diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig | 7 | ||||
-rw-r--r-- | mm/Makefile | 6 | ||||
-rw-r--r-- | mm/fadvise.c | 5 | ||||
-rw-r--r-- | mm/filemap.c | 82 | ||||
-rw-r--r-- | mm/filemap_xip.c | 8 | ||||
-rw-r--r-- | mm/hugetlb.c | 4 | ||||
-rw-r--r-- | mm/memory.c | 6 | ||||
-rw-r--r-- | mm/mempolicy.c | 590 | ||||
-rw-r--r-- | mm/mlock.c | 1 | ||||
-rw-r--r-- | mm/mmap.c | 1 | ||||
-rw-r--r-- | mm/mremap.c | 1 | ||||
-rw-r--r-- | mm/msync.c | 2 | ||||
-rw-r--r-- | mm/oom_kill.c | 8 | ||||
-rw-r--r-- | mm/page-writeback.c | 7 | ||||
-rw-r--r-- | mm/page_alloc.c | 174 | ||||
-rw-r--r-- | mm/pdflush.c | 2 | ||||
-rw-r--r-- | mm/rmap.c | 17 | ||||
-rw-r--r-- | mm/shmem.c | 45 | ||||
-rw-r--r-- | mm/slab.c | 1194 | ||||
-rw-r--r-- | mm/slob.c | 385 | ||||
-rw-r--r-- | mm/sparse.c | 4 | ||||
-rw-r--r-- | mm/swap.c | 28 | ||||
-rw-r--r-- | mm/swap_state.c | 4 | ||||
-rw-r--r-- | mm/swapfile.c | 40 | ||||
-rw-r--r-- | mm/tiny-shmem.c | 2 | ||||
-rw-r--r-- | mm/truncate.c | 3 | ||||
-rw-r--r-- | mm/util.c | 39 | ||||
-rw-r--r-- | mm/vmscan.c | 381 |
28 files changed, 2198 insertions, 848 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index b3db11f137e..a9cb80ae640 100644 --- a/mm/Kconfig +++ b/mm/Kconfig @@ -132,3 +132,10 @@ config SPLIT_PTLOCK_CPUS default "4096" if ARM && !CPU_CACHE_VIPT default "4096" if PARISC && !PA20 default "4" + +# +# support for page migration +# +config MIGRATION + def_bool y if NUMA || SPARSEMEM || DISCONTIGMEM + depends on SWAP diff --git a/mm/Makefile b/mm/Makefile index 2fa6d2ca9f2..9aa03fa1dcc 100644 --- a/mm/Makefile +++ b/mm/Makefile @@ -9,8 +9,8 @@ mmu-$(CONFIG_MMU) := fremap.o highmem.o madvise.o memory.o mincore.o \ obj-y := bootmem.o filemap.o mempool.o oom_kill.o fadvise.o \ page_alloc.o page-writeback.o pdflush.o \ - readahead.o slab.o swap.o truncate.o vmscan.o \ - prio_tree.o $(mmu-y) + readahead.o swap.o truncate.o vmscan.o \ + prio_tree.o util.o $(mmu-y) obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o thrash.o obj-$(CONFIG_HUGETLBFS) += hugetlb.o @@ -18,5 +18,7 @@ obj-$(CONFIG_NUMA) += mempolicy.o obj-$(CONFIG_SPARSEMEM) += sparse.o obj-$(CONFIG_SHMEM) += shmem.o obj-$(CONFIG_TINY_SHMEM) += tiny-shmem.o +obj-$(CONFIG_SLOB) += slob.o +obj-$(CONFIG_SLAB) += slab.o obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o obj-$(CONFIG_FS_XIP) += filemap_xip.o diff --git a/mm/fadvise.c b/mm/fadvise.c index 5f19e87bc5a..d257c89e770 100644 --- a/mm/fadvise.c +++ b/mm/fadvise.c @@ -37,6 +37,11 @@ asmlinkage long sys_fadvise64_64(int fd, loff_t offset, loff_t len, int advice) if (!file) return -EBADF; + if (S_ISFIFO(file->f_dentry->d_inode->i_mode)) { + ret = -ESPIPE; + goto out; + } + mapping = file->f_mapping; if (!mapping || len < 0) { ret = -EINVAL; diff --git a/mm/filemap.c b/mm/filemap.c index 4ef24a39768..44da3d47699 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -15,6 +15,7 @@ #include <linux/compiler.h> #include <linux/fs.h> #include <linux/aio.h> +#include <linux/capability.h> #include <linux/kernel_stat.h> #include <linux/mm.h> #include <linux/swap.h> @@ -61,7 +62,7 @@ generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, * ->swap_lock (exclusive_swap_page, others) * ->mapping->tree_lock * - * ->i_sem + * ->i_mutex * ->i_mmap_lock (truncate->unmap_mapping_range) * * ->mmap_sem @@ -73,9 +74,9 @@ generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, * ->lock_page (access_process_vm) * * ->mmap_sem - * ->i_sem (msync) + * ->i_mutex (msync) * - * ->i_sem + * ->i_mutex * ->i_alloc_sem (various) * * ->inode_lock @@ -93,6 +94,7 @@ generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, * ->private_lock (try_to_unmap_one) * ->tree_lock (try_to_unmap_one) * ->zone.lru_lock (follow_page->mark_page_accessed) + * ->zone.lru_lock (check_pte_range->isolate_lru_page) * ->private_lock (page_remove_rmap->set_page_dirty) * ->tree_lock (page_remove_rmap->set_page_dirty) * ->inode_lock (page_remove_rmap->set_page_dirty) @@ -276,11 +278,11 @@ static int wait_on_page_writeback_range(struct address_space *mapping, * integrity" operation. It waits upon in-flight writeout before starting and * waiting upon new writeout. If there was an IO error, return it. * - * We need to re-take i_sem during the generic_osync_inode list walk because + * We need to re-take i_mutex during the generic_osync_inode list walk because * it is otherwise livelockable. */ int sync_page_range(struct inode *inode, struct address_space *mapping, - loff_t pos, size_t count) + loff_t pos, loff_t count) { pgoff_t start = pos >> PAGE_CACHE_SHIFT; pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; @@ -290,9 +292,9 @@ int sync_page_range(struct inode *inode, struct address_space *mapping, return 0; ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); if (ret == 0) { - down(&inode->i_sem); + mutex_lock(&inode->i_mutex); ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); - up(&inode->i_sem); + mutex_unlock(&inode->i_mutex); } if (ret == 0) ret = wait_on_page_writeback_range(mapping, start, end); @@ -301,13 +303,12 @@ int sync_page_range(struct inode *inode, struct address_space *mapping, EXPORT_SYMBOL(sync_page_range); /* - * Note: Holding i_sem across sync_page_range_nolock is not a good idea + * Note: Holding i_mutex across sync_page_range_nolock is not a good idea * as it forces O_SYNC writers to different parts of the same file * to be serialised right until io completion. */ -static int sync_page_range_nolock(struct inode *inode, - struct address_space *mapping, - loff_t pos, size_t count) +int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, + loff_t pos, loff_t count) { pgoff_t start = pos >> PAGE_CACHE_SHIFT; pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; @@ -322,6 +323,7 @@ static int sync_page_range_nolock(struct inode *inode, ret = wait_on_page_writeback_range(mapping, start, end); return ret; } +EXPORT_SYMBOL(sync_page_range_nolock); /** * filemap_fdatawait - walk the list of under-writeback pages of the given @@ -343,30 +345,44 @@ EXPORT_SYMBOL(filemap_fdatawait); int filemap_write_and_wait(struct address_space *mapping) { - int retval = 0; + int err = 0; if (mapping->nrpages) { - retval = filemap_fdatawrite(mapping); - if (retval == 0) - retval = filemap_fdatawait(mapping); + err = filemap_fdatawrite(mapping); + /* + * Even if the above returned error, the pages may be + * written partially (e.g. -ENOSPC), so we wait for it. + * But the -EIO is special case, it may indicate the worst + * thing (e.g. bug) happened, so we avoid waiting for it. + */ + if (err != -EIO) { + int err2 = filemap_fdatawait(mapping); + if (!err) + err = err2; + } } - return retval; + return err; } +EXPORT_SYMBOL(filemap_write_and_wait); int filemap_write_and_wait_range(struct address_space *mapping, loff_t lstart, loff_t lend) { - int retval = 0; + int err = 0; if (mapping->nrpages) { - retval = __filemap_fdatawrite_range(mapping, lstart, lend, - WB_SYNC_ALL); - if (retval == 0) - retval = wait_on_page_writeback_range(mapping, - lstart >> PAGE_CACHE_SHIFT, - lend >> PAGE_CACHE_SHIFT); + err = __filemap_fdatawrite_range(mapping, lstart, lend, + WB_SYNC_ALL); + /* See comment of filemap_write_and_wait() */ + if (err != -EIO) { + int err2 = wait_on_page_writeback_range(mapping, + lstart >> PAGE_CACHE_SHIFT, + lend >> PAGE_CACHE_SHIFT); + if (!err) + err = err2; + } } - return retval; + return err; } /* @@ -1878,7 +1894,7 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, /* * Sync the fs metadata but not the minor inode changes and * of course not the data as we did direct DMA for the IO. - * i_sem is held, which protects generic_osync_inode() from + * i_mutex is held, which protects generic_osync_inode() from * livelocking. */ if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { @@ -2094,7 +2110,7 @@ __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, if (err) goto out; - inode_update_time(inode, 1); + file_update_time(file); /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ if (unlikely(file->f_flags & O_DIRECT)) { @@ -2181,10 +2197,10 @@ ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf, BUG_ON(iocb->ki_pos != pos); - down(&inode->i_sem); + mutex_lock(&inode->i_mutex); ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos); - up(&inode->i_sem); + mutex_unlock(&inode->i_mutex); if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { ssize_t err; @@ -2206,9 +2222,9 @@ ssize_t generic_file_write(struct file *file, const char __user *buf, struct iovec local_iov = { .iov_base = (void __user *)buf, .iov_len = count }; - down(&inode->i_sem); + mutex_lock(&inode->i_mutex); ret = __generic_file_write_nolock(file, &local_iov, 1, ppos); - up(&inode->i_sem); + mutex_unlock(&inode->i_mutex); if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { ssize_t err; @@ -2242,9 +2258,9 @@ ssize_t generic_file_writev(struct file *file, const struct iovec *iov, struct inode *inode = mapping->host; ssize_t ret; - down(&inode->i_sem); + mutex_lock(&inode->i_mutex); ret = __generic_file_write_nolock(file, iov, nr_segs, ppos); - up(&inode->i_sem); + mutex_unlock(&inode->i_mutex); if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { int err; @@ -2258,7 +2274,7 @@ ssize_t generic_file_writev(struct file *file, const struct iovec *iov, EXPORT_SYMBOL(generic_file_writev); /* - * Called under i_sem for writes to S_ISREG files. Returns -EIO if something + * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something * went wrong during pagecache shootdown. */ static ssize_t diff --git a/mm/filemap_xip.c b/mm/filemap_xip.c index 9cf687e4a29..b960ac8e591 100644 --- a/mm/filemap_xip.c +++ b/mm/filemap_xip.c @@ -338,7 +338,7 @@ __xip_file_write(struct file *filp, const char __user *buf, *ppos = pos; /* * No need to use i_size_read() here, the i_size - * cannot change under us because we hold i_sem. + * cannot change under us because we hold i_mutex. */ if (pos > inode->i_size) { i_size_write(inode, pos); @@ -358,7 +358,7 @@ xip_file_write(struct file *filp, const char __user *buf, size_t len, loff_t pos; ssize_t ret; - down(&inode->i_sem); + mutex_lock(&inode->i_mutex); if (!access_ok(VERIFY_READ, buf, len)) { ret=-EFAULT; @@ -383,14 +383,14 @@ xip_file_write(struct file *filp, const char __user *buf, size_t len, if (ret) goto out_backing; - inode_update_time(inode, 1); + file_update_time(filp); ret = __xip_file_write (filp, buf, count, pos, ppos); out_backing: current->backing_dev_info = NULL; out_up: - up(&inode->i_sem); + mutex_unlock(&inode->i_mutex); return ret; } EXPORT_SYMBOL_GPL(xip_file_write); diff --git a/mm/hugetlb.c b/mm/hugetlb.c index f4c43d7980b..b21d78c941b 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -12,6 +12,7 @@ #include <linux/nodemask.h> #include <linux/pagemap.h> #include <linux/mempolicy.h> +#include <linux/cpuset.h> #include <asm/page.h> #include <asm/pgtable.h> @@ -48,7 +49,8 @@ static struct page *dequeue_huge_page(struct vm_area_struct *vma, for (z = zonelist->zones; *z; z++) { nid = (*z)->zone_pgdat->node_id; - if (!list_empty(&hugepage_freelists[nid])) + if (cpuset_zone_allowed(*z, GFP_HIGHUSER) && + !list_empty(&hugepage_freelists[nid])) break; } diff --git a/mm/memory.c b/mm/memory.c index 7197f9bcd38..7a11ddd5060 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -1784,13 +1784,13 @@ int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) if (!inode->i_op || !inode->i_op->truncate_range) return -ENOSYS; - down(&inode->i_sem); + mutex_lock(&inode->i_mutex); down_write(&inode->i_alloc_sem); unmap_mapping_range(mapping, offset, (end - offset), 1); truncate_inode_pages_range(mapping, offset, end); inode->i_op->truncate_range(inode, offset, end); up_write(&inode->i_alloc_sem); - up(&inode->i_sem); + mutex_unlock(&inode->i_mutex); return 0; } @@ -2267,6 +2267,8 @@ int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, return handle_pte_fault(mm, vma, address, pte, pmd, write_access); } +EXPORT_SYMBOL_GPL(__handle_mm_fault); + #ifndef __PAGETABLE_PUD_FOLDED /* * Allocate page upper directory. diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 0f1d2b8a952..73790188b0e 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -83,9 +83,18 @@ #include <linux/init.h> #include <linux/compat.h> #include <linux/mempolicy.h> +#include <linux/swap.h> +#include <linux/seq_file.h> +#include <linux/proc_fs.h> + #include <asm/tlbflush.h> #include <asm/uaccess.h> +/* Internal flags */ +#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */ +#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ +#define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ + static kmem_cache_t *policy_cache; static kmem_cache_t *sn_cache; @@ -171,12 +180,19 @@ static struct mempolicy *mpol_new(int mode, nodemask_t *nodes) break; } policy->policy = mode; + policy->cpuset_mems_allowed = cpuset_mems_allowed(current); return policy; } -/* Ensure all existing pages follow the policy. */ +static void gather_stats(struct page *, void *); +static void migrate_page_add(struct page *page, struct list_head *pagelist, + unsigned long flags); + +/* Scan through pages checking if pages follow certain conditions. */ static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, - unsigned long addr, unsigned long end, nodemask_t *nodes) + unsigned long addr, unsigned long end, + const nodemask_t *nodes, unsigned long flags, + void *private) { pte_t *orig_pte; pte_t *pte; @@ -192,8 +208,28 @@ static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, page = vm_normal_page(vma, addr, *pte); if (!page) continue; + /* + * The check for PageReserved here is important to avoid + * handling zero pages and other pages that may have been + * marked special by the system. + * + * If the PageReserved would not be checked here then f.e. + * the location of the zero page could have an influence + * on MPOL_MF_STRICT, zero pages would be counted for + * the per node stats, and there would be useless attempts + * to put zero pages on the migration list. + */ + if (PageReserved(page)) + continue; nid = page_to_nid(page); - if (!node_isset(nid, *nodes)) + if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) + continue; + + if (flags & MPOL_MF_STATS) + gather_stats(page, private); + else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) + migrate_page_add(page, private, flags); + else break; } while (pte++, addr += PAGE_SIZE, addr != end); pte_unmap_unlock(orig_pte, ptl); @@ -201,7 +237,9 @@ static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, } static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, - unsigned long addr, unsigned long end, nodemask_t *nodes) + unsigned long addr, unsigned long end, + const nodemask_t *nodes, unsigned long flags, + void *private) { pmd_t *pmd; unsigned long next; @@ -211,14 +249,17 @@ static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, next = pmd_addr_end(addr, end); if (pmd_none_or_clear_bad(pmd)) continue; - if (check_pte_range(vma, pmd, addr, next, nodes)) + if (check_pte_range(vma, pmd, addr, next, nodes, + flags, private)) return -EIO; } while (pmd++, addr = next, addr != end); return 0; } static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, - unsigned long addr, unsigned long end, nodemask_t *nodes) + unsigned long addr, unsigned long end, + const nodemask_t *nodes, unsigned long flags, + void *private) { pud_t *pud; unsigned long next; @@ -228,14 +269,17 @@ static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, next = pud_addr_end(addr, end); if (pud_none_or_clear_bad(pud)) continue; - if (check_pmd_range(vma, pud, addr, next, nodes)) + if (check_pmd_range(vma, pud, addr, next, nodes, + flags, private)) return -EIO; } while (pud++, addr = next, addr != end); return 0; } static inline int check_pgd_range(struct vm_area_struct *vma, - unsigned long addr, unsigned long end, nodemask_t *nodes) + unsigned long addr, unsigned long end, + const nodemask_t *nodes, unsigned long flags, + void *private) { pgd_t *pgd; unsigned long next; @@ -245,36 +289,61 @@ static inline int check_pgd_range(struct vm_area_struct *vma, next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; - if (check_pud_range(vma, pgd, addr, next, nodes)) + if (check_pud_range(vma, pgd, addr, next, nodes, + flags, private)) return -EIO; } while (pgd++, addr = next, addr != end); return 0; } -/* Step 1: check the range */ +/* Check if a vma is migratable */ +static inline int vma_migratable(struct vm_area_struct *vma) +{ + if (vma->vm_flags & ( + VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED)) + return 0; + return 1; +} + +/* + * Check if all pages in a range are on a set of nodes. + * If pagelist != NULL then isolate pages from the LRU and + * put them on the pagelist. + */ static struct vm_area_struct * check_range(struct mm_struct *mm, unsigned long start, unsigned long end, - nodemask_t *nodes, unsigned long flags) + const nodemask_t *nodes, unsigned long flags, void *private) { int err; struct vm_area_struct *first, *vma, *prev; + /* Clear the LRU lists so pages can be isolated */ + if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) + lru_add_drain_all(); + first = find_vma(mm, start); if (!first) return ERR_PTR(-EFAULT); prev = NULL; for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) { - if (!vma->vm_next && vma->vm_end < end) - return ERR_PTR(-EFAULT); - if (prev && prev->vm_end < vma->vm_start) - return ERR_PTR(-EFAULT); - if ((flags & MPOL_MF_STRICT) && !is_vm_hugetlb_page(vma)) { + if (!