summaryrefslogtreecommitdiffstats
path: root/net/sched
diff options
context:
space:
mode:
Diffstat (limited to 'net/sched')
-rw-r--r--net/sched/Kconfig14
-rw-r--r--net/sched/Makefile1
-rw-r--r--net/sched/sch_fq.c792
3 files changed, 807 insertions, 0 deletions
diff --git a/net/sched/Kconfig b/net/sched/Kconfig
index 235e01acac5..c03a32a0418 100644
--- a/net/sched/Kconfig
+++ b/net/sched/Kconfig
@@ -272,6 +272,20 @@ config NET_SCH_FQ_CODEL
If unsure, say N.
+config NET_SCH_FQ
+ tristate "Fair Queue"
+ help
+ Say Y here if you want to use the FQ packet scheduling algorithm.
+
+ FQ does flow separation, and is able to respect pacing requirements
+ set by TCP stack into sk->sk_pacing_rate (for localy generated
+ traffic)
+
+ To compile this driver as a module, choose M here: the module
+ will be called sch_fq.
+
+ If unsure, say N.
+
config NET_SCH_INGRESS
tristate "Ingress Qdisc"
depends on NET_CLS_ACT
diff --git a/net/sched/Makefile b/net/sched/Makefile
index 978cbf004e8..e5f9abe9a5d 100644
--- a/net/sched/Makefile
+++ b/net/sched/Makefile
@@ -39,6 +39,7 @@ obj-$(CONFIG_NET_SCH_CHOKE) += sch_choke.o
obj-$(CONFIG_NET_SCH_QFQ) += sch_qfq.o
obj-$(CONFIG_NET_SCH_CODEL) += sch_codel.o
obj-$(CONFIG_NET_SCH_FQ_CODEL) += sch_fq_codel.o
+obj-$(CONFIG_NET_SCH_FQ) += sch_fq.o
obj-$(CONFIG_NET_CLS_U32) += cls_u32.o
obj-$(CONFIG_NET_CLS_ROUTE4) += cls_route.o
diff --git a/net/sched/sch_fq.c b/net/sched/sch_fq.c
new file mode 100644
index 00000000000..91ceca7bcb5
--- /dev/null
+++ b/net/sched/sch_fq.c
@@ -0,0 +1,792 @@
+/*
+ * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
+ *
+ * Copyright (C) 2013 Eric Dumazet <edumazet@google.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ *
+ * Meant to be mostly used for localy generated traffic :
+ * Fast classification depends on skb->sk being set before reaching us.
+ * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
+ * All packets belonging to a socket are considered as a 'flow'.
+ *
+ * Flows are dynamically allocated and stored in a hash table of RB trees
+ * They are also part of one Round Robin 'queues' (new or old flows)
+ *
+ * Burst avoidance (aka pacing) capability :
+ *
+ * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
+ * bunch of packets, and this packet scheduler adds delay between
+ * packets to respect rate limitation.
+ *
+ * enqueue() :
+ * - lookup one RB tree (out of 1024 or more) to find the flow.
+ * If non existent flow, create it, add it to the tree.
+ * Add skb to the per flow list of skb (fifo).
