summaryrefslogtreecommitdiffstats
path: root/Documentation/leds-class.txt
AgeCommit message (Collapse)Author
2011-04-04Documentation: consolidate leds files to leds/ subdirAntonio Ospite
leds: move leds-class documentation under the leds/ subdir. Add also a leds/00-INDEX file describing the files under leds/ Signed-off-by: Antonio Ospite <ospite@studenti.unina.it> Acked-by: Richard Purdie <richard.purdie@linuxfoundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-11-12led-class: always implement blinkingJohannes Berg
Currently, blinking LEDs can be awkward because it is not guaranteed that all LEDs implement blinking. The trigger that wants it to blink then needs to implement its own timer solution. Rather than require that, add led_blink_set() API that triggers can use. This function will attempt to use hw blinking, but if that fails implements a timer for it. To stop blinking again, brightness_set() also needs to be wrapped into API that will stop the software blink. As a result of this, the timer trigger becomes a very trivial one, and hopefully we can finally see triggers using blinking as well because it's always easy to use. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Acked-by: Richard Purdie <rpurdie@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-08-28led: document sysfs interfaceCorentin Chary
Also fix Documentation/led-class.txt, the acceptable range of values for brightness is 0-max_brightness, not 0-255. Cc: Richard Purdie <rpurdie@rpsys.net> Signed-off-by: Corentin Chary <corentincj@iksaif.net> Signed-off-by: Len Brown <len.brown@intel.com>
2008-07-26Documentation cleanup: trivial misspelling, punctuation, and grammar ↵Matt LaPlante
corrections. Cc: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-24leds: disable triggers on brightness setNémeth Márton
Disable any active triggers when the brightness attribute is set to zero. Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> Signed-off-by: Márton Németh <nm127@freemail.hu> Signed-off-by: Richard Purdie <rpurdie@rpsys.net>
2008-02-07leds: Add support for hardware accelerated LED flashingMárton Németh
Extends the leds subsystem with a blink_set() callback function which can be optionally implemented by a LED driver. If implemented, the driver can use the hardware acceleration for blinking a LED. Signed-off-by: Márton Németh <nm127@freemail.hu> Signed-off-by: Richard Purdie <rpurdie@rpsys.net>
2008-02-07leds: Standardise LED naming schemeRichard Purdie
As discussed on LKML some notion of 'function' is needed in LED naming. This patch adds this to the documentation and standardises existing LED drivers. Signed-off-by: Richard Purdie <rpurdie@rpsys.net>
2006-03-31[PATCH] LED: class documentationRichard Purdie
The LED class/subsystem takes John Lenz's work and extends and alters it to give what I think should be a fairly universal LED implementation. The series consists of several logical units: * LED Core + Class implementation * LED Trigger Core implementation * LED timer trigger (example of a complex trigger) * LED device drivers for corgi, spitz and tosa Zaurus models * LED device driver for locomo LEDs * LED device driver for ARM ixp4xx LEDs * Zaurus charging LED trigger * IDE disk activity LED trigger * NAND MTD activity LED trigger Why? ==== LEDs are really simple devices usually amounting to a GPIO that can be turned on and off so why do we need all this code? On handheld or embedded devices they're an important part of an often limited user interface. Both users and developers want to be able to control and configure what the LED does and the number of different things they'd potentially want the LED to show is large. A subsystem is needed to try and provide all this different functionality in an architecture independent, simple but complete, generic and scalable manner. The alternative is for everyone to implement just what they need hidden away in different corners of the kernel source tree and to provide an inconsistent interface to userspace. Other Implementations ===================== I'm aware of the existing arm led implementation. Currently the new subsystem and the arm code can coexist quite happily. Its up to the arm community to decide whether this new interface is acceptable to them. As far as I can see, the new interface can do everything the existing arm implementation can with the advantage that the new code is architecture independent and much more generic, configurable and scalable. I'm prepared to make the conversion to the LED subsystem (or assist with it) if appropriate. Implementation Details ====================== I've stripped a lot of code out of John's original LED class. Colours were removed as LED colour is now part of the device name. Multiple colours are to be handled as multiple led devices. This means you get full control over each colour. I also removed the LED hardware timer code as the generic timer isn't going to add much overhead and is just as useful. I also decided to have the LED core track the current LED status (to ease suspend/resume handling) removing the need for brightness_get implementations in the LED drivers. An underlying design philosophy is simplicity. The aim is to keep a small amount of code giving as much functionality as possible. The major new idea is the led "trigger". A trigger is a source of led events. Triggers can either be simple or complex. A simple trigger isn't configurable and is designed to slot into existing subsystems with minimal additional code. Examples are the ide-disk, nand-disk and zaurus-charging triggers. With leds disabled, the code optimises away. Examples are nand-disk and ide-disk. Complex triggers whilst available to all LEDs have LED specific parameters and work on a per LED basis. The timer trigger is an example. You can change triggers in a similar manner to the way an IO scheduler is chosen (via /sys/class/leds/somedevice/trigger). So far there are only a handful of examples but it should easy to add further LED triggers without too much interference into other subsystems. Known Issues ============ The LED Trigger core cannot be a module as the simple trigger functions would cause nightmare dependency issues. I see this as a minor issue compared to the benefits the simple trigger functionality brings. The rest of the LED subsystem can be modular. Some leds can be programmed to flash in hardware. As this isn't a generic LED device property, I think this should be exported as a device specific sysfs attribute rather than part of the class if this functionality is required (eg. to keep the led flashing whilst the device is suspended). Future Development ================== At the moment, a trigger can't be created specifically for a single LED. There are a number of cases where a trigger might only be mappable to a particular LED. The addition of triggers provided by the LED driver should cover this option and be possible to add without breaking the current interface. A CPU activity trigger similar to that found in the arm led implementation should be trivial to add. This patch: Add some brief documentation of the design decisions behind the LED class and how it appears to users. Signed-off-by: Richard Purdie <rpurdie@rpsys.net> Cc: Russell King <rmk@arm.linux.org.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>