(flags & MPOL_MF_DISCONTIG_OK)) { + if (!vma->vm_next && vma->vm_end < end) + return ERR_PTR(-EFAULT); + if (prev && prev->vm_end < vma->vm_start) + return ERR_PTR(-EFAULT); + } + if (!is_vm_hugetlb_page(vma) && + ((flags & MPOL_MF_STRICT) || + ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && + vma_migratable(vma)))) { unsigned long endvma = vma->vm_end; + if (endvma > end) endvma = end; if (vma->vm_start > start) start = vma->vm_start; - err = check_pgd_range(vma, start, endvma, nodes); + err = check_pgd_range(vma, start, endvma, nodes, + flags, private); if (err) { first = ERR_PTR(err); break; @@ -333,51 +402,10 @@ static int contextualize_policy(int mode, nodemask_t *nodes) if (!nodes) return 0; - /* Update current mems_allowed */ - cpuset_update_current_mems_allowed(); - /* Ignore nodes not set in current->mems_allowed */ - cpuset_restrict_to_mems_allowed(nodes->bits); - return mpol_check_policy(mode, nodes); -} - -long do_mbind(unsigned long start, unsigned long len, - unsigned long mode, nodemask_t *nmask, unsigned long flags) -{ - struct vm_area_struct *vma; - struct mm_struct *mm = current->mm; - struct mempolicy *new; - unsigned long end; - int err; - - if ((flags & ~(unsigned long)(MPOL_MF_STRICT)) || mode > MPOL_MAX) - return -EINVAL; - if (start & ~PAGE_MASK) + cpuset_update_task_memory_state(); + if (!cpuset_nodes_subset_current_mems_allowed(*nodes)) return -EINVAL; - if (mode == MPOL_DEFAULT) - flags &= ~MPOL_MF_STRICT; - len = (len + PAGE_SIZE - 1) & PAGE_MASK; - end = start + len; - if (end < start) - return -EINVAL; - if (end == start) - return 0; - if (mpol_check_policy(mode, nmask)) - return -EINVAL; - new = mpol_new(mode, nmask); - if (IS_ERR(new)) - return PTR_ERR(new); - - PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len, - mode,nodes_addr(nodes)[0]); - - down_write(&mm->mmap_sem); - vma = check_range(mm, start, end, nmask, flags); - err = PTR_ERR(vma); - if (!IS_ERR(vma)) - err = mbind_range(vma, start, end, new); - up_write(&mm->mmap_sem); - mpol_free(new); - return err; + return mpol_check_policy(mode, nodes); } /* Set the process memory policy */ @@ -448,7 +476,7 @@ long do_get_mempolicy(int *policy, nodemask_t *nmask, struct vm_area_struct *vma = NULL; struct mempolicy *pol = current->mempolicy; - cpuset_update_current_mems_allowed(); + cpuset_update_task_memory_state(); if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR)) return -EINVAL; if (flags & MPOL_F_ADDR) { @@ -500,11 +528,141 @@ long do_get_mempolicy(int *policy, nodemask_t *nmask, } /* + * page migration + */ + +static void migrate_page_add(struct page *page, struct list_head *pagelist, + unsigned long flags) +{ + /* + * Avoid migrating a page that is shared with others. + */ + if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { + if (isolate_lru_page(page)) + list_add(&page->lru, pagelist); + } +} + +static int swap_pages(struct list_head *pagelist) +{ + LIST_HEAD(moved); + LIST_HEAD(failed); + int n; + + n = migrate_pages(pagelist, NULL, &moved, &failed); + putback_lru_pages(&failed); + putback_lru_pages(&moved); + + return n; +} + +/* + * For now migrate_pages simply swaps out the pages from nodes that are in + * the source set but not in the target set. In the future, we would + * want a function that moves pages between the two nodesets in such + * a way as to preserve the physical layout as much as possible. + * + * Returns the number of page that could not be moved. + */ +int do_migrate_pages(struct mm_struct *mm, + const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) +{ + LIST_HEAD(pagelist); + int count = 0; + nodemask_t nodes; + + nodes_andnot(nodes, *from_nodes, *to_nodes); + + down_read(&mm->mmap_sem); + check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nodes, + flags | MPOL_MF_DISCONTIG_OK, &pagelist); + + if (!list_empty(&pagelist)) { + count = swap_pages(&pagelist); + putback_lru_pages(&pagelist); + } + + up_read(&mm->mmap_sem); + return count; +} + +long do_mbind(unsigned long start, unsigned long len, + unsigned long mode, nodemask_t *nmask, unsigned long flags) +{ + struct vm_area_struct *vma; + struct mm_struct *mm = current->mm; + struct mempolicy *new; + unsigned long end; + int err; + LIST_HEAD(pagelist); + + if ((flags & ~(unsigned long)(MPOL_MF_STRICT | + MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) + || mode > MPOL_MAX) + return -EINVAL; + if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_RESOURCE)) + return -EPERM; + + if (start & ~PAGE_MASK) + return -EINVAL; + + if (mode == MPOL_DEFAULT) + flags &= ~MPOL_MF_STRICT; + + len = (len + PAGE_SIZE - 1) & PAGE_MASK; + end = start + len; + + if (end < start) + return -EINVAL; + if (end == start) + return 0; + + if (mpol_check_policy(mode, nmask)) + return -EINVAL; + + new = mpol_new(mode, nmask); + if (IS_ERR(new)) + return PTR_ERR(new); + + /* + * If we are using the default policy then operation + * on discontinuous address spaces is okay after all + */ + if (!new) + flags |= MPOL_MF_DISCONTIG_OK; + + PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len, + mode,nodes_addr(nodes)[0]); + + down_write(&mm->mmap_sem); + vma = check_range(mm, start, end, nmask, + flags | MPOL_MF_INVERT, &pagelist); + + err = PTR_ERR(vma); + if (!IS_ERR(vma)) { + int nr_failed = 0; + + err = mbind_range(vma, start, end, new); + if (!list_empty(&pagelist)) + nr_failed = swap_pages(&pagelist); + + if (!err && nr_failed && (flags & MPOL_MF_STRICT)) + err = -EIO; + } + if (!list_empty(&pagelist)) + putback_lru_pages(&pagelist); + + up_write(&mm->mmap_sem); + mpol_free(new); + return err; +} + +/* * User space interface with variable sized bitmaps for nodelists. */ /* Copy a node mask from user space. */ -static int get_nodes(nodemask_t *nodes, unsigned long __user *nmask, +static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask, unsigned long maxnode) { unsigned long k; @@ -593,6 +751,65 @@ asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask, return do_set_mempolicy(mode, &nodes); } +asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode, + const unsigned long __user *old_nodes, + const unsigned long __user *new_nodes) +{ + struct mm_struct *mm; + struct task_struct *task; + nodemask_t old; + nodemask_t new; + nodemask_t task_nodes; + int err; + + err = get_nodes(&old, old_nodes, maxnode); + if (err) + return err; + + err = get_nodes(&new, new_nodes, maxnode); + if (err) + return err; + + /* Find the mm_struct */ + read_lock(&tasklist_lock); + task = pid ? find_task_by_pid(pid) : current; + if (!task) { + read_unlock(&tasklist_lock); + return -ESRCH; + } + mm = get_task_mm(task); + read_unlock(&tasklist_lock); + + if (!mm) + return -EINVAL; + + /* + * Check if this process has the right to modify the specified + * process. The right exists if the process has administrative + * capabilities, superuser priviledges or the same + * userid as the target process. + */ + if ((current->euid != task->suid) && (current->euid != task->uid) && + (current->uid != task->suid) && (current->uid != task->uid) && + !capable(CAP_SYS_ADMIN)) { + err = -EPERM; + goto out; + } + + task_nodes = cpuset_mems_allowed(task); + /* Is the user allowed to access the target nodes? */ + if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_ADMIN)) { + err = -EPERM; + goto out; + } + + err = do_migrate_pages(mm, &old, &new, MPOL_MF_MOVE); +out: + mmput(mm); + return err; +} + + /* Retrieve NUMA policy */ asmlinkage long sys_get_mempolicy(int __user *policy, unsigned long __user *nmask, @@ -699,8 +916,8 @@ asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len, #endif /* Return effective policy for a VMA */ -struct mempolicy * -get_vma_policy(struct task_struct *task, struct vm_area_struct *vma, unsigned long addr) +static struct mempolicy * get_vma_policy(struct task_struct *task, + struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol = task->mempolicy; @@ -759,6 +976,33 @@ static unsigned interleave_nodes(struct mempolicy *policy) return nid; } +/* + * Depending on the memory policy provide a node from which to allocate the + * next slab entry. + */ +unsigned slab_node(struct mempolicy *policy) +{ + switch (policy->policy) { + case MPOL_INTERLEAVE: + return interleave_nodes(policy); + + case MPOL_BIND: + /* + * Follow bind policy behavior and start allocation at the + * first node. + */ + return policy->v.zonelist->zones[0]->zone_pgdat->node_id; + + case MPOL_PREFERRED: + if (policy->v.preferred_node >= 0) + return policy->v.preferred_node; + /* Fall through */ + + default: + return numa_node_id(); + } +} + /* Do static interleaving for a VMA with known offset. */ static unsigned offset_il_node(struct mempolicy *pol, struct vm_area_struct *vma, unsigned long off) @@ -848,7 +1092,7 @@ alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr) { struct mempolicy *pol = get_vma_policy(current, vma, addr); - cpuset_update_current_mems_allowed(); + cpuset_update_task_memory_state(); if (unlikely(pol->policy == MPOL_INTERLEAVE)) { unsigned nid; @@ -874,7 +1118,7 @@ alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr) * interrupt context and apply the current process NUMA policy. * Returns NULL when no page can be allocated. * - * Don't call cpuset_update_current_mems_allowed() unless + * Don't call cpuset_update_task_memory_state() unless * 1) it's ok to take cpuset_sem (can WAIT), and * 2) allocating for current task (not interrupt). */ @@ -883,7 +1127,7 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order) struct mempolicy *pol = current->mempolicy; if ((gfp & __GFP_WAIT) && !in_interrupt()) - cpuset_update_current_mems_allowed(); + cpuset_update_task_memory_state(); if (!pol || in_interrupt()) pol = &default_policy; if (pol->policy == MPOL_INTERLEAVE) @@ -892,6 +1136,15 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order) } EXPORT_SYMBOL(alloc_pages_current); +/* + * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it + * rebinds the mempolicy its copying by calling mpol_rebind_policy() + * with the mems_allowed returned by cpuset_mems_allowed(). This + * keeps mempolicies cpuset relative after its cpuset moves. See + * further kernel/cpuset.c update_nodemask(). + */ +void *cpuset_being_rebound; + /* Slow path of a mempolicy copy */ struct mempolicy *__mpol_copy(struct mempolicy *old) { @@ -899,6 +1152,10 @@ struct mempolicy *__mpol_copy(struct mempolicy *old) if (!new) return ERR_PTR(-ENOMEM); + if (current_cpuset_is_being_rebound()) { + nodemask_t mems = cpuset_mems_allowed(current); + mpol_rebind_policy(old, &mems); + } *new = *old; atomic_set(&new->refcnt, 1); if (new->policy == MPOL_BIND) { @@ -1105,6 +1362,30 @@ restart: return 0; } +void mpol_shared_policy_init(struct shared_policy *info, int policy, + nodemask_t *policy_nodes) +{ + info->root = RB_ROOT; + spin_lock_init(&info->lock); + + if (policy != MPOL_DEFAULT) { + struct mempolicy *newpol; + + /* Falls back to MPOL_DEFAULT on any error */ + newpol = mpol_new(policy, policy_nodes); + if (!IS_ERR(newpol)) { + /* Create pseudo-vma that contains just the policy */ + struct vm_area_struct pvma; + + memset(&pvma, 0, sizeof(struct vm_area_struct)); + /* Policy covers entire file */ + pvma.vm_end = TASK_SIZE; + mpol_set_shared_policy(info, &pvma, newpol); + mpol_free(newpol); + } + } +} + int mpol_set_shared_policy(struct shared_policy *info, struct vm_area_struct *vma, struct mempolicy *npol) { @@ -1173,25 +1454,31 @@ void numa_default_policy(void) } /* Migrate a policy to a different set of nodes */ -static void rebind_policy(struct mempolicy *pol, const nodemask_t *old, - const nodemask_t *new) +void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask) { + nodemask_t *mpolmask; nodemask_t tmp; if (!pol) return; + mpolmask = &pol->cpuset_mems_allowed; + if (nodes_equal(*mpolmask, *newmask)) + return; switch (pol->policy) { case MPOL_DEFAULT: break; case MPOL_INTERLEAVE: - nodes_remap(tmp, pol->v.nodes, *old, *new); + nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask); pol->v.nodes = tmp; - current->il_next = node_remap(current->il_next, *old, *new); + *mpolmask = *newmask; + current->il_next = node_remap(current->il_next, + *mpolmask, *newmask); break; case MPOL_PREFERRED: pol->v.preferred_node = node_remap(pol->v.preferred_node, - *old, *new); + *mpolmask, *newmask); + *mpolmask = *newmask; break; case MPOL_BIND: { nodemask_t nodes; @@ -1201,7 +1488,7 @@ static void rebind_policy(struct mempolicy *pol, const nodemask_t *old, nodes_clear(nodes); for (z = pol->v.zonelist->zones; *z; z++) node_set((*z)->zone_pgdat->node_id, nodes); - nodes_remap(tmp, nodes, *old, *new); + nodes_remap(tmp, nodes, *mpolmask, *newmask); nodes = tmp; zonelist = bind_zonelist(&nodes); @@ -1216,6 +1503,7 @@ static void rebind_policy(struct mempolicy *pol, const nodemask_t *old, kfree(pol->v.zonelist); pol->v.zonelist = zonelist; } + *mpolmask = *newmask; break; } default: @@ -1225,12 +1513,156 @@ static void rebind_policy(struct mempolicy *pol, const nodemask_t *old, } /* - * Someone moved this task to different nodes. Fixup mempolicies. + * Wrapper for mpol_rebind_policy() that just requires task + * pointer, and updates task mempolicy. + */ + +void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new) +{ + mpol_rebind_policy(tsk->mempolicy, new); +} + +/* + * Rebind each vma in mm to new nodemask. * - * TODO - fixup current->mm->vma and shmfs/tmpfs/hugetlbfs policies as well, - * once we have a cpuset mechanism to mark which cpuset subtree is migrating. + * Call holding a reference to mm. Takes mm->mmap_sem during call. + */ + +void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) +{ + struct vm_area_struct *vma; + + down_write(&mm->mmap_sem); + for (vma = mm->mmap; vma; vma = vma->vm_next) + mpol_rebind_policy(vma->vm_policy, new); + up_write(&mm->mmap_sem); +} + +/* + * Display pages allocated per node and memory policy via /proc. + */ + +static const char *policy_types[] = { "default", "prefer", "bind", + "interleave" }; + +/* + * Convert a mempolicy into a string. + * Returns the number of characters in buffer (if positive) + * or an error (negative) */ -void numa_policy_rebind(const nodemask_t *old, const nodemask_t *new) +static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) +{ + char *p = buffer; + int l; + nodemask_t nodes; + int mode = pol ? pol->policy : MPOL_DEFAULT; + + switch (mode) { + case MPOL_DEFAULT: + nodes_clear(nodes); + break; + + case MPOL_PREFERRED: + nodes_clear(nodes); + node_set(pol->v.preferred_node, nodes); + break; + + case MPOL_BIND: + get_zonemask(pol, &nodes); + break; + + case MPOL_INTERLEAVE: + nodes = pol->v.nodes; + break; + + default: + BUG(); + return -EFAULT; + } + + l = strlen(policy_types[mode]); + if (buffer + maxlen < p + l + 1) + return -ENOSPC; + + strcpy(p, policy_types[mode]); + p += l; + + if (!nodes_empty(nodes)) { + if (buffer + maxlen < p + 2) + return -ENOSPC; + *p++ = '='; + p += nodelist_scnprintf(p, buffer + maxlen - p, nodes); + } + return p - buffer; +} + +struct numa_maps { + unsigned long pages; + unsigned long anon; + unsigned long mapped; + unsigned long mapcount_max; + unsigned long node[MAX_NUMNODES]; +}; + +static void gather_stats(struct page *page, void *private) { - rebind_policy(current->mempolicy, old, new); + struct numa_maps *md = private; + int count = page_mapcount(page); + + if (count) + md->mapped++; + + if (count > md->mapcount_max) + md->mapcount_max = count; + + md->pages++; + + if (PageAnon(page)) + md->anon++; + + md->node[page_to_nid(page)]++; + cond_resched(); } + +int show_numa_map(struct seq_file *m, void *v) +{ + struct task_struct *task = m->private; + struct vm_area_struct *vma = v; + struct numa_maps *md; + int n; + char buffer[50]; + + if (!vma->vm_mm) + return 0; + + md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL); + if (!md) + return 0; + + check_pgd_range(vma, vma->vm_start, vma->vm_end, + &node_online_map, MPOL_MF_STATS, md); + + if (md->pages) { + mpol_to_str(buffer, sizeof(buffer), + get_vma_policy(task, vma, vma->vm_start)); + + seq_printf(m, "%08lx %s pages=%lu mapped=%lu maxref=%lu", + vma->vm_start, buffer, md->pages, + md->mapped, md->mapcount_max); + + if (md->anon) + seq_printf(m," anon=%lu",md->anon); + + for_each_online_node(n) + if (md->node[n]) + seq_printf(m, " N%d=%lu", n, md->node[n]); + + seq_putc(m, '\n'); + } + kfree(md); + + if (m->count < m->size) + m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0; + return 0; +} + diff --git a/mm/mlock.c b/mm/mlock.c index 4ae3a46ff76..b90c59573ab 100644 --- a/mm/mlock.c +++ b/mm/mlock.c @@ -5,6 +5,7 @@ * (C) Copyright 2002 Christoph Hellwig */ +#include <linux/capability.h> #include <linux/mman.h> #include <linux/mm.h> #include <linux/mempolicy.h> diff --git a/mm/mmap.c b/mm/mmap.c index 64ba4dbcb7d..47556d2b3e9 100644 --- a/mm/mmap.c +++ b/mm/mmap.c @@ -13,6 +13,7 @@ #include <linux/pagemap.h> #include <linux/swap.h> #include <linux/syscalls.h> +#include <linux/capability.h> #include <linux/init.h> #include <linux/file.h> #include <linux/fs.h> diff --git a/mm/mremap.c b/mm/mremap.c index ddaeee9a0b6..1903bdf65e4 100644 --- a/mm/mremap.c +++ b/mm/mremap.c @@ -13,6 +13,7 @@ #include <linux/shm.h> #include <linux/mman.h> #include <linux/swap.h> +#include <linux/capability.h> #include <linux/fs.h> #include <linux/highmem.h> #include <linux/security.h> diff --git a/mm/msync.c b/mm/msync.c index 1b5b6f662dc..3563a56e1a5 100644 --- a/mm/msync.c +++ b/mm/msync.c @@ -137,7 +137,7 @@ static int msync_interval(struct vm_area_struct *vma, ret = filemap_fdatawrite(mapping); if (file->f_op && file->f_op->fsync) { /* - * We don't take i_sem here because mmap_sem + * We don't take i_mutex here because mmap_sem * is already held. */ err = file->f_op->fsync(file,file->f_dentry,1); diff --git a/mm/oom_kill.c b/mm/oom_kill.c index d348b903595..14bd4ec7959 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c @@ -274,6 +274,7 @@ void out_of_memory(gfp_t gfp_mask, int order) show_mem(); } + cpuset_lock(); read_lock(&tasklist_lock); retry: p = select_bad_process(); @@ -284,6 +285,7 @@ retry: /* Found nothing?!?! Either we hang forever, or we panic. */ if (!p) { read_unlock(&tasklist_lock); + cpuset_unlock(); panic("Out of memory and no killable processes...\n"); } @@ -293,12 +295,14 @@ retry: out: read_unlock(&tasklist_lock); + cpuset_unlock(); if (mm) mmput(mm); /* * Give "p" a good chance of killing itself before we - * retry to allocate memory. + * retry to allocate memory unless "p" is current */ - schedule_timeout_interruptible(1); + if (!test_thread_flag(TIF_MEMDIE)) + schedule_timeout_interruptible(1); } diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 5240e426c1f..945559fb63d 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -46,7 +46,7 @@ static long ratelimit_pages = 32; static long total_pages; /* The total number of pages in the machine. */ -static int dirty_exceeded; /* Dirty mem may be over limit */ +static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */ /* * When balance_dirty_pages decides that the caller needs to perform some @@ -212,7 +212,8 @@ static void balance_dirty_pages(struct address_space *mapping) if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) break; - dirty_exceeded = 1; + if (!dirty_exceeded) + dirty_exceeded = 1; /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. * Unstable writes are a feature of certain networked @@ -234,7 +235,7 @@ static void balance_dirty_pages(struct address_space *mapping) blk_congestion_wait(WRITE, HZ/10); } - if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) + if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded) dirty_exceeded = 0; if (writeback_in_progress(bdi)) diff --git a/mm/page_alloc.c b/mm/page_alloc.c index fd47494cb98..df54e2fc8ee 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -53,6 +53,7 @@ struct pglist_data *pgdat_list __read_mostly; unsigned long totalram_pages __read_mostly; unsigned long totalhigh_pages __read_mostly; long nr_swap_pages; +int percpu_pagelist_fraction; static void fastcall free_hot_cold_page(struct page *page, int cold); @@ -136,9 +137,9 @@ static inline int bad_range(struct zone *zone, struct page *page) static void bad_page(struct page *page) { printk(KERN_EMERG "Bad page state in process '%s'\n" - "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" - "Trying to fix it up, but a reboot is needed\n" - "Backtrace:\n", + KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" + KERN_EMERG "Trying to fix it up, but a reboot is needed\n" + KERN_EMERG "Backtrace:\n", current->comm, page, (int)(2*sizeof(unsigned long)), (unsigned long)page->flags, page->mapping, page_mapcount(page), page_count(page)); @@ -307,7 +308,7 @@ static inline int page_is_buddy(struct page *page, int order) * -- wli */ -static inline void __free_pages_bulk (struct page *page, +static inline void __free_one_page(struct page *page, struct zone *zone, unsigned int order) { unsigned long page_idx; @@ -382,40 +383,45 @@ static inline int free_pages_check(struct page *page) * And clear the zone's pages_scanned counter, to hold off the "all pages are * pinned" detection logic. */ -static int -free_pages_bulk(struct zone *zone, int count, - struct list_head *list, unsigned int order) +static void free_pages_bulk(struct zone *zone, int count, + struct list_head *list, int order) { - struct page *page = NULL; - int ret = 0; - spin_lock(&zone->lock); zone->all_unreclaimable = 0; zone->pages_scanned = 0; - while (!list_empty(list) && count--) { + while (count--) { + struct page *page; + + BUG_ON(list_empty(list)); page = list_entry(list->prev, struct page, lru); - /* have to delete it as __free_pages_bulk list manipulates */ + /* have to delete it as __free_one_page list manipulates */ list_del(&page->lru); - __free_pages_bulk(page, zone, order); - ret++; + __free_one_page(page, zone, order); } spin_unlock(&zone->lock); - return