+ * - Use a special fifo for high prio packets
+ *
+ * dequeue() : serves flows in Round Robin
+ * Note : When a flow becomes empty, we do not immediately remove it from
+ * rb trees, for performance reasons (its expected to send additional packets,
+ * or SLAB cache will reuse socket for another flow)
+ */
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/jiffies.h>
+#include <linux/string.h>
+#include <linux/in.h>
+#include <linux/errno.h>
+#include <linux/init.h>
+#include <linux/skbuff.h>
+#include <linux/slab.h>
+#include <linux/rbtree.h>
+#include <linux/hash.h>
+#include <net/netlink.h>
+#include <net/pkt_sched.h>
+#include <net/sock.h>
+#include <net/tcp_states.h>
+
+/*
+ * Per flow structure, dynamically allocated
+ */
+struct fq_flow {
+ struct sk_buff *head; /* list of skbs for this flow : first skb */
+ union {
+ struct sk_buff *tail; /* last skb in the list */
+ unsigned long age; /* jiffies when flow was emptied, for gc */
+ };
+ struct rb_node fq_node; /* anchor in fq_root[] trees */
+ struct sock *sk;
+ int qlen; /* number of packets in flow queue */
+ int credit;
+ u32 socket_hash; /* sk_hash */
+ struct fq_flow *next; /* next pointer in RR lists, or &detached */
+
+ struct rb_node rate_node; /* anchor in q->delayed tree */
+ u64 time_next_packet;
+};
+
+struct fq_flow_head {
+ struct fq_flow *first;
+ struct fq_flow *last;
+};
+
+struct fq_sched_data {
+ struct fq_flow_head new_flows;
+
+ struct fq_flow_head old_flows;
+
+ struct rb_root delayed; /* for rate limited flows */
+ u64 time_next_delayed_flow;
+
+ struct fq_flow internal; /* for non classified or high prio packets */
+ u32 quantum;
+ u32 initial_quantum;
+ u32 flow_default_rate;/* rate per flow : bytes per second */
+ u32 flow_max_rate; /* optional max rate per flow */
+ u32 flow_plimit; /* max packets per flow */
+ struct rb_root *fq_root;
+ u8 rate_enable;
+ u8 fq_trees_log;
+
+ u32 flows;
+ u32 inactive_flows;
+ u32 throttled_flows;
+
+ u64 stat_gc_flows;
+ u64 stat_internal_packets;
+ u64 stat_tcp_retrans;
+ u64 stat_throttled;
+ u64 stat_flows_plimit;
+ u64 stat_pkts_too_long;
+ u64 stat_allocation_errors;
+ struct qdisc_watchdog watchdog;
+};
+
+/* special value to mark a detached flow (not on old/new list) */
+static struct fq_flow detached, throttled;
+
+static void fq_flow_set_detached(struct fq_flow *f)
+{
+ f->next = &detached;
+}
+
+static bool fq_flow_is_detached(const struct fq_flow *f)
+{
+ return f->next == &detached;
+}
+
+static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
+{
+ struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
+
+ while (*p) {
+ struct fq_flow *aux;
+
+ parent = *p;
+ aux = container_of(parent, struct fq_flow, rate_node);
+ if (f->time_next_packet >= aux->time_next_packet)
+ p = &parent->rb_right;
+ else
+ p = &parent->rb_left;
+ }
+ rb_link_node(&f->rate_node, parent, p);
+ rb_insert_color(&f->rate_node, &q->delayed);
+ q->throttled_flows++;
+ q->stat_throttled++;
+
+ f->next = &throttled;
+ if (q->time_next_delayed_flow > f->time_next_packet)
+ q->time_next_delayed_flow = f->time_next_packet;
+}
+
+
+static struct kmem_cache *fq_flow_cachep __read_mostly;
+
+static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
+{
+ if (head->first)
+ head->last->next = flow;
+ else
+ head->first = flow;
+ head->last = flow;
+ flow->next = NULL;
+}
+
+/* limit number of collected flows per round */
+#define FQ_GC_MAX 8
+#define FQ_GC_AGE (3*HZ)
+
+static bool fq_gc_candidate(const struct fq_flow *f)
+{
+ return fq_flow_is_detached(f) &&
+ time_after(jiffies, f->age + FQ_GC_AGE);
+}
+
+static void fq_gc(struct fq_sched_data *q,
+ struct rb_root *root,
+ struct sock *sk)
+{
+ struct fq_flow *f, *tofree[FQ_GC_MAX];
+ struct rb_node **p, *parent;
+ int fcnt = 0;
+
+ p = &root->rb_node;
+ parent = NULL;
+ while (*p) {
+ parent = *p;
+
+ f = container_of(parent, struct fq_flow, fq_node);
+ if (f->sk == sk)
+ break;
+
+ if (fq_gc_candidate(f)) {
+ tofree[fcnt++] = f;
+ if (fcnt == FQ_GC_MAX)
+ break;
+ }
+
+ if (f->sk > sk)
+ p = &parent->rb_right;
+ else
+ p = &parent->rb_left;
+ }
+
+ q->flows -= fcnt;
+ q->inactive_flows -= fcnt;
+ q->stat_gc_flows += fcnt;
+ while (fcnt) {
+ struct fq_flow *f = tofree[--fcnt];
+
+ rb_erase(&f->fq_node, root);
+ kmem_cache_free(fq_flow_cachep, f);
+ }
+}
+
+static const u8 prio2band[TC_PRIO_MAX + 1] = {
+ 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
+};
+
+static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
+{
+ struct rb_node **p, *parent;
+ struct sock *sk = skb->sk;
+ struct rb_root *root;
+ struct fq_flow *f;
+ int band;
+
+ /* warning: no starvation prevention... */
+ band = prio2band[skb->priority & TC_PRIO_MAX];
+ if (unlikely(band == 0))
+ return &q->internal;
+
+ if (unlikely(!sk)) {
+ /* By forcing low order bit to 1, we make sure to not
+ * collide with a local flow (socket pointers are word aligned)
+ */
+ sk = (struct sock *)(skb_get_rxhash(skb) | 1L);
+ }
+
+ root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
+
+ if (q->flows >= (2U << q->fq_trees_log) &&
+ q->inactive_flows > q->flows/2)
+ fq_gc(q, root, sk);
+
+ p = &root->rb_node;
+ parent = NULL;
+ while (*p) {
+ parent = *p;
+
+ f = container_of(parent, struct fq_flow, fq_node);
+ if (f->sk == sk) {
+ /* socket might have been reallocated, so check
+ * if its sk_hash is the same.
