order-0 as they
- * are the most important. If watermarks are ok, kswapd will go
- * back to sleep. High-order users can still perform direct
- * reclaim if they wish.
+ * Compact if necessary and kswapd is reclaiming at least the
+ * high watermark number of pages as requsted
*/
- if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
- order = sc.order = 0;
-
- goto loop_again;
- }
-
- /*
- * If kswapd was reclaiming at a higher order, it has the option of
- * sleeping without all zones being balanced. Before it does, it must
- * ensure that the watermarks for order-0 on *all* zones are met and
- * that the congestion flags are cleared. The congestion flag must
- * be cleared as kswapd is the only mechanism that clears the flag
- * and it is potentially going to sleep here.
- */
- if (order) {
- int zones_need_compaction = 1;
-
- for (i = 0; i <= end_zone; i++) {
- struct zone *zone = pgdat->node_zones + i;
-
- if (!populated_zone(zone))
- continue;
-
- /* Check if the memory needs to be defragmented. */
- if (zone_watermark_ok(zone, order,
- low_wmark_pages(zone), *classzone_idx, 0))
- zones_need_compaction = 0;
- }
-
- if (zones_need_compaction)
+ if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
compact_pgdat(pgdat, order);
- }
+ /*
+ * Raise priority if scanning rate is too low or there was no
+ * progress in reclaiming pages
+ */
+ if (raise_priority || !sc.nr_reclaimed)
+ sc.priority--;
+ } while (sc.priority >= 1 &&
+ !pgdat_balanced(pgdat, order, *classzone_idx));
+
+out:
/*
* Return the order we were reclaiming at so prepare_kswapd_sleep()
* makes a decision on the order we were last reclaiming at. However,