ret; } -void __free_pages_ok(struct page *page, unsigned int order) +static void free_one_page(struct zone *zone, struct page *page, int order) { - unsigned long flags; LIST_HEAD(list); + list_add(&page->lru, &list); + free_pages_bulk(zone, 1, &list, order); +} + +static void __free_pages_ok(struct page *page, unsigned int order) +{ + unsigned long flags; int i; int reserved = 0; arch_free_page(page, order); + if (!PageHighMem(page)) + mutex_debug_check_no_locks_freed(page_address(page), + PAGE_SIZE<<order); #ifndef CONFIG_MMU - if (order > 0) - for (i = 1 ; i < (1 << order) ; ++i) - __put_page(page + i); + for (i = 1 ; i < (1 << order) ; ++i) + __put_page(page + i); #endif for (i = 0 ; i < (1 << order) ; ++i) @@ -423,11 +429,10 @@ void __free_pages_ok(struct page *page, unsigned int order) if (reserved) return; - list_add(&page->lru, &list); - kernel_map_pages(page, 1<<order, 0); + kernel_map_pages(page, 1 << order, 0); local_irq_save(flags); __mod_page_state(pgfree, 1 << order); - free_pages_bulk(page_zone(page), 1, &list, order); + free_one_page(page_zone(page), page, order); local_irq_restore(flags); } @@ -596,14 +601,13 @@ void drain_remote_pages(void) if (zone->zone_pgdat->node_id == numa_node_id()) continue; - pset = zone->pageset[smp_processor_id()]; + pset = zone_pcp(zone, smp_processor_id()); for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { struct per_cpu_pages *pcp; pcp = &pset->pcp[i]; - if (pcp->count) - pcp->count -= free_pages_bulk(zone, pcp->count, - &pcp->list, 0); + free_pages_bulk(zone, pcp->count, &pcp->list, 0); + pcp->count = 0; } } local_irq_restore(flags); @@ -626,8 +630,8 @@ static void __drain_pages(unsigned int cpu) pcp = &pset->pcp[i]; local_irq_save(flags); - pcp->count -= free_pages_bulk(zone, pcp->count, - &pcp->list, 0); + free_pages_bulk(zone, pcp->count, &pcp->list, 0); + pcp->count = 0; local_irq_restore(flags); } } @@ -718,8 +722,10 @@ static void fastcall free_hot_cold_page(struct page *page, int cold) __inc_page_state(pgfree); list_add(&page->lru, &pcp->list); pcp->count++; - if (pcp->count >= pcp->high) - pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0); + if (pcp->count >= pcp->high) { + free_pages_bulk(zone, pcp->batch, &pcp->list, 0); + pcp->count -= pcp->batch; + } local_irq_restore(flags); put_cpu(); } @@ -758,7 +764,7 @@ static struct page *buffered_rmqueue(struct zonelist *zonelist, again: cpu = get_cpu(); - if (order == 0) { + if (likely(order == 0)) { struct per_cpu_pages *pcp; pcp = &zone_pcp(zone, cpu)->pcp[cold]; @@ -872,7 +878,9 @@ get_page_from_freelist(gfp_t gfp_mask, unsigned int order, mark = (*z)->pages_high; if (!zone_watermark_ok(*z, order, mark, classzone_idx, alloc_flags)) - continue; + if (!zone_reclaim_mode || + !zone_reclaim(*z, gfp_mask, order)) + continue; } page = buffered_rmqueue(zonelist, *z, order, gfp_mask); @@ -925,7 +933,8 @@ restart: * * The caller may dip into page reserves a bit more if the caller * cannot run direct reclaim, or if the caller has realtime scheduling - * policy. + * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will + * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). */ alloc_flags = ALLOC_WMARK_MIN; if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) @@ -973,6 +982,7 @@ rebalance: cond_resched(); /* We now go into synchronous reclaim */ + cpuset_memory_pressure_bump(); p->flags |= PF_MEMALLOC; reclaim_state.reclaimed_slab = 0; p->reclaim_state = &reclaim_state; @@ -1204,6 +1214,7 @@ static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) int cpu = 0; memset(ret, 0, sizeof(*ret)); + cpus_and(*cpumask, *cpumask, cpu_online_map); cpu = first_cpu(*cpumask); while (cpu < NR_CPUS) { @@ -1256,7 +1267,7 @@ unsigned long read_page_state_offset(unsigned long offset) unsigned long ret = 0; int cpu; - for_each_cpu(cpu) { + for_each_online_cpu(cpu) { unsigned long in; in = (unsigned long)&per_cpu(page_states, cpu) + offset; @@ -1586,13 +1597,22 @@ static void __init build_zonelists(pg_data_t *pgdat) prev_node = local_node; nodes_clear(used_mask); while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { + int distance = node_distance(local_node, node); + + /* + * If another node is sufficiently far away then it is better + * to reclaim pages in a zone before going off node. + */ + if (distance > RECLAIM_DISTANCE) + zone_reclaim_mode = 1; + /* * We don't want to pressure a particular node. * So adding penalty to the first node in same * distance group to make it round-robin. */ - if (node_distance(local_node, node) != - node_distance(local_node, prev_node)) + + if (distance != node_distance(local_node, prev_node)) node_load[node] += load; prev_node = node; load--; @@ -1726,14 +1746,14 @@ static void __init calculate_zone_totalpages(struct pglist_data *pgdat, * up by free_all_bootmem() once the early boot process is * done. Non-atomic initialization, single-pass. */ -void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone, +void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, unsigned long start_pfn) { struct page *page; unsigned long end_pfn = start_pfn + size; unsigned long pfn; - for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) { + for (pfn = start_pfn; pfn < end_pfn; pfn++) { if (!early_pfn_valid(pfn)) continue; page = pfn_to_page(pfn); @@ -1779,7 +1799,7 @@ void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, memmap_init_zone((size), (nid), (zone), (start_pfn)) #endif -static int __devinit zone_batchsize(struct zone *zone) +static int __meminit zone_batchsize(struct zone *zone) { int batch; @@ -1830,6 +1850,24 @@ inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) INIT_LIST_HEAD(&pcp->list); } +/* + * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist + * to the value high for the pageset p. + */ + +static void setup_pagelist_highmark(struct per_cpu_pageset *p, + unsigned long high) +{ + struct per_cpu_pages *pcp; + + pcp = &p->pcp[0]; /* hot list */ + pcp->high = high; + pcp->batch = max(1UL, high/4); + if ((high/4) > (PAGE_SHIFT * 8)) + pcp->batch = PAGE_SHIFT * 8; +} + + #ifdef CONFIG_NUMA /* * Boot pageset table. One per cpu which is going to be used for all @@ -1855,18 +1893,22 @@ static struct per_cpu_pageset * Dynamically allocate memory for the * per cpu pageset array in struct zone. */ -static int __devinit process_zones(int cpu) +static int __meminit process_zones(int cpu) { struct zone *zone, *dzone; for_each_zone(zone) { - zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset), + zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), GFP_KERNEL, cpu_to_node(cpu)); - if (!zone->pageset[cpu]) + if (!zone_pcp(zone, cpu)) goto bad; - setup_pageset(zone->pageset[cpu], zone_batchsize(zone)); + setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); + + if (percpu_pagelist_fraction) + setup_pagelist_highmark(zone_pcp(zone, cpu), + (zone->present_pages / percpu_pagelist_fraction)); } return 0; @@ -1874,15 +1916,14 @@ bad: for_each_zone(dzone) { if (dzone == zone) break; - kfree(dzone->pageset[cpu]); - dzone->pageset[cpu] = NULL; + kfree(zone_pcp(dzone, cpu)); + zone_pcp(dzone, cpu) = NULL; } return -ENOMEM; } static inline void free_zone_pagesets(int cpu) { -#ifdef CONFIG_NUMA struct zone *zone; for_each_zone(zone) { @@ -1891,10 +1932,9 @@ static inline void free_zone_pagesets(int cpu) zone_pcp(zone, cpu) = NULL; kfree(pset); } -#endif } -static int __devinit pageset_cpuup_callback(struct notifier_block *nfb, +static int __meminit pageset_cpuup_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { @@ -1934,7 +1974,7 @@ void __init setup_per_cpu_pageset(void) #endif -static __devinit +static __meminit void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) { int i; @@ -1954,7 +1994,7 @@ void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) init_waitqueue_head(zone->wait_table + i); } -static __devinit void zone_pcp_init(struct zone *zone) +static __meminit void zone_pcp_init(struct zone *zone) { int cpu; unsigned long batch = zone_batchsize(zone); @@ -1962,7 +2002,7 @@ static __devinit void zone_pcp_init(struct zone *zone) for (cpu = 0; cpu < NR_CPUS; cpu++) { #ifdef CONFIG_NUMA /* Early boot. Slab allocator not functional yet */ - zone->pageset[cpu] = &boot_pageset[cpu]; + zone_pcp(zone, cpu) = &boot_pageset[cpu]; setup_pageset(&boot_pageset[cpu],0); #else setup_pageset(zone_pcp(zone,cpu), batch); @@ -1972,7 +2012,7 @@ static __devinit void zone_pcp_init(struct zone *zone) zone->name, zone->present_pages, batch); } -static __devinit void init_currently_empty_zone(struct zone *zone, +static __meminit void init_currently_empty_zone(struct zone *zone, unsigned long zone_start_pfn, unsigned long size) { struct pglist_data *pgdat = zone->zone_pgdat; @@ -2205,7 +2245,7 @@ static int zoneinfo_show(struct seq_file *m, void *arg) seq_printf(m, ")" "\n pagesets"); - for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) { + for_each_online_cpu(i) { struct per_cpu_pageset *pageset; int j; @@ -2568,6 +2608,32 @@ int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, return 0; } +/* + * percpu_pagelist_fraction - changes the pcp->high for each zone on each + * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist + * can have before it gets flushed back to buddy allocator. + */ + +int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, + struct file *file, void __user *buffer, size_t *length, loff_t *ppos) +{ + struct zone *zone; + unsigned int cpu; + int ret; + + ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); + if (!write || (ret == -EINVAL)) + return ret; + for_each_zone(zone) { + for_each_online_cpu(cpu) { + unsigned long high; + high = zone->present_pages / percpu_pagelist_fraction; + setup_pagelist_highmark(zone_pcp(zone, cpu), high); + } + } + return 0; +} + __initdata int hashdist = HASHDIST_DEFAULT; #ifdef CONFIG_NUMA diff --git a/mm/pdflush.c b/mm/pdflush.c index 52822c98c48..c4b6d0afd73 100644 --- a/mm/pdflush.c +++ b/mm/pdflush.c @@ -90,7 +90,7 @@ struct pdflush_work { static int __pdflush(struct pdflush_work *my_work) { - current->flags |= PF_FLUSHER; + current->flags |= PF_FLUSHER | PF_SWAPWRITE; my_work->fn = NULL; my_work->who = current; INIT_LIST_HEAD(&my_work->list); diff --git a/mm/rmap.c b/mm/rmap.c index 6f3f7db2712..d85a99d28c0 100644 --- a/mm/rmap.c +++ b/mm/rmap.c @@ -20,20 +20,20 @@ /* * Lock ordering in mm: * - * inode->i_sem (while writing or truncating, not reading or faulting) + * inode->i_mutex (while writing or truncating, not reading or faulting) * inode->i_alloc_sem * * When a page fault occurs in writing from user to file, down_read - * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within - * down_read of mmap_sem; i_sem and down_write of mmap_sem are never - * taken together; in truncation, i_sem is taken outermost. + * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within + * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never + * taken together; in truncation, i_mutex is taken outermost. * * mm->mmap_sem * page->flags PG_locked (lock_page) * mapping->i_mmap_lock * anon_vma->lock * mm->page_table_lock or pte_lock - * zone->lru_lock (in mark_page_accessed) + * zone->lru_lock (in mark_page_accessed, isolate_lru_page) * swap_lock (in swap_duplicate, swap_info_get) * mmlist_lock (in mmput, drain_mmlist and others) * mapping->private_lock (in __set_page_dirty_buffers) @@ -514,6 +514,13 @@ void page_add_file_rmap(struct page *page) void page_remove_rmap(struct page *page) { if (atomic_add_negative(-1, &page->_mapcount)) { + if (page_mapcount(page) < 0) { + printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); + printk (KERN_EMERG " page->flags = %lx\n", page->flags); + printk (KERN_EMERG " page->count = %x\n", page_count(page)); + printk (KERN_EMERG " page->mapping = %p\n", page->mapping); + } + BUG_ON(page_mapcount(page) < 0); /* * It would be tidy to reset the PageAnon mapping here, diff --git a/mm/shmem.c b/mm/shmem.c index a1f2f02af72..ce501bce1c2 100644 --- a/mm/shmem.c +++ b/mm/shmem.c @@ -1316,7 +1316,8 @@ shmem_get_inode(struct super_block *sb, int mode, dev_t dev) case S_IFREG: inode->i_op = &shmem_inode_operations; inode->i_fop = &shmem_file_operations; - mpol_shared_policy_init(&info->policy); + mpol_shared_policy_init(&info->policy, sbinfo->policy, + &sbinfo->policy_nodes); break; case S_IFDIR: inode->i_nlink++; @@ -1330,7 +1331,8 @@ shmem_get_inode(struct super_block *sb, int mode, dev_t dev) * Must not load anything in the rbtree, * mpol_free_shared_policy will not be called. */ - mpol_shared_policy_init(&info->policy); + mpol_shared_policy_init(&info->policy, MPOL_DEFAULT, + NULL); break; } } else if (sbinfo->max_inodes) { @@ -1370,7 +1372,7 @@ shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t if (!access_ok(VERIFY_READ, buf, count)) return -EFAULT; - down(&inode->i_sem); + mutex_lock(&inode->i_mutex); pos = *ppos; written = 0; @@ -1455,7 +1457,7 @@ shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t if (written) err = written; out: - up(&inode->i_sem); + mutex_unlock(&inode->i_mutex); return err; } @@ -1491,7 +1493,7 @@ static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_ /* * We must evaluate after, since reads (unlike writes) - * are called without i_sem protection against truncate + * are called without i_mutex protection against truncate */ nr = PAGE_CACHE_SIZE; i_size = i_size_read(inode); @@ -1843,7 +1845,9 @@ static struct inode_operations shmem_symlink_inode_operations = { .put_link = shmem_put_link, }; -static int shmem_parse_options(char *options, int *mode, uid_t *uid, gid_t *gid, unsigned long *blocks, unsigned long *inodes) +static int shmem_parse_options(char *options, int *mode, uid_t *uid, + gid_t *gid, unsigned long *blocks, unsigned long *inodes, + int *policy, nodemask_t *policy_nodes) { char *this_char, *value, *rest; @@ -1897,6 +1901,19 @@ static int shmem_parse_options(char *options, int *mode, uid_t *uid, gid_t *gid, *gid = simple_strtoul(value,&rest,0); if (*rest) goto bad_val; + } else if (!strcmp(this_char,"mpol")) { + if (!strcmp(value,"default")) + *policy = MPOL_DEFAULT; + else if (!strcmp(value,"preferred")) + *policy = MPOL_PREFERRED; + else if (!strcmp(value,"bind")) + *policy = MPOL_BIND; + else if (!strcmp(value,"interleave")) + *policy = MPOL_INTERLEAVE; + else + goto bad_val; + } else if (!strcmp(this_char,"mpol_nodelist")) { + nodelist_parse(value, *policy_nodes); } else { printk(KERN_ERR "tmpfs: Bad mount option %s\n", this_char); @@ -1917,12 +1934,14 @@ static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) struct shmem_sb_info *sbinfo = SHMEM_SB(sb); unsigned long max_blocks = sbinfo->max_blocks; unsigned long max_inodes = sbinfo->max_inodes; + int policy = sbinfo->policy; + nodemask_t policy_nodes = sbinfo->policy_nodes; unsigned long blocks; unsigned long inodes; int error = -EINVAL; - if (shmem_parse_options(data, NULL, NULL, NULL, - &max_blocks, &max_inodes)) + if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks, + &max_inodes, &policy, &policy_nodes)) return error; spin_lock(&sbinfo->stat_lock); @@ -1948,6 +1967,8 @@ static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) sbinfo->free_blocks = max_blocks - blocks; sbinfo->max_inodes = max_inodes; sbinfo->free_inodes = max_inodes - inodes; + sbinfo->policy = policy; + sbinfo->policy_nodes = policy_nodes; out: spin_unlock(&sbinfo->stat_lock); return error; @@ -1972,6 +1993,8 @@ static int shmem_fill_super(struct super_block *sb, struct shmem_sb_info *sbinfo; unsigned long blocks = 0; unsigned long inodes = 0; + int policy = MPOL_DEFAULT; + nodemask_t policy_nodes = node_online_map; #ifdef CONFIG_TMPFS /* @@ -1984,8 +2007,8 @@ static int shmem_fill_super(struct super_block *sb, inodes = totalram_pages - totalhigh_pages; if (inodes > blocks) inodes = blocks; - if (shmem_parse_options(data, &mode, &uid, &gid, - &blocks, &inodes)) + if (shmem_parse_options(data, &mode, &uid, &gid, &blocks, + &inodes, &policy, &policy_nodes)) return -EINVAL; } #else @@ -2003,6 +2026,8 @@ static int shmem_fill_super(struct super_block *sb, sbinfo->free_blocks = blocks; sbinfo->max_inodes = inodes; sbinfo->free_inodes = inodes; + sbinfo->policy = policy; + sbinfo->policy_nodes = policy_nodes; sb->s_fs_info = sbinfo; sb->s_maxbytes = SHMEM_MAX_BYTES; diff --git a/mm/slab.c b/mm/slab.c index e5ec26e0c46..6f8495e2185 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -68,7 +68,7 @@ * Further notes from the original documentation: * * 11 April '97. Started multi-threading - markhe - * The global cache-chain is protected by the semaphore 'cache_chain_sem'. + * The global cache-chain is protected by the mutex 'cache_chain_mutex'. * The sem is only needed when accessing/extending the cache-chain, which * can never happen inside an interrupt (kmem_cache_create(), * kmem_cache_shrink() and kmem_cache_reap()). @@ -103,6 +103,8 @@ #include <linux/rcupdate.h> #include <linux/string.h> #include <linux/nodemask.h> +#include <linux/mempolicy.h> +#include <linux/mutex.h> #include <asm/uaccess.h> #include <asm/cacheflush.h> @@ -130,7 +132,6 @@ #define FORCED_DEBUG 0 #endif - /* Shouldn't this be in a header file somewhere? */ #define BYTES_PER_WORD sizeof(void *) @@ -217,12 +218,12 @@ static unsigned long offslab_limit; * Slabs are chained into three list: fully used, partial, fully free slabs. */ struct slab { - struct list_head list; - unsigned long colouroff; - void *s_mem; /* including colour offset */ - unsigned int inuse; /* num of objs active in slab */ - kmem_bufctl_t free; - unsigned short nodeid; + struct list_head list; + unsigned long colouroff; + void *s_mem; /* including colour offset */ + unsigned int inuse; /* num of objs active in slab */ + kmem_bufctl_t free; + unsigned short nodeid; }; /* @@ -242,9 +243,9 @@ struct slab { * We assume struct slab_rcu can overlay struct slab when destroying. */ struct slab_rcu { - struct rcu_head head; - kmem_cache_t *cachep; - void *addr; + struct rcu_head head; + kmem_cache_t *cachep; + void *addr; }; /* @@ -279,23 +280,23 @@ struct array_cache { #define BOOT_CPUCACHE_ENTRIES 1 struct arraycache_init { struct array_cache cache; - void * entries[BOOT_CPUCACHE_ENTRIES]; + void *entries[BOOT_CPUCACHE_ENTRIES]; }; /* * The slab lists for all objects. */ struct kmem_list3 { - struct list_head slabs_partial; /* partial list first, better asm code */ - struct list_head slabs_full; - struct list_head slabs_free; - unsigned long free_objects; - unsigned long next_reap; - int free_touched; - unsigned int free_limit; - spinlock_t list_lock; - struct array_cache *shared; /* shared per node */ - struct array_cache **alien; /* on other nodes */ + struct list_head slabs_partial; /* partial list first, better asm code */ + struct list_head slabs_full; + struct list_head slabs_free; + unsigned long free_objects; + unsigned long next_reap; + int free_touched; + unsigned int free_limit; + spinlock_t list_lock; + struct array_cache *shared; /* shared per node */ + struct array_cache **alien; /* on other nodes */ }; /* @@ -367,63 +368,63 @@ static inline void kmem_list3_init(struct kmem_list3 *parent) * * manages a cache. */ - + struct kmem_cache { /* 1) per-cpu data, touched during every alloc/free */ - struct array_cache *array[NR_CPUS]; - unsigned int batchcount; - unsigned int limit; - unsigned int shared; - unsigned int objsize; + struct array_cache *array[NR_CPUS]; + unsigned int batchcount; + unsigned int limit; + unsigned int shared; + unsigned int objsize; /* 2) touched by every alloc & free from the backend */ - struct kmem_list3 *nodelists[MAX_NUMNODES]; - unsigned int flags; /* constant flags */ - unsigned int num; /* # of objs per slab */ - spinlock_t spinlock; + struct kmem_list3 *nodelists[MAX_NUMNODES]; + unsigned int flags; /* constant flags */ + unsigned int num; /* # of objs per slab */ + spinlock_t spinlock; /* 3) cache_grow/shrink */ /* order of pgs per slab (2^n) */ - unsigned int gfporder; + unsigned int gfporder; /* force GFP flags, e.g. GFP_DMA */ - gfp_t gfpflags; + gfp_t gfpflags; - size_t colour; /* cache colouring range */ - unsigned int colour_off; /* colour offset */ - unsigned int colour_next; /* cache colouring */ - kmem_cache_t *slabp_cache; - unsigned int slab_size; - unsigned int dflags; /* dynamic flags */ + size_t colour; /* cache colouring range */ + unsigned int colour_off; /* colour offset */ + unsigned int colour_next; /* cache colouring */ + kmem_cache_t *slabp_cache; + unsigned int slab_size; + unsigned int dflags; /* dynamic flags */ /* constructor func */ - void (*ctor)(void *, kmem_cache_t *, unsigned long); + void (*ctor) (void *, kmem_cache_t *, unsigned long); /* de-constructor func */ - void (*dtor)(void *, kmem_cache_t *, unsigned long); + void (*dtor) (void *, kmem_cache_t *, unsigned long); /* 4) cache creation/removal */ - const char *name; - struct list_head next; + const char *name; + struct list_head next; /* 5) statistics */ #if STATS - unsigned long num_active; - unsigned long num_allocations; - unsigned long high_mark; - unsigned long grown; - unsigned long reaped; - unsigned long errors; - unsigned long max_freeable; - unsigned long node_allocs; - unsigned long node_frees; - atomic_t allochit; - atomic_t allocmiss; - atomic_t freehit; - atomic_t freemiss; + unsigned long num_active; + unsigned long num_allocations; + unsigned long high_mark; + unsigned long grown; + unsigned long reaped; + unsigned long errors; + unsigned long max_freeable; + unsigned long node_allocs; + unsigned long node_frees; + atomic_t allochit; + atomic_t allocmiss; + atomic_t freehit; + atomic_t freemiss; #endif #if DEBUG - int dbghead; - int reallen; + int dbghead; + int reallen; #endif }; @@ -523,14 +524,15 @@ static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp) { BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); if (cachep->flags & SLAB_STORE_USER) - return (unsigned long*) (objp+cachep->objsize-2*BYTES_PER_WORD); - return (unsigned long*) (objp+cachep->objsize-BYTES_PER_WORD); + return (unsigned long *)(objp + cachep->objsize - + 2 * BYTES_PER_WORD); + return (unsigned long *)(objp + cachep->objsize - BYTES_PER_WORD); } static void **dbg_userword(kmem_cache_t *cachep, void *objp) { BUG_ON(!