+ * It not, we need to refill credit with
+ * initial quantum
+ */
+ if (unlikely(skb->sk &&
+ f->socket_hash != sk->sk_hash)) {
+ f->credit = q->initial_quantum;
+ f->socket_hash = sk->sk_hash;
+ }
+ return f;
+ }
+ if (f->sk > sk)
+ p = &parent->rb_right;
+ else
+ p = &parent->rb_left;
+ }
+
+ f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
+ if (unlikely(!f)) {
+ q->stat_allocation_errors++;
+ return &q->internal;
+ }
+ fq_flow_set_detached(f);
+ f->sk = sk;
+ if (skb->sk)
+ f->socket_hash = sk->sk_hash;
+ f->credit = q->initial_quantum;
+
+ rb_link_node(&f->fq_node, parent, p);
+ rb_insert_color(&f->fq_node, root);
+
+ q->flows++;
+ q->inactive_flows++;
+ return f;
+}
+
+
+/* remove one skb from head of flow queue */
+static struct sk_buff *fq_dequeue_head(struct fq_flow *flow)
+{
+ struct sk_buff *skb = flow->head;
+
+ if (skb) {
+ flow->head = skb->next;
+ skb->next = NULL;
+ flow->qlen--;
+ }
+ return skb;
+}
+
+/* We might add in the future detection of retransmits
+ * For the time being, just return false
+ */
+static bool skb_is_retransmit(struct sk_buff *skb)
+{
+ return false;
+}
+
+/* add skb to flow queue
+ * flow queue is a linked list, kind of FIFO, except for TCP retransmits
+ * We special case tcp retransmits to be transmitted before other packets.
+ * We rely on fact that TCP retransmits are unlikely, so we do not waste
+ * a separate queue or a pointer.
+ * head-> [retrans pkt 1]
+ * [retrans pkt 2]
+ * [ normal pkt 1]
+ * [ normal pkt 2]
+ * [ normal pkt 3]
+ * tail-> [ normal pkt 4]
+ */
+static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
+{
+ struct sk_buff *prev, *head = flow->head;
+
+ skb->next = NULL;
+ if (!head) {
+ flow->head = skb;
+ flow->tail = skb;
+ return;
+ }
+ if (likely(!skb_is_retransmit(skb))) {
+ flow->tail->next = skb;
+ flow->tail = skb;
+ return;
+ }
+
+ /* This skb is a tcp retransmit,
+ * find the last retrans packet in the queue
+ */
+ prev = NULL;
+ while (skb_is_retransmit(head)) {
+ prev = head;
+ head = head->next;
+ if (!head)
+ break;
+ }
+ if (!prev) { /* no rtx packet in queue, become the new head */
+ skb->next = flow->head;
+ flow->head = skb;
+ } else {
+ if (prev == flow->tail)
+ flow->tail = skb;
+ else
+ skb->next = prev->next;
+ prev->next = skb;
+ }
+}
+
+static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
+{
+ struct fq_sched_data *q = qdisc_priv(sch);
+ struct fq_flow *f;
+
+ if (unlikely(sch->q.qlen >= sch->limit))
+ return qdisc_drop(skb, sch);
+
+ f = fq_classify(skb, q);
+ if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
+ q->stat_flows_plimit++;
