summaryrefslogtreecommitdiffstats
path: root/tools/perf/design.txt
diff options
context:
space:
mode:
Diffstat (limited to 'tools/perf/design.txt')
-rw-r--r--tools/perf/design.txt61
1 files changed, 32 insertions, 29 deletions
diff --git a/tools/perf/design.txt b/tools/perf/design.txt
index f71e0d245cb..fdd42a824c9 100644
--- a/tools/perf/design.txt
+++ b/tools/perf/design.txt
@@ -18,10 +18,10 @@ underlying hardware counters.
Performance counters are accessed via special file descriptors.
There's one file descriptor per virtual counter used.
-The special file descriptor is opened via the perf_counter_open()
+The special file descriptor is opened via the perf_event_open()
system call:
- int sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr,
+ int sys_perf_event_open(struct perf_event_hw_event *hw_event_uptr,
pid_t pid, int cpu, int group_fd,
unsigned long flags);
@@ -32,9 +32,9 @@ can be used to set the blocking mode, etc.
Multiple counters can be kept open at a time, and the counters
can be poll()ed.
-When creating a new counter fd, 'perf_counter_hw_event' is:
+When creating a new counter fd, 'perf_event_hw_event' is:
-struct perf_counter_hw_event {
+struct perf_event_hw_event {
/*
* The MSB of the config word signifies if the rest contains cpu
* specific (raw) counter configuration data, if unset, the next
@@ -93,7 +93,7 @@ specified by 'event_id':
/*
* Generalized performance counter event types, used by the hw_event.event_id
- * parameter of the sys_perf_counter_open() syscall:
+ * parameter of the sys_perf_event_open() syscall:
*/
enum hw_event_ids {
/*
@@ -159,7 +159,7 @@ in size.
* reads on the counter should return the indicated quantities,
* in increasing order of bit value, after the counter value.
*/
-enum perf_counter_read_format {
+enum perf_event_read_format {
PERF_FORMAT_TOTAL_TIME_ENABLED = 1,
PERF_FORMAT_TOTAL_TIME_RUNNING = 2,
};
@@ -178,7 +178,7 @@ interrupt:
* Bits that can be set in hw_event.record_type to request information
* in the overflow packets.
*/
-enum perf_counter_record_format {
+enum perf_event_record_format {
PERF_RECORD_IP = 1U << 0,
PERF_RECORD_TID = 1U << 1,
PERF_RECORD_TIME = 1U << 2,
@@ -228,7 +228,7 @@ these events are recorded in the ring-buffer (see below).
The 'comm' bit allows tracking of process comm data on process creation.
This too is recorded in the ring-buffer (see below).
-The 'pid' parameter to the perf_counter_open() system call allows the
+The 'pid' parameter to the perf_event_open() system call allows the
counter to be specific to a task:
pid == 0: if the pid parameter is zero, the counter is attached to the
@@ -258,7 +258,7 @@ The 'flags' parameter is currently unused and must be zero.
The 'group_fd' parameter allows counter "groups" to be set up. A
counter group has one counter which is the group "leader". The leader
-is created first, with group_fd = -1 in the perf_counter_open call
+is created first, with group_fd = -1 in the perf_event_open call
that creates it. The rest of the group members are created
subsequently, with group_fd giving the fd of the group leader.
(A single counter on its own is created with group_fd = -1 and is
@@ -277,13 +277,13 @@ tracking are logged into a ring-buffer. This ring-buffer is created and
accessed through mmap().
The mmap size should be 1+2^n pages, where the first page is a meta-data page
-(struct perf_counter_mmap_page) that contains various bits of information such
+(struct perf_event_mmap_page) that contains various bits of information such
as where the ring-buffer head is.
/*
* Structure of the page that can be mapped via mmap
*/
-struct perf_counter_mmap_page {
+struct perf_event_mmap_page {
__u32 version; /* version number of this structure */
__u32 compat_version; /* lowest version this is compat with */
@@ -317,7 +317,7 @@ struct perf_counter_mmap_page {
* Control data for the mmap() data buffer.
*
* User-space reading this value should issue an rmb(), on SMP capable
- * platforms, after reading this value -- see perf_counter_wakeup().