(cachep->flags & SLAB_STORE_USER)); - return (void**)(objp+cachep->objsize-BYTES_PER_WORD); + return (void **)(objp + cachep->objsize - BYTES_PER_WORD); } #else @@ -607,31 +609,31 @@ struct cache_names { static struct cache_names __initdata cache_names[] = { #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, #include <linux/kmalloc_sizes.h> - { NULL, } + {NULL,} #undef CACHE }; static struct arraycache_init initarray_cache __initdata = - { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; + { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; static struct arraycache_init initarray_generic = - { { 0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; + { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; /* internal cache of cache description objs */ static kmem_cache_t cache_cache = { - .batchcount = 1, - .limit = BOOT_CPUCACHE_ENTRIES, - .shared = 1, - .objsize = sizeof(kmem_cache_t), - .flags = SLAB_NO_REAP, - .spinlock = SPIN_LOCK_UNLOCKED, - .name = "kmem_cache", + .batchcount = 1, + .limit = BOOT_CPUCACHE_ENTRIES, + .shared = 1, + .objsize = sizeof(kmem_cache_t), + .flags = SLAB_NO_REAP, + .spinlock = SPIN_LOCK_UNLOCKED, + .name = "kmem_cache", #if DEBUG - .reallen = sizeof(kmem_cache_t), + .reallen = sizeof(kmem_cache_t), #endif }; /* Guard access to the cache-chain. */ -static struct semaphore cache_chain_sem; +static DEFINE_MUTEX(cache_chain_mutex); static struct list_head cache_chain; /* @@ -655,9 +657,9 @@ static enum { static DEFINE_PER_CPU(struct work_struct, reap_work); -static void free_block(kmem_cache_t* cachep, void** objpp, int len, int node); -static void enable_cpucache (kmem_cache_t *cachep); -static void cache_reap (void *unused); +static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node); +static void enable_cpucache(kmem_cache_t *cachep); +static void cache_reap(void *unused); static int __node_shrink(kmem_cache_t *cachep, int node); static inline struct array_cache *ac_data(kmem_cache_t *cachep) @@ -671,9 +673,9 @@ static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags) #if DEBUG /* This happens if someone tries to call - * kmem_cache_create(), or __kmalloc(), before - * the generic caches are initialized. - */ + * kmem_cache_create(), or __kmalloc(), before + * the generic caches are initialized. + */ BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); #endif while (size > csizep->cs_size) @@ -697,10 +699,10 @@ EXPORT_SYMBOL(kmem_find_general_cachep); /* Cal the num objs, wastage, and bytes left over for a given slab size. */ static void cache_estimate(unsigned long gfporder, size_t size, size_t align, - int flags, size_t *left_over, unsigned int *num) + int flags, size_t *left_over, unsigned int *num) { int i; - size_t wastage = PAGE_SIZE<<gfporder; + size_t wastage = PAGE_SIZE << gfporder; size_t extra = 0; size_t base = 0; @@ -709,7 +711,7 @@ static void cache_estimate(unsigned long gfporder, size_t size, size_t align, extra = sizeof(kmem_bufctl_t); } i = 0; - while (i*size + ALIGN(base+i*extra, align) <= wastage) + while (i * size + ALIGN(base + i * extra, align) <= wastage) i++; if (i > 0) i--; @@ -718,8 +720,8 @@ static void cache_estimate(unsigned long gfporder, size_t size, size_t align, i = SLAB_LIMIT; *num = i; - wastage -= i*size; - wastage -= ALIGN(base+i*extra, align); + wastage -= i * size; + wastage -= ALIGN(base + i * extra, align); *left_over = wastage; } @@ -728,7 +730,7 @@ static void cache_estimate(unsigned long gfporder, size_t size, size_t align, static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg) { printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", - function, cachep->name, msg); + function, cachep->name, msg); dump_stack(); } @@ -755,9 +757,9 @@ static void __devinit start_cpu_timer(int cpu) } static struct array_cache *alloc_arraycache(int node, int entries, - int batchcount) + int batchcount) { - int memsize = sizeof(void*)*entries+sizeof(struct array_cache); + int memsize = sizeof(void *) * entries + sizeof(struct array_cache); struct array_cache *nc = NULL; nc = kmalloc_node(memsize, GFP_KERNEL, node); @@ -772,10 +774,12 @@ static struct array_cache *alloc_arraycache(int node, int entries, } #ifdef CONFIG_NUMA +static void *__cache_alloc_node(kmem_cache_t *, gfp_t, int); + static inline struct array_cache **alloc_alien_cache(int node, int limit) { struct array_cache **ac_ptr; - int memsize = sizeof(void*)*MAX_NUMNODES; + int memsize = sizeof(void *) * MAX_NUMNODES; int i; if (limit > 1) @@ -789,7 +793,7 @@ static inline struct array_cache **alloc_alien_cache(int node, int limit) } ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); if (!ac_ptr[i]) { - for (i--; i <=0; i--) + for (i--; i <= 0; i--) kfree(ac_ptr[i]); kfree(ac_ptr); return NULL; @@ -807,12 +811,13 @@ static inline void free_alien_cache(struct array_cache **ac_ptr) return; for_each_node(i) - kfree(ac_ptr[i]); + kfree(ac_ptr[i]); kfree(ac_ptr); } -static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node) +static inline void __drain_alien_cache(kmem_cache_t *cachep, + struct array_cache *ac, int node) { struct kmem_list3 *rl3 = cachep->nodelists[node]; @@ -826,7 +831,7 @@ static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3) { - int i=0; + int i = 0; struct array_cache *ac; unsigned long flags; @@ -846,18 +851,17 @@ static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3) #endif static int __devinit cpuup_callback(struct notifier_block *nfb, - unsigned long action, void *hcpu) + unsigned long action, void *hcpu) { long cpu = (long)hcpu; - kmem_cache_t* cachep; + kmem_cache_t *cachep; struct kmem_list3 *l3 = NULL; int node = cpu_to_node(cpu); int memsize = sizeof(struct kmem_list3); - struct array_cache *nc = NULL; switch (action) { case CPU_UP_PREPARE: - down(&cache_chain_sem); + mutex_lock(&cache_chain_mutex); /* we need to do this right in the beginning since * alloc_arraycache's are going to use this list. * kmalloc_node allows us to add the slab to the right @@ -871,27 +875,29 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, */ if (!cachep->nodelists[node]) { if (!(l3 = kmalloc_node(memsize, - GFP_KERNEL, node))) + GFP_KERNEL, node))) goto bad; kmem_list3_init(l3); l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + - ((unsigned long)cachep)%REAPTIMEOUT_LIST3; + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; cachep->nodelists[node] = l3; } spin_lock_irq(&cachep->nodelists[node]->list_lock); cachep->nodelists[node]->free_limit = - (1 + nr_cpus_node(node)) * - cachep->batchcount + cachep->num; + (1 + nr_cpus_node(node)) * + cachep->batchcount + cachep->num; spin_unlock_irq(&cachep->nodelists[node]->list_lock); } /* Now we can go ahead with allocating the shared array's - & array cache's */ + & array cache's */ list_for_each_entry(cachep, &cache_chain, next) { + struct array_cache *nc; + nc = alloc_arraycache(node, cachep->limit, - cachep->batchcount); + cachep->batchcount); if (!nc) goto bad; cachep->array[cpu] = nc; @@ -900,16 +906,17 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, BUG_ON(!l3); if (!l3->shared) { if (!(nc = alloc_arraycache(node, - cachep->shared*cachep->batchcount, - 0xbaadf00d))) - goto bad; + cachep->shared * + cachep->batchcount, + 0xbaadf00d))) + goto bad; /* we are serialised from CPU_DEAD or - CPU_UP_CANCELLED by the cpucontrol lock */ + CPU_UP_CANCELLED by the cpucontrol lock */ l3->shared = nc; } } - up(&cache_chain_sem); + mutex_unlock(&cache_chain_mutex); break; case CPU_ONLINE: start_cpu_timer(cpu); @@ -918,7 +925,7 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, case CPU_DEAD: /* fall thru */ case CPU_UP_CANCELED: - down(&cache_chain_sem); + mutex_lock(&cache_chain_mutex); list_for_each_entry(cachep, &cache_chain, next) { struct array_cache *nc; @@ -942,13 +949,13 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, free_block(cachep, nc->entry, nc->avail, node); if (!cpus_empty(mask)) { - spin_unlock(&l3->list_lock); - goto unlock_cache; - } + spin_unlock(&l3->list_lock); + goto unlock_cache; + } if (l3->shared) { free_block(cachep, l3->shared->entry, - l3->shared->avail, node); + l3->shared->avail, node); kfree(l3->shared); l3->shared = NULL; } @@ -966,17 +973,17 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, } else { spin_unlock(&l3->list_lock); } -unlock_cache: + unlock_cache: spin_unlock_irq(&cachep->spinlock); kfree(nc); } - up(&cache_chain_sem); + mutex_unlock(&cache_chain_mutex); break; #endif } return NOTIFY_OK; -bad: - up(&cache_chain_sem); + bad: + mutex_unlock(&cache_chain_mutex); return NOTIFY_BAD; } @@ -985,8 +992,7 @@ static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; /* * swap the static kmem_list3 with kmalloced memory */ -static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, - int nodeid) +static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid) { struct kmem_list3 *ptr; @@ -1045,7 +1051,6 @@ void __init kmem_cache_init(void) */ /* 1) create the cache_cache */ - init_MUTEX(&cache_chain_sem); INIT_LIST_HEAD(&cache_chain); list_add(&cache_cache.next, &cache_chain); cache_cache.colour_off = cache_line_size(); @@ -1055,14 +1060,14 @@ void __init kmem_cache_init(void) cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); cache_estimate(0, cache_cache.objsize, cache_line_size(), 0, - &left_over, &cache_cache.num); + &left_over, &cache_cache.num); if (!cache_cache.num) BUG(); - cache_cache.colour = left_over/cache_cache.colour_off; + cache_cache.colour = left_over / cache_cache.colour_off; cache_cache.colour_next = 0; - cache_cache.slab_size = ALIGN(cache_cache.num*sizeof(kmem_bufctl_t) + - sizeof(struct slab), cache_line_size()); + cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + + sizeof(struct slab), cache_line_size()); /* 2+3) create the kmalloc caches */ sizes = malloc_sizes; @@ -1074,14 +1079,18 @@ void __init kmem_cache_init(void) */ sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, - sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN, - (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); + sizes[INDEX_AC].cs_size, + ARCH_KMALLOC_MINALIGN, + (ARCH_KMALLOC_FLAGS | + SLAB_PANIC), NULL, NULL); if (INDEX_AC != INDEX_L3) sizes[INDEX_L3].cs_cachep = - kmem_cache_create(names[INDEX_L3].name, - sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN, - (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); + kmem_cache_create(names[INDEX_L3].name, + sizes[INDEX_L3].cs_size, + ARCH_KMALLOC_MINALIGN, + (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, + NULL); while (sizes->cs_size != ULONG_MAX) { /* @@ -1091,35 +1100,41 @@ void __init kmem_cache_init(void) * Note for systems short on memory removing the alignment will * allow tighter packing of the smaller caches. */ - if(!sizes->cs_cachep) + if (!sizes->cs_cachep) sizes->cs_cachep = kmem_cache_create(names->name, - sizes->cs_size, ARCH_KMALLOC_MINALIGN, - (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); + sizes->cs_size, + ARCH_KMALLOC_MINALIGN, + (ARCH_KMALLOC_FLAGS + | SLAB_PANIC), + NULL, NULL); /* Inc off-slab bufctl limit until the ceiling is hit. */ if (!(OFF_SLAB(sizes->cs_cachep))) { - offslab_limit = sizes->cs_size-sizeof(struct slab); + offslab_limit = sizes->cs_size - sizeof(struct slab); offslab_limit /= sizeof(kmem_bufctl_t); } sizes->cs_dmacachep = kmem_cache_create(names->name_dma, - sizes->cs_size, ARCH_KMALLOC_MINALIGN, - (ARCH_KMALLOC_FLAGS | SLAB_CACHE_DMA | SLAB_PANIC), - NULL, NULL); + sizes->cs_size, + ARCH_KMALLOC_MINALIGN, + (ARCH_KMALLOC_FLAGS | + SLAB_CACHE_DMA | + SLAB_PANIC), NULL, + NULL); sizes++; names++; } /* 4) Replace the bootstrap head arrays */ { - void * ptr; + void *ptr; ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); local_irq_disable(); BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); memcpy(ptr, ac_data(&cache_cache), - sizeof(struct arraycache_init)); + sizeof(struct arraycache_init)); cache_cache.array[smp_processor_id()] = ptr; local_irq_enable(); @@ -1127,11 +1142,11 @@ void __init kmem_cache_init(void) local_irq_disable(); BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep) - != &initarray_generic.cache); + != &initarray_generic.cache); memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep), - sizeof(struct arraycache_init)); + sizeof(struct arraycache_init)); malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = - ptr; + ptr; local_irq_enable(); } /* 5) Replace the bootstrap kmem_list3's */ @@ -1139,16 +1154,16 @@ void __init kmem_cache_init(void) int node; /* Replace the static kmem_list3 structures for the boot cpu */ init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], - numa_node_id()); + numa_node_id()); for_each_online_node(node) { init_list(malloc_sizes[INDEX_AC].cs_cachep, - &initkmem_list3[SIZE_AC+node], node); + &initkmem_list3[SIZE_AC + node], node); if (INDEX_AC != INDEX_L3) { init_list(malloc_sizes[INDEX_L3].cs_cachep, - &initkmem_list3[SIZE_L3+node], - node); + &initkmem_list3[SIZE_L3 + node], + node); } } } @@ -1156,10 +1171,10 @@ void __init kmem_cache_init(void) /* 6) resize the head arrays to their final sizes */ { kmem_cache_t *cachep; - down(&cache_chain_sem); + mutex_lock(&cache_chain_mutex); list_for_each_entry(cachep, &cache_chain, next) - enable_cpucache(cachep); - up(&cache_chain_sem); + enable_cpucache(cachep); + mutex_unlock(&cache_chain_mutex); } /* Done! */ @@ -1184,7 +1199,7 @@ static int __init cpucache_init(void) * pages to gfp. */ for_each_online_cpu(cpu) - start_cpu_timer(cpu); + start_cpu_timer(cpu); return 0; } @@ -1226,7 +1241,7 @@ static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid) */ static void kmem_freepages(kmem_cache_t *cachep, void *addr) { - unsigned long i = (1<<cachep->gfporder); + unsigned long i = (1 << cachep->gfporder); struct page *page = virt_to_page(addr); const unsigned long nr_freed = i; @@ -1239,13 +1254,13 @@ static void kmem_freepages(kmem_cache_t *cachep, void *addr) if (current->reclaim_state) current->reclaim_state->reclaimed_slab += nr_freed; free_pages((unsigned long)addr, cachep->gfporder); - if (cachep->flags & SLAB_RECLAIM_ACCOUNT) - atomic_sub(1<<cachep->gfporder, &slab_reclaim_pages); + if (cachep->flags & SLAB_RECLAIM_ACCOUNT) + atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages); } static void kmem_rcu_free(struct rcu_head *head) { - struct slab_rcu *slab_rcu = (struct slab_rcu *) head; + struct slab_rcu *slab_rcu = (struct slab_rcu *)head; kmem_cache_t *cachep = slab_rcu->cachep; kmem_freepages(cachep, slab_rcu->addr); @@ -1257,19 +1272,19 @@ static void kmem_rcu_free(struct rcu_head *head) #ifdef CONFIG_DEBUG_PAGEALLOC static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, - unsigned long caller) + unsigned long caller) { int size = obj_reallen(cachep); - addr = (unsigned long *)&((char*)addr)[obj_dbghead(cachep)]; + addr = (unsigned long *)&((char *)addr)[obj_dbghead(cachep)]; - if (size < 5*sizeof(unsigned long)) + if (size < 5 * sizeof(unsigned long)) return; - *addr++=0x12345678; - *addr++=caller; - *addr++=smp_processor_id(); - size -= 3*sizeof(unsigned long); + *addr++ = 0x12345678; + *addr++ = caller; + *addr++ = smp_processor_id(); + size -= 3 * sizeof(unsigned long); { unsigned long *sptr = &caller; unsigned long svalue; @@ -1277,7 +1292,7 @@ static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, while (!kstack_end(sptr)) { svalue = *sptr++; if (kernel_text_address(svalue)) { - *addr++=svalue; + *addr++ = svalue; size -= sizeof(unsigned long); if (size <= sizeof(unsigned long)) break; @@ -1285,25 +1300,25 @@ static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr, } } - *addr++=0x87654321; + *addr++ = 0x87654321; } #endif static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val) { int size = obj_reallen(cachep); - addr = &((char*)addr)[obj_dbghead(cachep)]; + addr = &((char *)addr)[obj_dbghead(cachep)]; memset(addr, val, size); - *(unsigned char *)(addr+size-1) = POISON_END; + *(unsigned char *)(addr + size - 1) = POISON_END; } static void dump_line(char *data, int offset, int limit) { int i; printk(KERN_ERR "%03x:", offset); - for (i=0;i<limit;i++) { - printk(" %02x", (unsigned char)data[offset+i]); + for (i = 0; i < limit; i++) { + printk(" %02x", (unsigned char)data[offset + i]); } printk("\n"); } @@ -1318,24 +1333,24 @@ static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines) if (cachep->flags & SLAB_RED_ZONE) { printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n", - *dbg_redzone1(cachep, objp), - *dbg_redzone2(cachep, objp)); + *dbg_redzone1(cachep, objp), + *dbg_redzone2(cachep, objp)); } if (cachep->flags & SLAB_STORE_USER) { printk(KERN_ERR "Last user: [<%p>]", - *dbg_userword(cachep, objp)); + *dbg_userword(cachep, objp)); print_symbol("(%s)", - (unsigned long)*dbg_userword(cachep, objp)); + (unsigned long)*dbg_userword(cachep, objp)); printk("\n"); } - realobj = (char*)objp+obj_dbghead(cachep); + realobj = (char *)objp + obj_dbghead(cachep); size = obj_reallen(cachep); - for (i=0; i<size && lines;i+=16, lines--) { + for (i = 0; i < size && lines; i += 16, lines--) { int limit; limit = 16; - if (i+limit > size) - limit = size-i; + if (i + limit > size) + limit = size - i; dump_line(realobj, i, limit); } } @@ -1346,27 +1361,28 @@ static void check_poison_obj(kmem_cache_t *cachep, void *objp) int size, i; int lines = 0; - realobj = (char*)objp+obj_dbghead(cachep); + realobj = (char *)objp + obj_dbghead(cachep); size = obj_reallen(cachep); - for (i=0;i<size;i++) { + for (i = 0; i < size; i++) { char exp = POISON_FREE; - if (i == size-1) + if (i == size - 1) exp = POISON_END; if (realobj[i] != exp) { int limit; /* Mismatch ! */ /* Print header */ if (lines == 0) { - printk(KERN_ERR "Slab corruption: start=%p, len=%d\n", - realobj, size); + printk(KERN_ERR + "Slab corruption: start=%p, len=%d\n", + realobj, size); print_objinfo(cachep, objp, 0); } /* Hexdump the affected line */ - i = (i/16)*16; + i = (i / 16) * 16; limit = 16; - if (i+limit > size) - limit = size-i; + if (i + limit > size) + limit = size - i; dump_line(realobj, i, limit); i += 16; lines++; @@ -1382,19 +1398,19 @@ static void check_poison_obj(kmem_cache_t *cachep, void *objp) struct slab *slabp = page_get_slab(virt_to_page(objp)); int objnr; - objnr = (objp-slabp->s_mem)/cachep->objsize; + objnr = (objp - slabp->s_mem) / cachep->objsize; if (objnr) { - objp = slabp->s_mem+(objnr-1)*cachep->objsize; - realobj = (char*)objp+obj_dbghead(cachep); + objp = slabp->s_mem + (objnr - 1) * cachep->objsize; + realobj = (char *)objp + obj_dbghead(cachep); printk(KERN_ERR "Prev obj: start=%p, len=%d\n", - realobj, size); + realobj, size); print_objinfo(cachep, objp, 2); } - if (objnr+1 < cachep->num) { - objp = slabp->s_mem+(objnr+1)*cachep->objsize; - realobj = (char*)objp+obj_dbghead(cachep); + if (objnr + 1 < cachep->num) { + objp = slabp->s_mem + (objnr + 1) * cachep->objsize; + realobj = (char *)objp + obj_dbghead(cachep); printk(KERN_ERR "Next obj: start=%p, len=%d\n", - realobj, size); + realobj, size); print_objinfo(cachep, objp, 2); } } @@ -1405,7 +1421,7 @@ static void check_poison_obj(kmem_cache_t *cachep, void *objp) * Before calling the slab must have been unlinked from the cache. * The cache-lock is not held/needed. */ -static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) +static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp) { void *addr = slabp->s_mem - slabp->colouroff; @@ -1416,8 +1432,11 @@ static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) if (cachep->flags & SLAB_POISON) { #ifdef CONFIG_DEBUG_PAGEALLOC - if ((cachep->objsize%PAGE_SIZE)==0 && OFF_SLAB(cachep)) - kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE,1); + if ((cachep->objsize % PAGE_SIZE) == 0 + && OFF_SLAB(cachep)) + kernel_map_pages(virt_to_page(objp), + cachep->objsize / PAGE_SIZE, + 1); else check_poison_obj(cachep, objp); #else @@ -1427,20 +1446,20 @@ static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) if (cachep->flags & SLAB_RED_ZONE) { if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) slab_error(cachep, "start of a freed object " - "was overwritten"); + "was overwritten"); if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) slab_error(cachep, "end of a freed object " - "was overwritten"); + "was overwritten"); } if (cachep->dtor && !(cachep->flags & SLAB_POISON)) - (cachep->dtor)(objp+obj_dbghead(cachep), cachep, 0); + (cachep->dtor) (objp + obj_dbghead(cachep), cachep, 0); } #else if (cachep->dtor) { int i; for (i = 0; i < cachep->num; i++) { - void* objp = slabp->s_mem+cachep->objsize*i; - (cachep->dtor)(objp, cachep, 0); + void *objp = slabp->s_mem + cachep->objsize * i; + (cachep->dtor) (objp, cachep, 0); } } #endif @@ -1448,7 +1467,7 @@ static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { struct slab_rcu *slab_rcu; - slab_rcu = (struct slab_rcu *) slabp; + slab_rcu = (struct slab_rcu *)slabp; slab_rcu->cachep = cachep; slab_rcu->addr = addr; call_rcu(&slab_rcu->head, kmem_rcu_free); @@ -1466,11 +1485,58 @@ static inline void set_up_list3s(kmem_cache_t *cachep, int index) int node; for_each_online_node(node) { - cachep->nodelists[node] = &initkmem_list3[index+node]; + cachep->nodelists[node] = &initkmem_list3[index + node]; cachep->nodelists[node]->next_reap = jiffies + - REAPTIMEOUT_LIST3 + - ((unsigned long)cachep)%REAPTIMEOUT_LIST3; + REAPTIMEOUT_LIST3 + + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; + } +} + +/** + * calculate_slab_order - calculate size (page order) of slabs and the number + * of objects per slab. + * + * This could be made much more intelligent. For now, try to avoid using + * high order pages for slabs. When the gfp() functions are more friendly + * towards high-order requests, this should be changed. + */ +static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size, + size_t align, gfp_t flags) +{ + size_t left_over = 0; + + for (;; cachep->gfporder++) { + unsigned int num; + size_t remainder; + + if (cachep->gfporder > MAX_GFP_ORDER) { + cachep->num = 0; + break; + } + + cache_estimate(cachep->gfporder, size, align, flags, + &remainder, &num); + if (!num) + continue; + /* More than offslab_limit objects will cause problems */ + if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit) + break; + + cachep->num = num; + left_over = remainder; + + /* + * Large number of objects is good, but very large slabs are + * currently bad for the gfp()s. + */ + if (cachep->gfporder >= slab_break_gfp_order) + break; + + if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder)) + /* Acceptable internal fragmentation */ + break; } + return left_over; } /** @@ -1519,16 +1585,15 @@ kmem_cache_create (const char *name, size_t size, size_t align, * Sanity checks... these are all serious usage bugs. */ if ((!name) || - in_interrupt() || - (size < BYTES_PER_WORD) || - (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) || - (dtor && !ctor)) { - printk(KERN_ERR "%s: Early error in slab %s\n", - __FUNCTION__, name); - BUG(); - } + in_interrupt() || + (size < BYTES_PER_WORD) || + (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) { + printk(KERN_ERR "%s: Early error in slab %s\n", + __FUNCTION__, name); + BUG(); + } - down(&cache_chain_sem); + mutex_lock(&cache_chain_mutex); list_for_each(p, &cache_chain) { kmem_cache_t *pc = list_entry(p, kmem_cache_t, next); @@ -1546,11 +1611,11 @@ kmem_cache_create (const char *name, size_t size, size_t align, set_fs(old_fs); if (res) { printk("SLAB: cache with size %d has lost its name\n", - pc->objsize); + pc->objsize); continue; } - if (!strcmp(pc->name,name)) { + if (!strcmp(pc->name, name)) { printk("kmem_cache_create: duplicate cache %s\n", name); dump_stack(); goto oops; @@ -1562,10 +1627,9 @@ kmem_cache_create (const char *name, size_t size, size_t align, if ((flags & SLAB_DEBUG_INITIAL) && !ctor) { /* No constructor, but inital state check requested */ printk(KERN_ERR "%s: No con, but init state check " - "requested - %s\n", __FUNCTION__, name); + "requested - %s\n", __FUNCTION__, name); flags &= ~SLAB_DEBUG_INITIAL; } - #if FORCED_DEBUG /* * Enable redzoning and last user accounting, except for caches with @@ -1573,8 +1637,9 @@ kmem_cache_create (const char *name, size_t size, size_t align, * above the next power of two: caches with object sizes just above a * power of two have a significant amount of internal fragmentation. */ - if ((size < 4096 || fls(size-1) == fls(size-1+3*BYTES_PER_WORD))) - flags |= SLAB_RED_ZONE|SLAB_STORE_USER; + if ((size < 4096 + || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD))) + flags |= SLAB_RED_ZONE | SLAB_STORE_USER; if (!(flags & SLAB_DESTROY_BY_RCU)) flags |= SLAB_POISON; #endif @@ -1595,9 +1660,9 @@ kmem_cache_create (const char *name, size_t size, size_t align, * unaligned accesses for some archs when redzoning is used, and makes * sure any on-slab bufctl's are also correctly aligned. */ - if (size & (BYTES_PER_WORD-1)) { - size += (BYTES_PER_WORD-1); - size &= ~(BYTES_PER_WORD-1); + if (size & (BYTES_PER_WORD - 1)) { + size += (BYTES_PER_WORD - 1); + size &= ~(BYTES_PER_WORD - 1); } /* calculate out the final buffer alignment: */ @@ -1608,7 +1673,7 @@ kmem_cache_create (const char *name, size_t size, size_t align, * objects into one cacheline. */ ralign = cache_line_size(); - while (size <= ralign/2) + while (size <= ralign / 2) ralign /= 2; } else { ralign = BYTES_PER_WORD; @@ -1617,13 +1682,13 @@ kmem_cache_create (const char *name, size_t size, size_t align, if (ralign < ARCH_SLAB_MINALIGN) { ralign = ARCH_SLAB_MINALIGN; if (ralign > BYTES_PER_WORD) - flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); + flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); } /* 3) caller mandated alignment: disables debug if necessary */ if (ralign < align) { ralign = align; if (ralign > BYTES_PER_WORD) - flags &= ~(SLAB_RED_ZONE|SLAB_STORE_USER); + flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); } /* 4) Store it. Note that the debug code below can reduce * the alignment to BYTES_PER_WORD. @@ -1645,7 +1710,7 @@ kmem_cache_create (const char *name, size_t size, size_t align, /* add space for red zone words */ cachep->dbghead += BYTES_PER_WORD; - size += 2*BYTES_PER_WORD; + size += 2 * BYTES_PER_WORD; } if (flags & SLAB_STORE_USER) { /* user store requires word alignment and @@ -1656,7 +1721,8 @@ kmem_cache_create (const char *name, size_t size, size_t align, size += BYTES_PER_WORD; } #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) - if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { + if (size >= malloc_sizes[INDEX_L3 + 1].cs_size + && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { cachep->dbghead += PAGE_SIZE - size; size = PAGE_SIZE; } @@ -1664,7 +1730,7 @@ kmem_cache_create (const char *name, size_t size, size_t align, #endif /* Determine if the slab management is 'on' or 'off' slab. */ - if (size >= (PAGE_SIZE>>3)) + if (size >= (PAGE_SIZE >> 3)) /* * Size is large, assume best to place the slab management obj * off-slab (should allow better packing of objs). @@ -1681,47 +1747,9 @@ kmem_cache_create (const char *name, size_t size, size_t align, */ cachep->gfporder = 0; cache_estimate(cachep->gfporder, size, align, flags, - &left_over, &cachep->num); - } else { - /* - * Calculate size (in pages) of slabs, and the num of objs per - * slab. This could be made much more intelligent. For now, - * try to avoid using high page-orders for slabs. When the - * gfp() funcs are more friendly towards high-order requests, - * this should be changed. - */ - do { - unsigned int break_flag = 0; -cal_wastage: - cache_estimate(cachep->gfporder, size, align, flags, - &left_over, &cachep->num); - if (break_flag) - break; - if (cachep->gfporder >= MAX_GFP_ORDER) - break; - if (!cachep->num) - goto next; - if (flags & CFLGS_OFF_SLAB && - cachep->num > offslab_limit) { - /* This num of objs will cause problems. */ - cachep->gfporder--; - break_flag++; - goto cal_wastage; - } - - /* - * Large num of objs is good, but v. large slabs are - * currently bad for the gfp()s. - */ - if (cachep->gfporder >= slab_break_gfp_order) - break; - - if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder)) - break; /* Acceptable internal fragmentation. */ -next: - cachep->gfporder++; - } while (1); - } + &left_over, &cachep->num); + } else + left_over = calculate_slab_order(cachep, size, align, flags); if (!cachep->num) { printk("kmem_cache_create: couldn't create cache %s.\n", name); @@ -1729,8 +1757,8 @@ next: cachep = NULL; goto oops; } - slab_size = ALIGN(cachep->num*sizeof(kmem_bufctl_t) - + sizeof(struct slab), align); + slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) + + sizeof(struct slab), align); /* * If the slab has been placed off-slab, and we have enough space then @@ -1743,14 +1771,15 @@ next: if (flags & CFLGS_OFF_SLAB) { /* really off slab. No need for manual alignment */ - slab_size = cachep->num*sizeof(kmem_bufctl_t)+sizeof(struct slab); + slab_size = + cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); } cachep->colour_off = cache_line_size(); /* Offset must be a multiple of the alignment. */ if (cachep->colour_off < align) cachep->colour_off = align; - cachep->colour = left_over/cachep->colour_off; + cachep->colour = left_over / cachep->colour_off; cachep->slab_size = slab_size; cachep->flags = flags; cachep->gfpflags = 0; @@ -1777,7 +1806,7 @@ next: * the creation of further caches will BUG(). */ cachep->array[smp_processor_id()] = - &initarray_generic.cache; + &initarray_generic.cache; /* If the cache that's used by * kmalloc(sizeof(kmem_list3)) is the first cache, @@ -1791,8 +1820,7 @@ next: g_cpucache_up = PARTIAL_AC; } else { cachep->array[smp_processor_id()] = - kmalloc(sizeof(struct arraycache_init), - GFP_KERNEL); + kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); if (g_cpucache_up == PARTIAL_AC) { set_up_list3s(cachep, SIZE_L3); @@ -1802,16 +1830,18 @@ next: for_each_online_node(node) { cachep->nodelists[node] = - kmalloc_node(sizeof(struct kmem_list3), - GFP_KERNEL, node); + kmalloc_node(sizeof + (struct kmem_list3), + GFP_KERNEL, node); BUG_ON(!cachep->nodelists[node]); - kmem_list3_init(cachep->nodelists[node]); + kmem_list3_init(cachep-> + nodelists[node]); } } } cachep->nodelists[numa_node_id()]->next_reap = - jiffies + REAPTIMEOUT_LIST3 + - ((unsigned long)cachep)%REAPTIMEOUT_LIST3; + jiffies + REAPTIMEOUT_LIST3 + + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; BUG_ON(!ac_data(cachep)); ac_data(cachep)->avail = 0; @@ -1820,16 +1850,16 @@ next: ac_data(cachep)->touched = 0; cachep->batchcount = 1; cachep->limit = BOOT_CPUCACHE_ENTRIES; - } + } /* cache setup completed, link it into the list */ list_add(&cachep->next, &cache_chain); unlock_cpu_hotplug(); -oops: + oops: if (!cachep && (flags & SLAB_PANIC)) panic("kmem_cache_create(): failed to create slab `%s'\n", - name); - up(&cache_chain_sem); + name); + mutex_unlock(&cache_chain_mutex); return cachep; } EXPORT_SYMBOL(kmem_cache_create); @@ -1871,7 +1901,7 @@ static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node) /* * Waits for all CPUs to execute func(). */ -static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg) +static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg) { check_irq_on(); preempt_disable(); @@ -1886,12 +1916,12 @@ static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg) preempt_enable(); } -static void drain_array_locked(kmem_cache_t* cachep, - struct array_cache *ac, int force, int node); +static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac, + int force, int node); static void do_drain(void *arg) { - kmem_cache_t *cachep = (kmem_cache_t*)arg; + kmem_cache_t *cachep = (kmem_cache_t *) arg; struct array_cache *ac; int node = numa_node_id(); @@ -1911,7 +1941,7 @@ static void drain_cpu_caches(kmem_cache_t *cachep) smp_call_function_all_cpus(do_drain, cachep); check_irq_on(); spin_lock_irq(&cachep->spinlock); - for_each_online_node(node) { + for_each_online_node(node) { l3 = cachep->nodelists[node]; if (l3) { spin_lock(&l3->list_lock); @@ -1949,8 +1979,7 @@ static int __node_shrink(kmem_cache_t *cachep, int node) slab_destroy(cachep, slabp); spin_lock_irq(&l3->list_lock); } - ret = !list_empty(&l3->slabs_full) || - !list_empty(&l3->slabs_partial); + ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial); return ret; } @@ -2006,7 +2035,7 @@ EXPORT_SYMBOL(kmem_cache_shrink); * The caller must guarantee that noone will allocate memory from the cache * during the kmem_cache_destroy(). */ -int kmem_cache_destroy(kmem_cache_t * cachep) +int kmem_cache_destroy(kmem_cache_t *cachep) { int i; struct kmem_list3 *l3; @@ -2018,18 +2047,18 @@ int kmem_cache_destroy(kmem_cache_t * cachep) lock_cpu_hotplug(); /* Find the cache in the chain of caches. */ - down(&cache_chain_sem); + mutex_lock(&cache_chain_mutex); /* * the chain is never empty, cache_cache is never destroyed */ list_del(&cachep->next); - up(&cache_chain_sem); + mutex_unlock(&cache_chain_mutex); if (__cache_shrink(cachep)) { slab_error(cachep, "Can't free all objects"); - down(&cache_chain_sem); - list_add(&cachep->next,&cache_chain); - up(&cache_chain_sem); + mutex_lock(&cache_chain_mutex); + list_add(&cachep->next, &cache_chain); + mutex_unlock(&cache_chain_mutex); unlock_cpu_hotplug(); return 1; } @@ -2038,7 +2067,7 @@ int kmem_cache_destroy(kmem_cache_t * cachep) synchronize_rcu(); for_each_online_cpu(i) - kfree(cachep->array[i]); + kfree(cachep->array[i]); /* NUMA: free the list3 structures */ for_each_online_node(i) { @@ -2057,39 +2086,39 @@ int kmem_cache_destroy(kmem_cache_t * cachep) EXPORT_SYMBOL(kmem_cache_destroy); /* Get the memory for a slab management obj. */ -static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp, - int colour_off, gfp_t local_flags) +static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp, + int colour_off, gfp_t local_flags) { struct slab *slabp; - + if (OFF_SLAB(cachep)) { /* Slab management obj is off-slab. */ slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags); if (!slabp) return NULL; } else { - slabp = objp+colour_off; + slabp = objp + colour_off; colour_off += cachep->slab_size; } slabp->inuse = 0; slabp->colouroff = colour_off; - slabp->s_mem = objp+colour_off; + slabp->s_mem = objp + colour_off; return slabp; } static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) { - return (kmem_bufctl_t *)(slabp+1); + return (kmem_bufctl_t *) (slabp + 1); } static void cache_init_objs(kmem_cache_t *cachep, - struct slab *slabp, unsigned long ctor_flags) + struct slab *slabp, unsigned long ctor_flags) { int i; for (i = 0; i < cachep->num; i++) { - void *objp = slabp->s_mem+cachep->objsize*i; + void *objp = slabp->s_mem + cachep->objsize * i; #if DEBUG /* need to poison the objs? */ if (cachep->flags & SLAB_POISON) @@ -2107,25 +2136,28 @@ static void cache_init_objs(kmem_cache_t *cachep, * Otherwise, deadlock. They must also be threaded. */ if (cachep->ctor && !(cachep->flags & SLAB_POISON)) - cachep->ctor(objp+obj_dbghead(cachep), cachep, ctor_flags); + cachep->ctor(objp + obj_dbghead(cachep), cachep, + ctor_flags); if (cachep->flags & SLAB_RED_ZONE) { if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) slab_error(cachep, "constructor overwrote the" - " end of an object"); + " end of an object"); if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) slab_error(cachep, "constructor overwrote the" - " start of an object"); + " start of an object"); } - if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) - kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); + if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep) + && cachep->flags & SLAB_POISON) + kernel_map_pages(virt_to_page(objp), + cachep->objsize / PAGE_SIZE, 0); #else if (cachep->ctor) cachep->ctor(objp, cachep, ctor_flags); #endif - slab_bufctl(slabp)[i] = i+1; + slab_bufctl(slabp)[i] = i + 1; } - slab_bufctl(slabp)[i-1] = BUFCTL_END; + slab_bufctl(slabp)[i - 1] = BUFCTL_END; slabp->free = 0; } @@ -2161,17 +2193,17 @@ static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp) */ static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid) { - struct slab *slabp; - void *objp; - size_t offset; - gfp_t local_flags; - unsigned long ctor_flags; + struct slab *slabp; + void *objp; + size_t offset; + gfp_t local_flags; + unsigned long ctor_flags; struct kmem_list3 *l3; /* Be lazy and only check for valid flags here, - * keeping it out of the critical path in kmem_cache_alloc(). + * keeping it out of the critical path in kmem_cache_alloc(). */ - if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW)) + if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW)) BUG(); if (flags & SLAB_NO_GROW) return 0; @@ -2237,9 +2269,9 @@ static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid) l3->free_objects += cachep->num; spin_unlock(&l3->list_lock); return 1; -opps1: + opps1: kmem_freepages(cachep, objp); -failed: + failed: if (local_flags & __GFP_WAIT) local_irq_disable(); return 0; @@ -2259,18 +2291,19 @@ static void kfree_debugcheck(const void *objp) if (!virt_addr_valid(objp)) { printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", - (unsigned long)objp); - BUG(); + (unsigned long)objp); + BUG(); } page = virt_to_page(objp); if (!PageSlab(page)) { - printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp); + printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n", + (unsigned long)objp); BUG(); } } static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, - void *caller) + void *caller) { struct page *page; unsigned int objnr; @@ -2281,20 +2314,26 @@ static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, page = virt_to_page(objp); if (page_get_cache(page) != cachep) { - printk(KERN_ERR "mismatch in kmem_cache_free: expected cache %p, got %p\n", - page_get_cache(page),cachep); + printk(KERN_ERR + "mismatch in kmem_cache_free: expected cache %p, got %p\n", + page_get_cache(page), cachep); printk(KERN_ERR "%p is %s.