+ return qdisc_drop(skb, sch);
+ }
+
+ f->qlen++;
+ flow_queue_add(f, skb);
+ if (skb_is_retransmit(skb))
+ q->stat_tcp_retrans++;
+ sch->qstats.backlog += qdisc_pkt_len(skb);
+ if (fq_flow_is_detached(f)) {
+ fq_flow_add_tail(&q->new_flows, f);
+ if (q->quantum > f->credit)
+ f->credit = q->quantum;
+ q->inactive_flows--;
+ qdisc_unthrottled(sch);
+ }
+ if (unlikely(f == &q->internal)) {
+ q->stat_internal_packets++;
+ qdisc_unthrottled(sch);
+ }
+ sch->q.qlen++;
+
+ return NET_XMIT_SUCCESS;
+}
+
+static void fq_check_throttled(struct fq_sched_data *q, u64 now)
+{
+ struct rb_node *p;
+
+ if (q->time_next_delayed_flow > now)
+ return;
+
+ q->time_next_delayed_flow = ~0ULL;
+ while ((p = rb_first(&q->delayed)) != NULL) {
+ struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
+
+ if (f->time_next_packet > now) {
+ q->time_next_delayed_flow = f->time_next_packet;
+ break;
+ }
+ rb_erase(p, &q->delayed);
+ q->throttled_flows--;
+ fq_flow_add_tail(&q->old_flows, f);
+ }
+}
+
+static struct sk_buff *fq_dequeue(struct Qdisc *sch)
+{
+ struct fq_sched_data *q = qdisc_priv(sch);
+ u64 now = ktime_to_ns(ktime_get());
+ struct fq_flow_head *head;
+ struct sk_buff *skb;
+ struct fq_flow *f;
+
+ skb = fq_dequeue_head(&q->internal);
+ if (skb)
+ goto out;
+ fq_check_throttled(q, now);
+begin:
+ head = &q->new_flows;
+ if (!head->first) {
+ head = &q->old_flows;
+ if (!head->first) {
+ if (q->time_next_delayed_flow != ~0ULL)
+ qdisc_watchdog_schedule_ns(&q->watchdog,
+ q->time_next_delayed_flow);
+ return NULL;
+ }
+ }
+ f = head->first;
+
+ if (f->credit <= 0) {
+ f->credit += q->quantum;
+ head->first = f->next;
+ fq_flow_add_tail(&q->old_flows, f);
+ goto begin;
+ }
+
+ if (unlikely(f->head && now < f->time_next_packet)) {
+ head->first = f->next;
+ fq_flow_set_throttled(q, f);
+ goto begin;
+ }
+
+ skb = fq_dequeue_head(f);
+ if (!skb) {
+ head->first = f->next;
+ /* force a pass through old_flows to prevent starvation */
+ if ((head == &q->new_flows) && q->old_flows.first) {
+ fq_flow_add_tail(&q->old_flows, f);
+ } else {
+ fq_flow_set_detached(f);
+ f->age = jiffies;
+ q->inactive_flows++;
+ }
+ goto begin;
+ }
+ f->time_next_packet = now;
+ f->credit -= qdisc_pkt_len(skb);
+
+ if (f->credit <= 0 &&
+ q->rate_enable &&
+ skb->sk && skb->sk->sk_state != TCP_TIME_WAIT) {
+ u32 rate = skb->sk->sk_pacing_rate ?: q->flow_default_rate;
+
+ rate = min(rate, q->flow_max_rate);
+ if (rate) {
+ u64 len = (u64)qdisc_pkt_len(skb) * NSEC_PER_SEC;
+
+ do_div(len, rate);
+ /* Since socket rate can change later,
+ * clamp the delay to 125 ms.