+ * platforms, after reading this value -- see perf_event_wakeup().
*/
__u32 data_head; /* head in the data section */
};
@@ -327,9 +327,9 @@ NOTE: the hw-counter userspace bits are arch specific and are currently only
The following 2^n pages are the ring-buffer which contains events of the form:
-#define PERF_EVENT_MISC_KERNEL (1 << 0)
-#define PERF_EVENT_MISC_USER (1 << 1)
-#define PERF_EVENT_MISC_OVERFLOW (1 << 2)
+#define PERF_RECORD_MISC_KERNEL (1 << 0)
+#define PERF_RECORD_MISC_USER (1 << 1)
+#define PERF_RECORD_MISC_OVERFLOW (1 << 2)
struct perf_event_header {
__u32 type;
@@ -353,8 +353,8 @@ enum perf_event_type {
* char filename[];
* };
*/
- PERF_EVENT_MMAP = 1,
- PERF_EVENT_MUNMAP = 2,
+ PERF_RECORD_MMAP = 1,
+ PERF_RECORD_MUNMAP = 2,
/*
* struct {
@@ -364,10 +364,10 @@ enum perf_event_type {
* char comm[];
* };
*/
- PERF_EVENT_COMM = 3,
+ PERF_RECORD_COMM = 3,
/*
- * When header.misc & PERF_EVENT_MISC_OVERFLOW the event_type field
+ * When header.misc & PERF_RECORD_MISC_OVERFLOW the event_type field
* will be PERF_RECORD_*
*
* struct {
@@ -397,7 +397,7 @@ Notification of new events is possible through poll()/select()/epoll() and
fcntl() managing signals.
Normally a notification is generated for every page filled, however one can
-additionally set perf_counter_hw_event.wakeup_events to generate one every
+additionally set perf_event_hw_event.wakeup_events to generate one every
so many counter overflow events.
Future work will include a splice() interface to the ring-buffer.
@@ -409,11 +409,11 @@ events but does continue to exist and maintain its count value.
An individual counter or counter group can be enabled with
- ioctl(fd, PERF_COUNTER_IOC_ENABLE);
+ ioctl(fd, PERF_EVENT_IOC_ENABLE);
or disabled with
- ioctl(fd, PERF_COUNTER_IOC_DISABLE);
+ ioctl(fd, PERF_EVENT_IOC_DISABLE);
Enabling or disabling the leader of a group enables or disables the
whole group; that is, while the group leader is disabled, none of the
@@ -424,16 +424,16 @@ other counter.
Additionally, non-inherited overflow counters can use
- ioctl(fd, PERF_COUNTER_IOC_REFRESH, nr);
+ ioctl(fd, PERF_EVENT_IOC_REFRESH, nr);
to enable a counter for 'nr' events, after which it gets disabled again.
A process can enable or disable all the counter groups that are
attached to it, using prctl:
- prctl(PR_TASK_PERF_COUNTERS_ENABLE);
+ prctl(PR_TASK_PERF_EVENTS_ENABLE);
- prctl(PR_TASK_PERF_COUNTERS_DISABLE);
+ prctl(PR_TASK_PERF_EVENTS_DISABLE);
This applies to all counters on the current process, whether created
by this process or by another, and doesn't affect any counters that
@@ -447,11 +447,14 @@ Arch requirements
If your architecture does not have hardware performance metrics, you can
still use the generic software counters based on hrtimers for sampling.
-So to start with, in order to add HAVE_PERF_COUNTERS to your Kconfig, you
+So to start with, in order to add HAVE_PERF_EVENTS to your Kconfig, you
will need at least this:
- - asm/perf_counter.h - a basic stub will suffice at first
+ - asm/perf_event.h - a basic stub will suffice at first
- support for atomic64 types (and associated helper functions)
- - set_perf_counter_pending() implemented
+ - set_perf_event_pending() implemented
If your architecture does have hardware capabilities, you can override the
-weak stub hw_perf_counter_init() to register hardware counters.
+weak stub hw_perf_event_init() to register hardware counters.
+
+Architectures that have d-cache aliassing issues, such as Sparc and ARM,
+should select PERF_USE_VMALLOC in order to avoid these for perf mmap().