\n", cachep, cachep->name); - printk(KERN_ERR "%p is %s.\n", page_get_cache(page), page_get_cache(page)->name); + printk(KERN_ERR "%p is %s.\n", page_get_cache(page), + page_get_cache(page)->name); WARN_ON(1); } slabp = page_get_slab(page); if (cachep->flags & SLAB_RED_ZONE) { - if (*dbg_redzone1(cachep, objp) != RED_ACTIVE || *dbg_redzone2(cachep, objp) != RED_ACTIVE) { - slab_error(cachep, "double free, or memory outside" - " object was overwritten"); - printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", - objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); + if (*dbg_redzone1(cachep, objp) != RED_ACTIVE + || *dbg_redzone2(cachep, objp) != RED_ACTIVE) { + slab_error(cachep, + "double free, or memory outside" + " object was overwritten"); + printk(KERN_ERR + "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", + objp, *dbg_redzone1(cachep, objp), + *dbg_redzone2(cachep, objp)); } *dbg_redzone1(cachep, objp) = RED_INACTIVE; *dbg_redzone2(cachep, objp) = RED_INACTIVE; @@ -2302,30 +2341,31 @@ static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp, if (cachep->flags & SLAB_STORE_USER) *dbg_userword(cachep, objp) = caller; - objnr = (objp-slabp->s_mem)/cachep->objsize; + objnr = (objp - slabp->s_mem) / cachep->objsize; BUG_ON(objnr >= cachep->num); - BUG_ON(objp != slabp->s_mem + objnr*cachep->objsize); + BUG_ON(objp != slabp->s_mem + objnr * cachep->objsize); if (cachep->flags & SLAB_DEBUG_INITIAL) { /* Need to call the slab's constructor so the * caller can perform a verify of its state (debugging). * Called without the cache-lock held. */ - cachep->ctor(objp+obj_dbghead(cachep), - cachep, SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY); + cachep->ctor(objp + obj_dbghead(cachep), + cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY); } if (cachep->flags & SLAB_POISON && cachep->dtor) { /* we want to cache poison the object, * call the destruction callback */ - cachep->dtor(objp+obj_dbghead(cachep), cachep, 0); + cachep->dtor(objp + obj_dbghead(cachep), cachep, 0); } if (cachep->flags & SLAB_POISON) { #ifdef CONFIG_DEBUG_PAGEALLOC if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) { store_stackinfo(cachep, objp, (unsigned long)caller); - kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 0); + kernel_map_pages(virt_to_page(objp), + cachep->objsize / PAGE_SIZE, 0); } else { poison_obj(cachep, objp, POISON_FREE); } @@ -2340,7 +2380,7 @@ static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) { kmem_bufctl_t i; int entries = 0; - + /* Check slab's freelist to see if this obj is there. */ for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { entries++; @@ -2348,13 +2388,16 @@ static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) goto bad; } if (entries != cachep->num - slabp->inuse) { -bad: - printk(KERN_ERR "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n", - cachep->name, cachep->num, slabp, slabp->inuse); - for (i=0;i<sizeof(slabp)+cachep->num*sizeof(kmem_bufctl_t);i++) { - if ((i%16)==0) + bad: + printk(KERN_ERR + "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n", + cachep->name, cachep->num, slabp, slabp->inuse); + for (i = 0; + i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t); + i++) { + if ((i % 16) == 0) printk("\n%03x:", i); - printk(" %02x", ((unsigned char*)slabp)[i]); + printk(" %02x", ((unsigned char *)slabp)[i]); } printk("\n"); BUG(); @@ -2374,7 +2417,7 @@ static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags) check_irq_off(); ac = ac_data(cachep); -retry: + retry: batchcount = ac->batchcount; if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { /* if there was little recent activity on this @@ -2396,8 +2439,8 @@ retry: shared_array->avail -= batchcount; ac->avail = batchcount; memcpy(ac->entry, - &(shared_array->entry[shared_array->avail]), - sizeof(void*)*batchcount); + &(shared_array->entry[shared_array->avail]), + sizeof(void *) * batchcount); shared_array->touched = 1; goto alloc_done; } @@ -2425,7 +2468,7 @@ retry: /* get obj pointer */ ac->entry[ac->avail++] = slabp->s_mem + - slabp->free*cachep->objsize; + slabp->free * cachep->objsize; slabp->inuse++; next = slab_bufctl(slabp)[slabp->free]; @@ -2433,7 +2476,7 @@ retry: slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; WARN_ON(numa_node_id() != slabp->nodeid); #endif - slabp->free = next; + slabp->free = next; } check_slabp(cachep, slabp); @@ -2445,9 +2488,9 @@ retry: list_add(&slabp->list, &l3->slabs_partial); } -must_grow: + must_grow: l3->free_objects -= ac->avail; -alloc_done: + alloc_done: spin_unlock(&l3->list_lock); if (unlikely(!ac->avail)) { @@ -2459,7 +2502,7 @@ alloc_done: if (!x && ac->avail == 0) // no objects in sight? abort return NULL; - if (!ac->avail) // objects refilled by interrupt? + if (!ac->avail) // objects refilled by interrupt? goto retry; } ac->touched = 1; @@ -2476,16 +2519,16 @@ cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags) } #if DEBUG -static void * -cache_alloc_debugcheck_after(kmem_cache_t *cachep, - gfp_t flags, void *objp, void *caller) +static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags, + void *objp, void *caller) { - if (!objp) + if (!objp) return objp; - if (cachep->flags & SLAB_POISON) { + if (cachep->flags & SLAB_POISON) { #ifdef CONFIG_DEBUG_PAGEALLOC if ((cachep->objsize % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) - kernel_map_pages(virt_to_page(objp), cachep->objsize/PAGE_SIZE, 1); + kernel_map_pages(virt_to_page(objp), + cachep->objsize / PAGE_SIZE, 1); else check_poison_obj(cachep, objp); #else @@ -2497,24 +2540,28 @@ cache_alloc_debugcheck_after(kmem_cache_t *cachep, *dbg_userword(cachep, objp) = caller; if (cachep->flags & SLAB_RED_ZONE) { - if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || *dbg_redzone2(cachep, objp) != RED_INACTIVE) { - slab_error(cachep, "double free, or memory outside" - " object was overwritten"); - printk(KERN_ERR "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", - objp, *dbg_redzone1(cachep, objp), *dbg_redzone2(cachep, objp)); + if (*dbg_redzone1(cachep, objp) != RED_INACTIVE + || *dbg_redzone2(cachep, objp) != RED_INACTIVE) { + slab_error(cachep, + "double free, or memory outside" + " object was overwritten"); + printk(KERN_ERR + "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n", + objp, *dbg_redzone1(cachep, objp), + *dbg_redzone2(cachep, objp)); } *dbg_redzone1(cachep, objp) = RED_ACTIVE; *dbg_redzone2(cachep, objp) = RED_ACTIVE; } objp += obj_dbghead(cachep); if (cachep->ctor && cachep->flags & SLAB_POISON) { - unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; + unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR; if (!(flags & __GFP_WAIT)) ctor_flags |= SLAB_CTOR_ATOMIC; cachep->ctor(objp, cachep, ctor_flags); - } + } return objp; } #else @@ -2523,9 +2570,18 @@ cache_alloc_debugcheck_after(kmem_cache_t *cachep, static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags) { - void* objp; + void *objp; struct array_cache *ac; +#ifdef CONFIG_NUMA + if (unlikely(current->mempolicy && !in_interrupt())) { + int nid = slab_node(current->mempolicy); + + if (nid != numa_node_id()) + return __cache_alloc_node(cachep, flags, nid); + } +#endif + check_irq_off(); ac = ac_data(cachep); if (likely(ac->avail)) { @@ -2542,7 +2598,7 @@ static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags) static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags) { unsigned long save_flags; - void* objp; + void *objp; cache_alloc_debugcheck_before(cachep, flags); @@ -2550,7 +2606,7 @@ static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags) objp = ____cache_alloc(cachep, flags); local_irq_restore(save_flags); objp = cache_alloc_debugcheck_after(cachep, flags, objp, - __builtin_return_address(0)); + __builtin_return_address(0)); prefetchw(objp); return objp; } @@ -2562,74 +2618,75 @@ static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags) static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid) { struct list_head *entry; - struct slab *slabp; - struct kmem_list3 *l3; - void *obj; - kmem_bufctl_t next; - int x; - - l3 = cachep->nodelists[nodeid]; - BUG_ON(!l3); - -retry: - spin_lock(&l3->list_lock); - entry = l3->slabs_partial.next; - if (entry == &l3->slabs_partial) { - l3->free_touched = 1; - entry = l3->slabs_free.next; - if (entry == &l3->slabs_free) - goto must_grow; - } - - slabp = list_entry(entry, struct slab, list); - check_spinlock_acquired_node(cachep, nodeid); - check_slabp(cachep, slabp); - - STATS_INC_NODEALLOCS(cachep); - STATS_INC_ACTIVE(cachep); - STATS_SET_HIGH(cachep); - - BUG_ON(slabp->inuse == cachep->num); - - /* get obj pointer */ - obj = slabp->s_mem + slabp->free*cachep->objsize; - slabp->inuse++; - next = slab_bufctl(slabp)[slabp->free]; + struct slab *slabp; + struct kmem_list3 *l3; + void *obj; + kmem_bufctl_t next; + int x; + + l3 = cachep->nodelists[nodeid]; + BUG_ON(!l3); + + retry: + spin_lock(&l3->list_lock); + entry = l3->slabs_partial.next; + if (entry == &l3->slabs_partial) { + l3->free_touched = 1; + entry = l3->slabs_free.next; + if (entry == &l3->slabs_free) + goto must_grow; + } + + slabp = list_entry(entry, struct slab, list); + check_spinlock_acquired_node(cachep, nodeid); + check_slabp(cachep, slabp); + + STATS_INC_NODEALLOCS(cachep); + STATS_INC_ACTIVE(cachep); + STATS_SET_HIGH(cachep); + + BUG_ON(slabp->inuse == cachep->num); + + /* get obj pointer */ + obj = slabp->s_mem + slabp->free * cachep->objsize; + slabp->inuse++; + next = slab_bufctl(slabp)[slabp->free]; #if DEBUG - slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; + slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; #endif - slabp->free = next; - check_slabp(cachep, slabp); - l3->free_objects--; - /* move slabp to correct slabp list: */ - list_del(&slabp->list); - - if (slabp->free == BUFCTL_END) { - list_add(&slabp->list, &l3->slabs_full); - } else { - list_add(&slabp->list, &l3->slabs_partial); - } + slabp->free = next; + check_slabp(cachep, slabp); + l3->free_objects--; + /* move slabp to correct slabp list: */ + list_del(&slabp->list); + + if (slabp->free == BUFCTL_END) { + list_add(&slabp->list, &l3->slabs_full); + } else { + list_add(&slabp->list, &l3->slabs_partial); + } - spin_unlock(&l3->list_lock); - goto done; + spin_unlock(&l3->list_lock); + goto done; -must_grow: - spin_unlock(&l3->list_lock); - x = cache_grow(cachep, flags, nodeid); + must_grow: + spin_unlock(&l3->list_lock); + x = cache_grow(cachep, flags, nodeid); - if (!x) - return NULL; + if (!x) + return NULL; - goto retry; -done: - return obj; + goto retry; + done: + return obj; } #endif /* * Caller needs to acquire correct kmem_list's list_lock */ -static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, int node) +static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, + int node) { int i; struct kmem_list3 *l3; @@ -2652,7 +2709,7 @@ static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects, int n if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { printk(KERN_ERR "slab: double free detected in cache " - "'%s', objp %p\n", cachep->name, objp); + "'%s', objp %p\n", cachep->name, objp); BUG(); } #endif @@ -2696,20 +2753,19 @@ static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) spin_lock(&l3->list_lock); if (l3->shared) { struct array_cache *shared_array = l3->shared; - int max = shared_array->limit-shared_array->avail; + int max = shared_array->limit - shared_array->avail; if (max) { if (batchcount > max) batchcount = max; memcpy(&(shared_array->entry[shared_array->avail]), - ac->entry, - sizeof(void*)*batchcount); + ac->entry, sizeof(void *) * batchcount); shared_array->avail += batchcount; goto free_done; } } free_block(cachep, ac->entry, batchcount, node); -free_done: + free_done: #if STATS { int i = 0; @@ -2731,10 +2787,9 @@ free_done: spin_unlock(&l3->list_lock); ac->avail -= batchcount; memmove(ac->entry, &(ac->entry[batchcount]), - sizeof(void*)*ac->avail); + sizeof(void *) * ac->avail); } - /* * __cache_free * Release an obj back to its cache. If the obj has a constructed @@ -2759,7 +2814,8 @@ static inline void __cache_free(kmem_cache_t *cachep, void *objp) if (unlikely(slabp->nodeid != numa_node_id())) { struct array_cache *alien = NULL; int nodeid = slabp->nodeid; - struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()]; + struct kmem_list3 *l3 = + cachep->nodelists[numa_node_id()]; STATS_INC_NODEFREES(cachep); if (l3->alien && l3->alien[nodeid]) { @@ -2767,15 +2823,15 @@ static inline void __cache_free(kmem_cache_t *cachep, void *objp) spin_lock(&alien->lock); if (unlikely(alien->avail == alien->limit)) __drain_alien_cache(cachep, - alien, nodeid); + alien, nodeid); alien->entry[alien->avail++] = objp; spin_unlock(&alien->lock); } else { spin_lock(&(cachep->nodelists[nodeid])-> - list_lock); + list_lock); free_block(cachep, &objp, 1, nodeid); spin_unlock(&(cachep->nodelists[nodeid])-> - list_lock); + list_lock); } return; } @@ -2822,9 +2878,9 @@ EXPORT_SYMBOL(kmem_cache_alloc); */ int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) { - unsigned long addr = (unsigned long) ptr; + unsigned long addr = (unsigned long)ptr; unsigned long min_addr = PAGE_OFFSET; - unsigned long align_mask = BYTES_PER_WORD-1; + unsigned long align_mask = BYTES_PER_WORD - 1; unsigned long size = cachep->objsize; struct page *page; @@ -2844,7 +2900,7 @@ int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr) if (unlikely(page_get_cache(page) != cachep)) goto out; return 1; -out: + out: return 0; } @@ -2871,8 +2927,10 @@ void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid) if (unlikely(!cachep->nodelists[nodeid])) { /* Fall back to __cache_alloc if we run into trouble */ - printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name); - return __cache_alloc(cachep,flags); + printk(KERN_WARNING + "slab: not allocating in inactive node %d for cache %s\n", + nodeid, cachep->name); + return __cache_alloc(cachep, flags); } cache_alloc_debugcheck_before(cachep, flags); @@ -2882,7 +2940,9 @@ void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid) else ptr = __cache_alloc_node(cachep, flags, nodeid); local_irq_restore(save_flags); - ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0)); + ptr = + cache_alloc_debugcheck_after(cachep, flags, ptr, + __builtin_return_address(0)); return ptr; } @@ -2944,12 +3004,11 @@ EXPORT_SYMBOL(__kmalloc); * Objects should be dereferenced using the per_cpu_ptr macro only. * * @size: how many bytes of memory are required. - * @align: the alignment, which can't be greater than SMP_CACHE_BYTES. */ -void *__alloc_percpu(size_t size, size_t align) +void *__alloc_percpu(size_t size) { int i; - struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); + struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL); if (!pdata) return NULL; @@ -2973,9 +3032,9 @@ void *__alloc_percpu(size_t size, size_t align) } /* Catch derefs w/o wrappers */ - return (void *) (~(unsigned long) pdata); + return (void *)(~(unsigned long)pdata); -unwind_oom: + unwind_oom: while (--i >= 0) { if (!cpu_possible(i)) continue; @@ -3006,20 +3065,6 @@ void kmem_cache_free(kmem_cache_t *cachep, void *objp) EXPORT_SYMBOL(kmem_cache_free); /** - * kzalloc - allocate memory. The memory is set to zero. - * @size: how many bytes of memory are required. - * @flags: the type of memory to allocate. - */ -void *kzalloc(size_t size, gfp_t flags) -{ - void *ret = kmalloc(size, flags); - if (ret) - memset(ret, 0, size); - return ret; -} -EXPORT_SYMBOL(kzalloc); - -/** * kfree - free previously allocated memory * @objp: pointer returned by kmalloc. * @@ -3038,7 +3083,8 @@ void kfree(const void *objp) local_irq_save(flags); kfree_debugcheck(objp); c = page_get_cache(virt_to_page(objp)); - __cache_free(c, (void*)objp); + mutex_debug_check_no_locks_freed(objp, obj_reallen(c)); + __cache_free(c, (void *)objp); local_irq_restore(flags); } EXPORT_SYMBOL(kfree); @@ -3051,17 +3097,16 @@ EXPORT_SYMBOL(kfree); * Don't free memory not originally allocated by alloc_percpu() * The complemented objp is to check for that. */ -void -free_percpu(const void *objp) +void free_percpu(const void *objp) { int i; - struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); + struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp); /* * We allocate for all cpus so we cannot use for online cpu here. */ for_each_cpu(i) - kfree(p->ptrs[i]); + kfree(p->ptrs[i]); kfree(p); } EXPORT_SYMBOL(free_percpu); @@ -3095,44 +3140,44 @@ static int alloc_kmemlist(kmem_cache_t *cachep) if (!(new_alien = alloc_alien_cache(node, cachep->limit))) goto fail; #endif - if (!(new = alloc_arraycache(node, (cachep->shared* - cachep->batchcount), 0xbaadf00d))) + if (!(new = alloc_arraycache(node, (cachep->shared * + cachep->batchcount), + 0xbaadf00d))) goto fail; if ((l3 = cachep->nodelists[node])) { spin_lock_irq(&l3->list_lock); if ((nc = cachep->nodelists[node]->shared)) - free_block(cachep, nc->entry, - nc->avail, node); + free_block(cachep, nc->entry, nc->avail, node); l3->shared = new; if (!cachep->nodelists[node]->alien) { l3->alien = new_alien; new_alien = NULL; } - l3->free_limit = (1 + nr_cpus_node(node))* - cachep->batchcount + cachep->num; + l3->free_limit = (1 + nr_cpus_node(node)) * + cachep->batchcount + cachep->num; spin_unlock_irq(&l3->list_lock); kfree(nc); free_alien_cache(new_alien); continue; } if (!