+ * TODO: maybe segment the too big skb, as in commit
+ * e43ac79a4bc ("sch_tbf: segment too big GSO packets")
+ */
+ if (unlikely(len > 125 * NSEC_PER_MSEC)) {
+ len = 125 * NSEC_PER_MSEC;
+ q->stat_pkts_too_long++;
+ }
+
+ f->time_next_packet = now + len;
+ }
+ }
+out:
+ prefetch(&skb->end);
+ sch->qstats.backlog -= qdisc_pkt_len(skb);
+ qdisc_bstats_update(sch, skb);
+ sch->q.qlen--;
+ qdisc_unthrottled(sch);
+ return skb;
+}
+
+static void fq_reset(struct Qdisc *sch)
+{
+ struct sk_buff *skb;
+
+ while ((skb = fq_dequeue(sch)) != NULL)
+ kfree_skb(skb);
+}
+
+static void fq_rehash(struct fq_sched_data *q,
+ struct rb_root *old_array, u32 old_log,
+ struct rb_root *new_array, u32 new_log)
+{
+ struct rb_node *op, **np, *parent;
+ struct rb_root *oroot, *nroot;
+ struct fq_flow *of, *nf;
+ int fcnt = 0;
+ u32 idx;
+
+ for (idx = 0; idx < (1U << old_log); idx++) {
+ oroot = &old_array[idx];
+ while ((op = rb_first(oroot)) != NULL) {
+ rb_erase(op, oroot);
+ of = container_of(op, struct fq_flow, fq_node);
+ if (fq_gc_candidate(of)) {
+ fcnt++;
+ kmem_cache_free(fq_flow_cachep, of);
+ continue;
+ }
+ nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
+
+ np = &nroot->rb_node;
+ parent = NULL;
+ while (*np) {
+ parent = *np;
+
+ nf = container_of(parent, struct fq_flow, fq_node);
+ BUG_ON(nf->sk == of->sk);
+
+ if (nf->sk > of->sk)
+ np = &parent->rb_right;
+ else
+ np = &parent->rb_left;
+ }
+
+ rb_link_node(&of->fq_node, parent, np);
+ rb_insert_color(&of->fq_node, nroot);
+ }
+ }
+ q->flows -= fcnt;
+ q->inactive_flows -= fcnt;
+ q->stat_gc_flows += fcnt;
+}
+
+static int fq_resize(struct fq_sched_data *q, u32 log)
+{
+ struct rb_root *array;
+ u32 idx;
+
+ if (q->fq_root && log == q->fq_trees_log)
+ return 0;
+
+ array = kmalloc(sizeof(struct rb_root) << log, GFP_KERNEL);
+ if (!array)
+ return -ENOMEM;
+
+ for (idx = 0; idx < (1U << log); idx++)
+ array[idx] = RB_ROOT;
+
+ if (q->fq_root) {
+ fq_rehash(q, q->fq_root, q->fq_trees_log, array, log);
+ kfree(q->fq_root);
+ }
+ q->fq_root = array;
+ q->fq_trees_log = log;
+
+ return 0;
+}
+
+static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
+ [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
+ [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
+ [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
+ [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
+ [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
+ [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
+ [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
+ [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
+};
+
+static int fq_change(struct Qdisc *sch, struct nlattr *opt)
+{
+ struct fq_sched_data *q = qdisc_priv(sch);
+ struct nlattr *tb[TCA_FQ_MAX + 1];
+ int err, drop_count = 0;
+ u32 fq_log;
+
+ if (!opt)
+ return -EINVAL;
+
+ err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
+ if (err < 0)
+ return err;
+
+ sch_tree_lock(sch);
+
+ fq_log = q->fq_trees_log;
+
+ if (tb[TCA_FQ_BUCKETS_LOG]) {
+ u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
+
+ if (nval >= 1 && nval <= ilog2(256*1024))
+ fq_log = nval;
+ else
+ err = -EINVAL;
+ }
+ if (tb[TCA_FQ_PLIMIT])
+ sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
+
+ if (tb[TCA_FQ_FLOW_PLIMIT])
+ q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
+
+ if (tb[TCA_FQ_QUANTUM])
+ q->quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
+
+ if (tb[TCA_FQ_INITIAL_QUANTUM])
+ q->quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
+
+ if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
+ q->flow_default_rate = nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]);
+
+ if (tb[TCA_FQ_FLOW_MAX_RATE])
+ q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
+
+ if (tb[TCA_FQ_RATE_ENABLE]) {
+ u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
+
+ if (enable <= 1)
+ q->rate_enable = enable;
+ else
+ err = -EINVAL;
+ }
+
+ if (!err)
+ err = fq_resize(q, fq_log);
+
+ while (sch->q.qlen > sch->limit) {
+ struct sk_buff *skb = fq_dequeue(sch);
+
+ kfree_skb(skb);
+ drop_count++;
+ }
+ qdisc_tree_decrease_qlen(sch, drop_count);
+
+ sch_tree_unlock(sch);
+ return err;
+}
+
+static void fq_destroy(struct Qdisc *sch)
+{
+ struct fq_sched_data *q = qdisc_priv(sch);
+ struct rb_root *root;
+ struct rb_node *p;
+ unsigned int idx;
+
+ if (q->fq_root) {
+ for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
+ root = &q->fq_root[idx];
+ while ((p = rb_first(root)) != NULL) {
+ rb_erase(p, root);
+ kmem_cache_free(fq_flow_cachep,
+ container_of(p, struct fq_flow, fq_node));
+ }
+ }
+ kfree(q->fq_root);
+ }
+ qdisc_watchdog_cancel(&q->watchdog);
+}
+
+static int fq_init(struct Qdisc *sch, struct nlattr *opt)
+{
+ struct fq_sched_data *q = qdisc_priv(sch);
+ int err;
+
+ sch->limit = 10000;
+ q->flow_plimit = 100;
+ q->quantum = 2 * psched_mtu(qdisc_dev(sch));
+ q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
+ q->flow_default_rate = 0;
+ q->flow_max_rate = ~0U;
+ q->rate_enable = 1;
+ q->new_flows.first = NULL;
+ q->old_flows.first = NULL;
+ q->delayed = RB_ROOT;
+ q->fq_root = NULL;
+ q->fq_trees_log = ilog2(1024);
+ qdisc_watchdog_init(&q->watchdog, sch);
+
+ if (opt)
+ err = fq_change(sch, opt);
+ else
+ err = fq_resize(q, q->fq_trees_log);
+
+ return err;
+}
+
+static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
+{
+ struct fq_sched_data *q = qdisc_priv(sch);
+ struct nlattr *opts;
+
+ opts = nla_nest_start(skb, TCA_OPTIONS);
+ if (opts == NULL)
+ goto nla_put_failure;
+
+ if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
+ nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
+ nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
+ nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
+ nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
+ nla_put_u32(skb, TCA_FQ_FLOW_DEFAULT_RATE, q->flow_default_rate) ||
+ nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
+ nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
+ goto nla_put_failure;
+
+ nla_nest_end(skb, opts);
+ return skb->len;
+
+nla_put_failure:
+ return -1;
+}
+
+static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
+{
+ struct fq_sched_data *q = qdisc_priv(sch);
+ u64 now = ktime_to_ns(ktime_get());
+ struct tc_fq_qd_stats st = {
+ .gc_flows = q->stat_gc_flows,
+ .highprio_packets = q->stat_internal_packets,
+ .tcp_retrans = q->stat_tcp_retrans,
+ .throttled = q->stat_throttled,
+ .flows_plimit = q->stat_flows_plimit,
+ .pkts_too_long = q->stat_pkts_too_long,
+ .allocation_errors = q->stat_allocation_errors,
+ .flows = q->flows,
+ .inactive_flows = q->inactive_flows,
+ .throttled_flows = q->throttled_flows,
+ .time_next_delayed_flow = q->time_next_delayed_flow - now,
+ };
+
+ return gnet_stats_copy_app(d, &st, sizeof(st));
+}
+
+static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
+ .id = "fq",
+ .priv_size = sizeof(struct fq_sched_data),
+
+ .enqueue = fq_enqueue,
+ .dequeue = fq_dequeue,
+ .peek = qdisc_peek_dequeued,
+ .init = fq_init,
+ .reset = fq_reset,
+ .destroy = fq_destroy,
+ .change = fq_change,
+ .dump = fq_dump,
+ .dump_stats = fq_dump_stats,
+ .owner = THIS_MODULE,
+};
+
+static int __init fq_module_init(void)
+{
+ int ret;
+
+ fq_flow_cachep = kmem_cache_create("fq_flow_cache",
+ sizeof(struct fq_flow),
+ 0, 0, NULL);
+ if (!fq_flow_cachep)
+ return -ENOMEM;
+
+ ret = register_qdisc(&fq_qdisc_ops);
+ if (ret)
+ kmem_cache_destroy(fq_flow_cachep);
+ return ret;
+}
+
+static void __exit fq_module_exit(void)
+{
+ unregister_qdisc(&fq_qdisc_ops);
+ kmem_cache_destroy(fq_flow_cachep);
+}
+
+module_init(fq_module_init)
+module_exit(fq_module_exit)
+MODULE_AUTHOR("Eric Dumazet");
+MODULE_LICENSE("GPL");