(l3 = kmalloc_node(sizeof(struct kmem_list3), - GFP_KERNEL, node))) + GFP_KERNEL, node))) goto fail; kmem_list3_init(l3); l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + - ((unsigned long)cachep)%REAPTIMEOUT_LIST3; + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; l3->shared = new; l3->alien = new_alien; - l3->free_limit = (1 + nr_cpus_node(node))* - cachep->batchcount + cachep->num; + l3->free_limit = (1 + nr_cpus_node(node)) * + cachep->batchcount + cachep->num; cachep->nodelists[node] = l3; } return err; -fail: + fail: err = -ENOMEM; return err; } @@ -3154,18 +3199,19 @@ static void do_ccupdate_local(void *info) new->new[smp_processor_id()] = old; } - static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, - int shared) + int shared) { struct ccupdate_struct new; int i, err; - memset(&new.new,0,sizeof(new.new)); + memset(&new.new, 0, sizeof(new.new)); for_each_online_cpu(i) { - new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount); + new.new[i] = + alloc_arraycache(cpu_to_node(i), limit, batchcount); if (!new.new[i]) { - for (i--; i >= 0; i--) kfree(new.new[i]); + for (i--; i >= 0; i--) + kfree(new.new[i]); return -ENOMEM; } } @@ -3193,13 +3239,12 @@ static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, err = alloc_kmemlist(cachep); if (err) { printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n", - cachep->name, -err); + cachep->name, -err); BUG(); } return 0; } - static void enable_cpucache(kmem_cache_t *cachep) { int err; @@ -3246,14 +3291,14 @@ static void enable_cpucache(kmem_cache_t *cachep) if (limit > 32) limit = 32; #endif - err = do_tune_cpucache(cachep, limit, (limit+1)/2, shared); + err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared); if (err) printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", - cachep->name, -err); + cachep->name, -err); } -static void drain_array_locked(kmem_cache_t *cachep, - struct array_cache *ac, int force, int node) +static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac, + int force, int node) { int tofree; @@ -3261,14 +3306,14 @@ static void drain_array_locked(kmem_cache_t *cachep, if (ac->touched && !force) { ac->touched = 0; } else if (ac->avail) { - tofree = force ? ac->avail : (ac->limit+4)/5; + tofree = force ? ac->avail : (ac->limit + 4) / 5; if (tofree > ac->avail) { - tofree = (ac->avail+1)/2; + tofree = (ac->avail + 1) / 2; } free_block(cachep, ac->entry, tofree, node); ac->avail -= tofree; memmove(ac->entry, &(ac->entry[tofree]), - sizeof(void*)*ac->avail); + sizeof(void *) * ac->avail); } } @@ -3281,7 +3326,7 @@ static void drain_array_locked(kmem_cache_t *cachep, * - clear the per-cpu caches for this CPU. * - return freeable pages to the main free memory pool. * - * If we cannot acquire the cache chain semaphore then just give up - we'll + * If we cannot acquire the cache chain mutex then just give up - we'll * try again on the next iteration. */ static void cache_reap(void *unused) @@ -3289,15 +3334,16 @@ static void cache_reap(void *unused) struct list_head *walk; struct kmem_list3 *l3; - if (down_trylock(&cache_chain_sem)) { + if (!mutex_trylock(&cache_chain_mutex)) { /* Give up. Setup the next iteration. */ - schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC); + schedule_delayed_work(&__get_cpu_var(reap_work), + REAPTIMEOUT_CPUC); return; } list_for_each(walk, &cache_chain) { kmem_cache_t *searchp; - struct list_head* p; + struct list_head *p; int tofree; struct slab *slabp; @@ -3314,7 +3360,7 @@ static void cache_reap(void *unused) spin_lock_irq(&l3->list_lock); drain_array_locked(searchp, ac_data(searchp), 0, - numa_node_id()); + numa_node_id()); if (time_after(l3->next_reap, jiffies)) goto next_unlock; @@ -3323,14 +3369,16 @@ static void cache_reap(void *unused) if (l3->shared) drain_array_locked(searchp, l3->shared, 0, - numa_node_id()); + numa_node_id()); if (l3->free_touched) { l3->free_touched = 0; goto next_unlock; } - tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num); + tofree = + (l3->free_limit + 5 * searchp->num - + 1) / (5 * searchp->num); do { p = l3->slabs_free.next; if (p == &(l3->slabs_free)) @@ -3350,14 +3398,14 @@ static void cache_reap(void *unused) spin_unlock_irq(&l3->list_lock); slab_destroy(searchp, slabp); spin_lock_irq(&l3->list_lock); - } while(--tofree > 0); -next_unlock: + } while (--tofree > 0); + next_unlock: spin_unlock_irq(&l3->list_lock); -next: + next: cond_resched(); } check_irq_on(); - up(&cache_chain_sem); + mutex_unlock(&cache_chain_mutex); drain_remote_pages(); /* Setup the next iteration */ schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC); @@ -3365,32 +3413,37 @@ next: #ifdef CONFIG_PROC_FS -static void *s_start(struct seq_file *m, loff_t *pos) +static void print_slabinfo_header(struct seq_file *m) { - loff_t n = *pos; - struct list_head *p; - - down(&cache_chain_sem); - if (!n) { - /* - * Output format version, so at least we can change it - * without _too_ many complaints. - */ + /* + * Output format version, so at least we can change it + * without _too_ many complaints. + */ #if STATS - seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); + seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); #else - seq_puts(m, "slabinfo - version: 2.1\n"); + seq_puts(m, "slabinfo - version: 2.1\n"); #endif - seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); - seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); - seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); + seq_puts(m, "# name <active_objs> <num_objs> <objsize> " + "<objperslab> <pagesperslab>"); + seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); + seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); #if STATS - seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>" - " <error> <maxfreeable> <nodeallocs> <remotefrees>"); - seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); + seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " + "<error> <maxfreeable> <nodeallocs> <remotefrees>"); + seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); #endif - seq_putc(m, '\n'); - } + seq_putc(m, '\n'); +} + +static void *s_start(struct seq_file *m, loff_t *pos) +{ + loff_t n = *pos; + struct list_head *p; + + mutex_lock(&cache_chain_mutex); + if (!n) + print_slabinfo_header(m); p = cache_chain.next; while (n--) { p = p->next; @@ -3405,23 +3458,23 @@ static void *s_next(struct seq_file *m, void *p, loff_t *pos) kmem_cache_t *cachep = p; ++*pos; return cachep->next.next == &cache_chain ? NULL - : list_entry(cachep->next.next, kmem_cache_t, next); + : list_entry(cachep->next.next, kmem_cache_t, next); } static void s_stop(struct seq_file *m, void *p) { - up(&cache_chain_sem); + mutex_unlock(&cache_chain_mutex); } static int s_show(struct seq_file *m, void *p) { kmem_cache_t *cachep = p; struct list_head *q; - struct slab *slabp; - unsigned long active_objs; - unsigned long num_objs; - unsigned long active_slabs = 0; - unsigned long num_slabs, free_objects = 0, shared_avail = 0; + struct slab *slabp; + unsigned long active_objs; + unsigned long num_objs; + unsigned long active_slabs = 0; + unsigned long num_slabs, free_objects = 0, shared_avail = 0; const char *name; char *error = NULL; int node; @@ -3438,14 +3491,14 @@ static int s_show(struct seq_file *m, void *p) spin_lock(&l3->list_lock); - list_for_each(q,&l3->slabs_full) { + list_for_each(q, &l3->slabs_full) { slabp = list_entry(q, struct slab, list); if (slabp->inuse != cachep->num && !error) error = "slabs_full accounting error"; active_objs += cachep->num; active_slabs++; } - list_for_each(q,&l3->slabs_partial) { + list_for_each(q, &l3->slabs_partial) { slabp = list_entry(q, struct slab, list); if (slabp->inuse == cachep->num && !error) error = "slabs_partial inuse accounting error"; @@ -3454,7 +3507,7 @@ static int s_show(struct seq_file *m, void *p) active_objs += slabp->inuse; active_slabs++; } - list_for_each(q,&l3->slabs_free) { + list_for_each(q, &l3->slabs_free) { slabp = list_entry(q, struct slab, list); if (slabp->inuse && !error) error = "slabs_free/inuse accounting error"; @@ -3465,25 +3518,24 @@ static int s_show(struct seq_file *m, void *p) spin_unlock(&l3->list_lock); } - num_slabs+=active_slabs; - num_objs = num_slabs*cachep->num; + num_slabs += active_slabs; + num_objs = num_slabs * cachep->num; if (num_objs - active_objs != free_objects && !error) error = "free_objects accounting error"; - name = cachep->name; + name = cachep->name; if (error) printk(KERN_ERR "slab: cache %s error: %s\n", name, error); seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", - name, active_objs, num_objs, cachep->objsize, - cachep->num, (1<<cachep->gfporder)); + name, active_objs, num_objs, cachep->objsize, + cachep->num, (1 << cachep->gfporder)); seq_printf(m, " : tunables %4u %4u %4u", - cachep->limit, cachep->batchcount, - cachep->shared); + cachep->limit, cachep->batchcount, cachep->shared); seq_printf(m, " : slabdata %6lu %6lu %6lu", - active_slabs, num_slabs, shared_avail); + active_slabs, num_slabs, shared_avail); #if STATS - { /* list3 stats */ + { /* list3 stats */ unsigned long high = cachep->high_mark; unsigned long allocs = cachep->num_allocations; unsigned long grown = cachep->grown; @@ -3494,9 +3546,7 @@ static int s_show(struct seq_file *m, void *p) unsigned long node_frees = cachep->node_frees; seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ - %4lu %4lu %4lu %4lu", - allocs, high, grown, reaped, errors, - max_freeable, node_allocs, node_frees); + %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees); } /* cpu stats */ { @@ -3506,7 +3556,7 @@ static int s_show(struct seq_file *m, void *p) unsigned long freemiss = atomic_read(&cachep->freemiss); seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", - allochit, allocmiss, freehit, freemiss); + allochit, allocmiss, freehit, freemiss); } #endif seq_putc(m, '\n'); @@ -3529,10 +3579,10 @@ static int s_show(struct seq_file *m, void *p) */ struct seq_operations slabinfo_op = { - .start = s_start, - .next = s_next, - .stop = s_stop, - .show = s_show, + .start = s_start, + .next = s_next, + .stop = s_stop, + .show = s_show, }; #define MAX_SLABINFO_WRITE 128 @@ -3543,18 +3593,18 @@ struct seq_operations slabinfo_op = { * @count: data length * @ppos: unused */ -ssize_t slabinfo_write(struct file *file, const char __user *buffer, - size_t count, loff_t *ppos) +ssize_t slabinfo_write(struct file *file, const char __user * buffer, + size_t count, loff_t *ppos) { - char kbuf[MAX_SLABINFO_WRITE+1], *tmp; + char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; int limit, batchcount, shared, res; struct list_head *p; - + if (count > MAX_SLABINFO_WRITE) return -EINVAL; if (copy_from_user(&kbuf, buffer, count)) return -EFAULT; - kbuf[MAX_SLABINFO_WRITE] = '\0'; + kbuf[MAX_SLABINFO_WRITE] = '\0'; tmp = strchr(kbuf, ' '); if (!tmp) @@ -3565,25 +3615,24 @@ ssize_t slabinfo_write(struct file *file, const char __user *buffer, return -EINVAL; /* Find the cache in the chain of caches. */ - down(&cache_chain_sem); + mutex_lock(&cache_chain_mutex); res = -EINVAL; - list_for_each(p,&cache_chain) { + list_for_each(p, &cache_chain) { kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next); if (!strcmp(cachep->name, kbuf)) { if (limit < 1 || batchcount < 1 || - batchcount > limit || - shared < 0) { + batchcount > limit || shared < 0) { res = 0; } else { res = do_tune_cpucache(cachep, limit, - batchcount, shared); + batchcount, shared); } break; } } - up(&cache_chain_sem); + mutex_unlock(&cache_chain_mutex); if (res >= 0) res = count; return res; @@ -3609,26 +3658,3 @@ unsigned int ksize(const void *objp) return obj_reallen(page_get_cache(virt_to_page(objp))); } - - -/* - * kstrdup - allocate space for and copy an existing string - * - * @s: the string to duplicate - * @gfp: the GFP mask used in the kmalloc() call when allocating memory - */ -char *kstrdup(const char *s, gfp_t gfp) -{ - size_t len; - char *buf; - - if (!s) - return NULL; - - len = strlen(s) + 1; - buf = kmalloc(len, gfp); - if (buf) - memcpy(buf, s, len); - return buf; -} -EXPORT_SYMBOL(kstrdup); diff --git a/mm/slob.c b/mm/slob.c new file mode 100644 index 00000000000..1c240c4b71d --- /dev/null +++ b/mm/slob.c @@ -0,0 +1,385 @@ +/* + * SLOB Allocator: Simple List Of Blocks + * + * Matt Mackall <mpm@selenic.com> 12/30/03 + * + * How SLOB works: + * + * The core of SLOB is a traditional K&R style heap allocator, with + * support for returning aligned objects. The granularity of this + * allocator is 8 bytes on x86, though it's perhaps possible to reduce + * this to 4 if it's deemed worth the effort. The slob heap is a + * singly-linked list of pages from __get_free_page, grown on demand + * and allocation from the heap is currently first-fit. + * + * Above this is an implementation of kmalloc/kfree. Blocks returned + * from kmalloc are 8-byte aligned and prepended with a 8-byte header. + * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls + * __get_free_pages directly so that it can return page-aligned blocks + * and keeps a linked list of such pages and their orders. These + * objects are detected in kfree() by their page alignment. + * + * SLAB is emulated on top of SLOB by simply calling constructors and + * destructors for every SLAB allocation. Objects are returned with + * the 8-byte alignment unless the SLAB_MUST_HWCACHE_ALIGN flag is + * set, in which case the low-level allocator will fragment blocks to + * create the proper alignment. Again, objects of page-size or greater + * are allocated by calling __get_free_pages. As SLAB objects know + * their size, no separate size bookkeeping is necessary and there is + * essentially no allocation space overhead. + */ + +#include <linux/config.h> +#include <linux/slab.h> +#include <linux/mm.h> +#include <linux/cache.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/timer.h> + +struct slob_block { + int units; + struct slob_block *next; +}; +typedef struct slob_block slob_t; + +#define SLOB_UNIT sizeof(slob_t) +#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) +#define SLOB_ALIGN L1_CACHE_BYTES + +struct bigblock { + int order; + void *pages; + struct bigblock *next; +}; +typedef struct bigblock bigblock_t; + +static slob_t arena = { .next = &arena, .units = 1 }; +static slob_t *slobfree = &arena; +static bigblock_t *bigblocks; +static DEFINE_SPINLOCK(slob_lock); +static DEFINE_SPINLOCK(block_lock); + +static void slob_free(void *b, int size); + +static void *slob_alloc(size_t size, gfp_t gfp, int align) +{ + slob_t *prev, *cur, *aligned = 0; + int delta = 0, units = SLOB_UNITS(size); + unsigned long flags; + + spin_lock_irqsave(&slob_lock, flags); + prev = slobfree; + for (cur = prev->next; ; prev = cur, cur = cur->next) { + if (align) { + aligned = (slob_t *)ALIGN((unsigned long)cur, align); + delta = aligned - cur; + } + if (cur->units >= units + delta) { /* room enough? */ + if (delta) { /* need to fragment head to align? */ + aligned->units = cur->units - delta; + aligned->next = cur->next; + cur->next = aligned; + cur->units = delta; + prev = cur; + cur = aligned; + } + + if (cur->units == units) /* exact fit? */ + prev->next = cur->next; /* unlink */ + else { /* fragment */ + prev->next = cur + units; + prev->next->units = cur->units - units; + prev->next->next = cur->next; + cur->units = units; + } + + slobfree = prev; + spin_unlock_irqrestore(&slob_lock, flags); + return cur; + } + if (cur == slobfree) { + spin_unlock_irqrestore(&slob_lock, flags); + + if (size == PAGE_SIZE) /* trying to shrink arena? */ + return 0; + + cur = (slob_t *)__get_free_page(gfp); + if (!cur) + return 0; + + slob_free(cur, PAGE_SIZE); + spin_lock_irqsave(&slob_lock, flags); + cur = slobfree; + } + } +} + +static void slob_free(void *block, int size) +{ + slob_t *cur, *b = (slob_t *)block; + unsigned long flags; + + if (!block) + return; + + if (size) + b->units = SLOB_UNITS(size); + + /* Find reinsertion point */ + spin_lock_irqsave(&slob_lock, flags); + for (cur = slobfree; !(b > cur && b < cur->next); cur = cur->next) + if (cur >= cur->next && (b > cur || b < cur->next)) + break; + + if (b + b->units == cur->next) { + b->units += cur->next->units; + b->next = cur->next->next; + } else + b->next = cur->next; + + if (cur + cur->units == b) { + cur->units += b->units; + cur->next = b->next; + } else + cur->next = b; + + slobfree = cur; + + spin_unlock_irqrestore(&slob_lock, flags); +} + +static int FASTCALL(find_order(int size)); +static int fastcall find_order(int size) +{ + int order = 0; + for ( ; size > 4096 ; size >>=1) + order++; + return order; +} + +void *kmalloc(size_t size, gfp_t gfp) +{ + slob_t *m; + bigblock_t *bb; + unsigned long flags; + + if (size < PAGE_SIZE - SLOB_UNIT) { + m = slob_alloc(size + SLOB_UNIT, gfp, 0); + return m ? (void *)(m + 1) : 0; + } + + bb = slob_alloc(sizeof(bigblock_t), gfp, 0); + if (!bb) + return 0; + + bb->order = find_order(size); + bb->pages = (void *)__get_free_pages(gfp, bb->order); + + if (bb->pages) { + spin_lock_irqsave(&block_lock, flags); + bb->next = bigblocks; + bigblocks = bb; + spin_unlock_irqrestore(&block_lock, flags); + return bb->pages; + } + + slob_free(bb, sizeof(bigblock_t)); + return 0; +} + +EXPORT_SYMBOL(kmalloc); + +void kfree(const void *block) +{ + bigblock_t *bb, **last = &bigblocks; + unsigned long flags; + + if (!block) + return; + + if (!((unsigned long)block & (PAGE_SIZE-1))) { + /* might be on the big block list */ + spin_lock_irqsave(&block_lock, flags); + for (bb = bigblocks; bb; last = &bb->next, bb = bb->next) { + if (bb->pages == block) { + *last = bb->next; + spin_unlock_irqrestore(&block_lock, flags); + free_pages((unsigned long)block, bb->order); + slob_free(bb, sizeof(bigblock_t)); + return; + } + } + spin_unlock_irqrestore(&block_lock, flags); + } + + slob_free((slob_t *)block - 1, 0); + return; +} + +EXPORT_SYMBOL(kfree); + +unsigned int ksize(const void *block) +{ + bigblock_t *bb; + unsigned long flags; + + if (!block) + return 0; + + if (!((unsigned long)block & (PAGE_SIZE-1))) { + spin_lock_irqsave(&block_lock, flags); + for (bb = bigblocks; bb; bb = bb->next) + if (bb->pages == block) { + spin_unlock_irqrestore(&slob_lock, flags); + return PAGE_SIZE << bb->order; + } + spin_unlock_irqrestore(&block_lock, flags); + } + + return ((slob_t *)block - 1)->units * SLOB_UNIT; +} + +struct kmem_cache { + unsigned int size, align; + const char *name; + void (*ctor)(void *, struct kmem_cache *, unsigned long); + void (*dtor)(void *, struct kmem_cache *, unsigned long); +}; + +struct kmem_cache *kmem_cache_create(const char *name, size_t size, + size_t align, unsigned long flags, + void (*ctor)(void*, struct kmem_cache *, unsigned long), + void (*dtor)(void*, struct kmem_cache *, unsigned long)) +{ + struct kmem_cache *c; + + c = slob_alloc(sizeof(struct kmem_cache), flags, 0); + + if (c) { + c->name = name; + c->size = size; + c->ctor = ctor; + c->dtor = dtor; + /* ignore alignment unless it's forced */ + c->align = (flags & SLAB_MUST_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; + if (c->align < align) + c->align = align; + } + + return c; +} +EXPORT_SYMBOL(kmem_cache_create); + +int kmem_cache_destroy(struct kmem_cache *c) +{ + slob_free(c, sizeof(struct kmem_cache)); + return 0; +} +EXPORT_SYMBOL(kmem_cache_destroy); + +void *kmem_cache_alloc(struct kmem_cache *c, gfp_t flags) +{ + void *b; + + if (c->size < PAGE_SIZE) + b = slob_alloc(c->size, flags, c->align); + else + b = (void *)__get_free_pages(flags, find_order(c->size)); + + if (c->ctor) + c->ctor(b, c, SLAB_CTOR_CONSTRUCTOR); + + return b; +} +EXPORT_SYMBOL(kmem_cache_alloc); + +void kmem_cache_free(struct kmem_cache *c, void *b) +{ + if (c->dtor) + c->dtor(b, c, 0); + + if (c->size < PAGE_SIZE) + slob_free(b, c->size); + else + free_pages((unsigned long)b, find_order(c->size)); +} +EXPORT_SYMBOL(kmem_cache_free); + +unsigned int kmem_cache_size(struct kmem_cache *c) +{ + return c->size; +} +EXPORT_SYMBOL(kmem_cache_size); + +const char *kmem_cache_name(struct kmem_cache *c) +{ + return c->name; +} +EXPORT_SYMBOL(kmem_cache_name); + +static struct timer_list slob_timer = TIMER_INITIALIZER( + (void (*)(unsigned long))kmem_cache_init, 0, 0); + +void kmem_cache_init(void) +{ + void *p = slob_alloc(PAGE_SIZE, 0, PAGE_SIZE-1); + + if (p) + free_page((unsigned long)p); + + mod_timer(&slob_timer, jiffies + HZ); +} + +atomic_t slab_reclaim_pages = ATOMIC_INIT(0); +EXPORT_SYMBOL(slab_reclaim_pages); + +#ifdef CONFIG_SMP + +void *__alloc_percpu(size_t size, size_t align) +{ + int i; + struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); + + if (!pdata) + return NULL; + + for (i = 0; i < NR_CPUS; i++) { + if (!cpu_possible(i)) + continue; + pdata->ptrs[i] = kmalloc(size, GFP_KERNEL); + if (!pdata->ptrs[i]) + goto unwind_oom; + memset(pdata->ptrs[i], 0, size); + } + + /* Catch derefs w/o wrappers */ + return (void *) (~(unsigned long) pdata); + +unwind_oom: + while (--i >= 0) { + if (!cpu_possible(i)) + continue; + kfree(pdata->ptrs[i]); + } + kfree(pdata); + return NULL; +} +EXPORT_SYMBOL(__alloc_percpu); + +void +free_percpu(const void *objp) +{ + int i; + struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); + + for (i = 0; i < NR_CPUS; i++) { + if (!cpu_possible(i)) + continue; + kfree(p->ptrs[i]); + } + kfree(p); +} +EXPORT_SYMBOL(free_percpu); + +#endif diff --git a/mm/sparse.c b/mm/sparse.c index 72079b538e2..0a51f36ba3a 100644 --- a/mm/sparse.c +++ b/mm/sparse.c @@ -18,10 +18,10 @@ */ #ifdef CONFIG_SPARSEMEM_EXTREME struct mem_section *mem_section[NR_SECTION_ROOTS] - ____cacheline_maxaligned_in_smp; + ____cacheline_internodealigned_in_smp; #else struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] - ____cacheline_maxaligned_in_smp; + ____cacheline_internodealigned_in_smp; #endif EXPORT_SYMBOL(mem_section); diff --git a/mm/swap.c b/mm/swap.c index ee6d71ccfa5..bc2442a7b0e 100644 --- a/mm/swap.c +++ b/mm/swap.c @@ -174,6 +174,32 @@ void lru_add_drain(void) put_cpu(); } +#ifdef CONFIG_NUMA +static void lru_add_drain_per_cpu(void *dummy) +{ + lru_add_drain(); +} + +/* + * Returns 0 for success + */ +int lru_add_drain_all(void) +{ + return schedule_on_each_cpu(lru_add_drain_per_cpu, NULL); +} + +#else + +/* + * Returns 0 for success + */ +int lru_add_drain_all(void) +{ + lru_add_drain(); + return 0; +} +#endif + /* * This path almost never happens for VM activity - pages are normally * freed via pagevecs. But it gets used by networking. @@ -384,6 +410,8 @@ unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping, return pagevec_count(pvec); } +EXPORT_SYMBOL(pagevec_lookup); + unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping, pgoff_t *index, int tag, unsigned nr_pages) { diff --git a/mm/swap_state.c b/mm/swap_state.c index fc2aecb70a9..7b09ac503fe 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c @@ -141,7 +141,7 @@ void __delete_from_swap_cache(struct page *page) * Allocate swap space for the page and add the page to the * swap cache. Caller needs to hold the page lock. */ -int add_to_swap(struct page * page) +int add_to_swap(struct page * page, gfp_t gfp_mask) { swp_entry_t entry; int err; @@ -166,7 +166,7 @@ int add_to_swap(struct page * page) * Add it to the swap cache and mark it dirty */ err = __add_to_swap_cache(page, entry, - GFP_ATOMIC|__GFP_NOMEMALLOC|__GFP_NOWARN); + gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN); switch (err) { case 0: /* Success */ diff --git a/mm/swapfile.c b/mm/swapfile.c index 6da4b28b896..f1e69c30d20 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c @@ -25,6 +25,8 @@ #include <linux/rmap.h> #include <linux/security.h> #include <linux/backing-dev.h> +#include <linux/mutex.h> +#include <linux/capability.h> #include <linux/syscalls.h> #include <asm/pgtable.h> @@ -45,12 +47,12 @@ struct swap_list_t swap_list = {-1, -1}; struct swap_info_struct swap_info[MAX_SWAPFILES]; -static DECLARE_MUTEX(swapon_sem); +static DEFINE_MUTEX(swapon_mutex); /* * We need this because the bdev->unplug_fn can sleep and we cannot * hold swap_lock while calling the unplug_fn. And swap_lock - * cannot be turned into a semaphore. + * cannot be turned into a mutex. */ static DECLARE_RWSEM(swap_unplug_sem); @@ -1160,7 +1162,7 @@ asmlinkage long sys_swapoff(const char __user * specialfile) up_write(&swap_unplug_sem); destroy_swap_extents(p); - down(&swapon_sem); + mutex_lock(&swapon_mutex); spin_lock(&swap_lock); drain_mmlist(); @@ -1179,7 +1181,7 @@ asmlinkage long sys_swapoff(const char __user * specialfile) p->swap_map = NULL; p->flags = 0; spin_unlock(&swap_lock); - up(&swapon_sem); + mutex_unlock(&swapon_mutex); vfree(swap_map); inode = mapping->host; if (S_ISBLK(inode->i_mode)) { @@ -1187,9 +1189,9 @@ asmlinkage long sys_swapoff(const char __user * specialfile) set_blocksize(bdev, p->old_block_size); bd_release(bdev); } else { - down(&inode->i_sem); + mutex_lock(&inode->i_mutex); inode->i_flags &= ~S_SWAPFILE; - up(&inode->i_sem); + mutex_unlock(&inode->i_mutex); } filp_close(swap_file, NULL); err = 0; @@ -1208,7 +1210,7 @@ static void *swap_start(struct seq_file *swap, loff_t *pos) int i; loff_t l = *pos; - down(&swapon_sem); + mutex_lock(&swapon_mutex); for (i = 0; i < nr_swapfiles; i++, ptr++) { if (!(ptr->flags & SWP_USED) || !ptr->swap_map) @@ -1237,7 +1239,7 @@ static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) static void swap_stop(struct seq_file *swap, void *v) { - up(&swapon_sem); + mutex_unlock(&swapon_mutex); } static int swap_show(struct seq_file *swap, void *v) @@ -1406,7 +1408,7 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) p->bdev = bdev; } else if (S_ISREG(inode->i_mode)) { p->bdev = inode->i_sb->s_bdev; - down(&inode->i_sem); + mutex_lock(&inode->i_mutex); did_down = 1; if (IS_SWAPFILE(inode)) { error = -EBUSY; @@ -1442,7 +1444,7 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) swap_header_version = 2; else { - printk("Unable to find swap-space signature\n"); + printk(KERN_ERR "Unable to find swap-space signature\n"); error = -EINVAL; goto bad_swap; } @@ -1493,7 +1495,7 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) goto bad_swap; if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) goto bad_swap; - + /* OK, set up the swap map and apply the bad block list */ if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { error = -ENOMEM; @@ -1502,17 +1504,17 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) error = 0; memset(p->swap_map, 0, maxpages * sizeof(short)); - for (i=0; i<swap_header->info.nr_badpages; i++) { - int page = swap_header->info.badpages[i]; - if (page <= 0 || page >= swap_header->info.last_page) + for (i = 0; i < swap_header->info.nr_badpages; i++) { + int page_nr = swap_header->info.badpages[i]; + if (page_nr <= 0 || page_nr >= swap_header->info.last_page) error = -EINVAL; else - p->swap_map[page] = SWAP_MAP_BAD; + p->swap_map[page_nr] = SWAP_MAP_BAD; } nr_good_pages = swap_header->info.last_page - swap_header->info.nr_badpages - 1 /* header page */; - if (error) + if (error) goto bad_swap; } @@ -1539,7 +1541,7 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) goto bad_swap; } - down(&swapon_sem); + mutex_lock(&swapon_mutex); spin_lock(&swap_lock); p->flags = SWP_ACTIVE; nr_swap_pages += nr_good_pages; @@ -1565,7 +1567,7 @@ asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) swap_info[prev].next = p - swap_info; } spin_unlock(&swap_lock); - up(&swapon_sem); + mutex_unlock(&swapon_mutex); error = 0; goto out; bad_swap: @@ -1596,7 +1598,7 @@ out: if (did_down) { if (!error) inode->i_flags |= S_SWAPFILE; - up(&inode->i_sem); + mutex_unlock(&inode->i_mutex); } return error; } diff --git a/mm/tiny-shmem.c b/mm/tiny-shmem.c index cdc6d431972..f9d6a9cc91c 100644 --- a/mm/tiny-shmem.c +++ b/mm/tiny-shmem.c @@ -90,7 +90,7 @@ struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags) file->f_mode = FMODE_WRITE | FMODE_READ; /* notify everyone as to the change of file size */ - error = do_truncate(dentry, size, file); + error = do_truncate(dentry, size, 0, file); if (error < 0) goto close_file; diff --git a/mm/truncate.c b/mm/truncate.c index 7dee3274590..6cb3fff25f6 100644 --- a/mm/truncate.c +++ b/mm/truncate.c @@ -196,7 +196,7 @@ EXPORT_SYMBOL(truncate_inode_pages_range); * @mapping: mapping to truncate * @lstart: offset from which to truncate * - * Called under (and serialised by) inode->i_sem. + * Called under (and serialised by) inode->i_mutex. */ void truncate_inode_pages(struct address_space *mapping, loff_t lstart) { @@ -249,7 +249,6 @@ unlock: break; } pagevec_release(&pvec); - cond_resched(); } return ret; } diff --git a/mm/util.c b/mm/util.c new file mode 100644 index 00000000000..5f4bb59da63 --- /dev/null +++ b/mm/util.c @@ -0,0 +1,39 @@ +#include <linux/slab.h> +#include <linux/string.h> +#include <linux/module.h> + +/** + * kzalloc - allocate memory. The memory is set to zero. + * @size: how many bytes of memory are required. + * @flags: the type of memory to allocate. + */ +void *kzalloc(size_t size, gfp_t flags) +{ + void *ret = kmalloc(size, flags); + if (ret) + memset(ret, 0, size); + return ret; +} +EXPORT_SYMBOL(kzalloc); + +/* + * kstrdup - allocate space for and copy an existing string + * + * @s: the string to duplicate + * @gfp: the GFP mask used in the kmalloc() call when allocating memory + */ +char *kstrdup(const char *s, gfp_t gfp) +{ + size_t len; + char *buf; + + if (!s) + return NULL; + + len = strlen(s) + 1; + buf = kmalloc(len, gfp); + if (buf) + memcpy(buf, s, len); + return buf; +} +EXPORT_SYMBOL(kstrdup); diff --git a/mm/vmscan.c b/mm/vmscan.c index be8235fb193..2e34b61a70c 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -71,6 +71,9 @@ struct scan_control { int may_writepage; + /* Can pages be swapped as part of reclaim? */ + int may_swap; + /* This context's SWAP_CLUSTER_MAX. If freeing memory for * suspend, we effectively ignore SWAP_CLUSTER_MAX. * In this context, it doesn't matter that we scan the @@ -180,8 +183,7 @@ EXPORT_SYMBOL(remove_shrinker); * * Returns the number of slab objects which we shrunk. */ -static int shrink_slab(unsigned long scanned, gfp_t gfp_mask, - unsigned long lru_pages) +int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages) { struct shrinker *shrinker; int ret = 0; @@ -269,9 +271,7 @@ static inline int is_page_cache_freeable(struct page *page) static int may_write_to_queue(struct backing_dev_info *bdi) { - if (current_is_kswapd()) - return 1; - if (current_is_pdflush()) /* This is unlikely, but why not... */ + if (current->flags & PF_SWAPWRITE) return 1; if (!bdi_write_congested(bdi)) return 1; @@ -376,6 +376,43 @@ static pageout_t pageout(struct page *page, struct address_space *mapping) return PAGE_CLEAN; } +static int remove_mapping(struct address_space *mapping, struct page *page) +{ + if (!mapping) + return 0; /* truncate got there first */ + + write_lock_irq(&mapping->tree_lock); + + /* + * The non-racy check for busy page. It is critical to check + * PageDirty _after_ making sure that the page is freeable and + * not in use by anybody. (pagecache + us == 2) + */ + if (unlikely(page_count(page) != 2)) + goto cannot_free; + smp_rmb(); + if (unlikely(PageDirty(page))) + goto cannot_free; + + if (PageSwapCache(page)) { + swp_entry_t swap = { .val = page_private(page) }; + __delete_from_swap_cache(page); + write_unlock_irq(&mapping->tree_lock); + swap_free(swap); + __put_page(page); /* The pagecache ref */ + return 1; + } + + __remove_from_page_cache(page); + write_unlock_irq(&mapping->tree_lock); + __put_page(page); + return 1; + +cannot_free: + write_unlock_irq(&mapping->tree_lock); + return 0; +} + /* * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed */ @@ -424,7 +461,9 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc) * Try to allocate it some swap space here. */ if (PageAnon(page) && !PageSwapCache(page)) { - if (!add_to_swap(page)) + if (!sc->may_swap) + goto keep_locked; + if (!add_to_swap(page, GFP_ATOMIC)) goto activate_locked; } #endif /* CONFIG_SWAP */ @@ -507,36 +546,8 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc) goto free_it; } - if (!mapping) - goto keep_locked; /* truncate got there first */ - - write_lock_irq(&mapping->tree_lock); - - /* - * The non-racy check for busy page. It is critical to check - * PageDirty _after_ making sure that the page is freeable and - * not in use by anybody. (pagecache + us == 2) - */ - if (unlikely(page_count(page) != 2)) - goto cannot_free; - smp_rmb(); - if (unlikely(PageDirty(page))) - goto cannot_free; - -#ifdef CONFIG_SWAP - if (PageSwapCache(page)) { - swp_entry_t swap = { .val = page_private(page) }; - __delete_from_swap_cache(page); - write_unlock_irq(&mapping->tree_lock); - swap_free(swap); - __put_page(page); /* The pagecache ref */ - goto free_it; - } -#endif /* CONFIG_SWAP */ - - __remove_from_page_cache(page); - write_unlock_irq(&mapping->tree_lock); - __put_page(page); + if (!remove_mapping(mapping, page)) + goto keep_locked; free_it: unlock_page(page); @@ -545,10 +556,6 @@ free_it: __pagevec_release_nonlru(&freed_pvec); continue; -cannot_free: - write_unlock_irq(&mapping->tree_lock); - goto keep_locked; - activate_locked: SetPageActive(page); pgactivate++; @@ -566,6 +573,228 @@ keep: return reclaimed; } +#ifdef CONFIG_MIGRATION +static inline void move_to_lru(struct page *page) +{ + list_del(&page->lru); + if (PageActive(page)) { + /* + * lru_cache_add_active checks that + * the PG_active bit is off. + */ + ClearPageActive(page); + lru_cache_add_active(page); + } else { + lru_cache_add(page); + } + put_page(page); +} + +/* + * Add isolated pages on the list back to the LRU. + * + * returns the number of pages put back. + */ +int putback_lru_pages(struct list_head *l) +{ + struct page *page; + struct page *page2; + int count = 0; + + list_for_each_entry_safe(page, page2, l, lru) { + move_to_lru(page); + count++; + } + return count; +} + +/* + * swapout a single page + * page is locked upon entry, unlocked on exit + */ +static int swap_page(struct page *page) +{ + struct address_space *mapping = page_mapping(page); + + if (page_mapped(page) && mapping) + if (try_to_unmap(page) != SWAP_SUCCESS) + goto unlock_retry; + + if (PageDirty(page)) { + /* Page is dirty, try to write it out here */ + switch(pageout(page, mapping)) { + case PAGE_KEEP: + case PAGE_ACTIVATE: + goto unlock_retry; + + case PAGE_SUCCESS: + goto retry; + + case PAGE_CLEAN: + ; /* try to free the page below */ + } + } + + if (PagePrivate(page)) { + if (!try_to_release_page(page, GFP_KERNEL) || + (!mapping && page_count(page) == 1)) + goto unlock_retry; + } + + if (remove_mapping(mapping, page)) { + /* Success */ + unlock_page(page); + return 0; + } + +unlock_retry: + unlock_page(page); + +retry: + return -EAGAIN; +} +/* + * migrate_pages + * + * Two lists are passed to this function. The first list + * contains the pages isolated from the LRU to be migrated. + * The second list contains new pages that the pages isolated + * can be moved to. If the second list is NULL then all + * pages are swapped out. + * + * The function returns after 10 attempts or if no pages + * are movable anymore because t has become empty + * or no retryable pages exist anymore. + * + * SIMPLIFIED VERSION: This implementation of migrate_pages + * is only swapping out pages and never touches the second + * list. The direct migration patchset + * extends this function to avoid the use of swap. + * + * Return: Number of pages not migrated when "to" ran empty. + */ +int migrate_pages(struct list_head *from, struct list_head *to, + struct list_head *moved, struct list_head *failed) +{ + int retry; + int nr_failed = 0; + int pass = 0; + struct page *page; + struct page *page2; + int swapwrite = current->flags & PF_SWAPWRITE; + int rc; + + if (!swapwrite) + current->flags |= PF_SWAPWRITE; + +redo: + retry = 0; + + list_for_each_entry_safe(page, page2, from, lru) { + cond_resched(); + + rc = 0; + if (page_count(page) == 1) + /* page was freed from under us. So we are done. */ + goto next; + + /* + * Skip locked pages during the first two passes to give the + * functions holding the lock time to release the page. Later we + * use lock_page() to have a higher chance of acquiring the + * lock. + */ + rc = -EAGAIN; + if (pass > 2) + lock_page(page); + else + if (TestSetPageLocked(page)) + goto next; + + /* + * Only wait on writeback if we have already done a pass where + * we we may have triggered writeouts for lots of pages. + */ + if (pass > 0) { + wait_on_page_writeback(page); + } else { + if (PageWriteback(page)) + goto unlock_page; + } + + /* + * Anonymous pages must have swap cache references otherwise + * the information contained in the page maps cannot be + * preserved. + */ + if (PageAnon(page) && !PageSwapCache(page)) { + if (!add_to_swap(page, GFP_KERNEL)) { + rc = -ENOMEM; + goto unlock_page; + } + } + + /* + * Page is properly locked and writeback is complete. + * Try to migrate the page. + */ + rc = swap_page(page); + goto next; + +unlock_page: + unlock_page(page); + +next: + if (rc == -EAGAIN) { + retry++; + } else if (rc) { + /* Permanent failure */ + list_move(&page->lru, failed); + nr_failed++; + } else { + /* Success */ + list_move(&page->lru, moved); + } + } + if (retry && pass++ < 10) + goto redo; + + if (!swapwrite) + current->flags &= ~PF_SWAPWRITE; + + return nr_failed + retry; +} + +/* + * Isolate one page from the LRU lists and put it on the + * indicated list with elevated refcount. + * + * Result: + * 0 = page not on LRU list + * 1 = page removed from LRU list and added to the specified list. + */ +int isolate_lru_page(struct page *page) +{ + int ret = 0; + + if (PageLRU(page)) { + struct zone *zone = page_zone(page); + spin_lock_irq(&zone->lru_lock); + if (TestClearPageLRU(page)) { + ret = 1; + get_page(page); + if (PageActive(page)) + del_page_from_active_list(zone, page); + else + del_page_from_inactive_list(zone, page); + } + spin_unlock_irq(&zone->lru_lock); + } + + return ret; +} +#endif + /* * zone->lru_lock is heavily contended. Some of the functions that * shrink the lists perform better by taking out a batch of pages @@ -942,6 +1171,7 @@ int try_to_free_pages(struct zone **zones, gfp_t gfp_mask) sc.gfp_mask = gfp_mask; sc.may_writepage = 0; + sc.may_swap = 1; inc_page_state(allocstall); @@ -1044,6 +1274,7 @@ loop_again: total_reclaimed = 0; sc.gfp_mask = GFP_KERNEL; sc.may_writepage = 0; + sc.may_swap = 1; sc.nr_mapped = read_page_state(nr_mapped); inc_page_state(pageoutrun); @@ -1226,7 +1457,7 @@ static int kswapd(void *p) * us from recursively trying to free more memory as we're * trying to free the first piece of memory in the first place). */ - tsk->flags |= PF_MEMALLOC|PF_KSWAPD; + tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; order = 0; for ( ; ; ) { @@ -1341,3 +1572,71 @@ static int __init kswapd_init(void) } module_init(kswapd_init) + +#ifdef CONFIG_NUMA +/* + * Zone reclaim mode + * + * If non-zero call zone_reclaim when the number of free pages falls below + * the watermarks. + * + * In the future we may add flags to the mode. However, the page allocator + * should only have to check that zone_reclaim_mode != 0 before calling + * zone_reclaim(). + */ +int zone_reclaim_mode __read_mostly; + +/* + * Mininum time between zone reclaim scans + */ +#define ZONE_RECLAIM_INTERVAL HZ/2 +/* + * Try to free up some pages from this zone through reclaim. + */ +int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) +{ + int nr_pages = 1 << order; + struct task_struct *p = current; + struct reclaim_state reclaim_state; + struct scan_control sc = { + .gfp_mask = gfp_mask, + .may_writepage = 0, + .may_swap = 0, + .nr_mapped = read_page_state(nr_mapped), + .nr_scanned = 0, + .nr_reclaimed = 0, + .priority = 0 + }; + + if (!(gfp_mask & __GFP_WAIT) || + zone->zone_pgdat->node_id != numa_node_id() || + zone->all_unreclaimable || + atomic_read(&zone->reclaim_in_progress) > 0) + return 0; + + if (time_before(jiffies, + zone->last_unsuccessful_zone_reclaim + ZONE_RECLAIM_INTERVAL)) + return 0; + + disable_swap_token(); + + if (nr_pages > SWAP_CLUSTER_MAX) + sc.swap_cluster_max = nr_pages; + else + sc.swap_cluster_max = SWAP_CLUSTER_MAX; + + cond_resched(); + p->flags |= PF_MEMALLOC; + reclaim_state.reclaimed_slab = 0; + p->reclaim_state = &reclaim_state; + shrink_zone(zone, &sc); + p->reclaim_state = NULL; + current->flags &= ~PF_MEMALLOC; + + if (sc.nr_reclaimed == 0) + zone->last_unsuccessful_zone_reclaim = jiffies; + + return sc.nr_reclaimed > nr_pages; +} +#endif + |