summaryrefslogtreecommitdiffstats
path: root/arch/i386/power
AgeCommit message (Collapse)Author
2005-09-09kbuild: full dependency check on asm-offsets.hSam Ravnborg
Building asm-offsets.h has been moved to a seperate Kbuild file located in the top-level directory. This allow us to share the functionality across the architectures. The old rules in architecture specific Makefiles will die in subsequent patches. Furhtermore the usual kbuild dependency tracking is now used when deciding to rebuild asm-offsets.s. So we no longer risk to fail a rebuild caused by asm-offsets.c dependencies being touched. With this common rule-set we now force the same name across all architectures. Following patches will fix the rest. Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
2005-09-05[PATCH] x86: remove redundant TSS clearingZachary Amsden
When reviewing GDT updates, I found the code: set_tss_desc(cpu,t); /* This just modifies memory; ... */ per_cpu(cpu_gdt_table, cpu)[GDT_ENTRY_TSS].b &= 0xfffffdff; This second line is unnecessary, since set_tss_desc() has already cleared the busy bit. Commented disassembly, line 1: c028b8bd: 8b 0c 86 mov (%esi,%eax,4),%ecx c028b8c0: 01 cb add %ecx,%ebx c028b8c2: 8d 0c 39 lea (%ecx,%edi,1),%ecx => %ecx = per_cpu(cpu_gdt_table, cpu) c028b8c5: 8d 91 80 00 00 00 lea 0x80(%ecx),%edx => %edx = &per_cpu(cpu_gdt_table, cpu)[GDT_ENTRY_TSS] c028b8cb: 66 c7 42 00 73 20 movw $0x2073,0x0(%edx) c028b8d1: 66 89 5a 02 mov %bx,0x2(%edx) c028b8d5: c1 cb 10 ror $0x10,%ebx c028b8d8: 88 5a 04 mov %bl,0x4(%edx) c028b8db: c6 42 05 89 movb $0x89,0x5(%edx) => ((char *)%edx)[5] = 0x89 (equivalent) ((char *)per_cpu(cpu_gdt_table, cpu)[GDT_ENTRY_TSS])[5] = 0x89 c028b8df: c6 42 06 00 movb $0x0,0x6(%edx) c028b8e3: 88 7a 07 mov %bh,0x7(%edx) c028b8e6: c1 cb 10 ror $0x10,%ebx => other bits Commented disassembly, line 2: c028b8e9: 8b 14 86 mov (%esi,%eax,4),%edx c028b8ec: 8d 04 3a lea (%edx,%edi,1),%eax => %eax = per_cpu(cpu_gdt_table, cpu) c028b8ef: 81 a0 84 00 00 00 ff andl $0xfffffdff,0x84(%eax) => per_cpu(cpu_gdt_table, cpu)[GDT_ENTRY_TSS].b &= 0xfffffdff; (equivalent) ((char *)per_cpu(cpu_gdt_table, cpu)[GDT_ENTRY_TSS])[5] &= 0xfd Note that (0x89 & ~0xfd) == 0; i.e, set_tss_desc(cpu,t) has already stored the type field in the GDT with the busy bit clear. Eliminating redundant and obscure code is always a good thing; in fact, I pointed out this same optimization many moons ago in arch/i386/setup.c, back when it used to be called that. Signed-off-by: Zachary Amsden <zach@vmware.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05[PATCH] i386: inline assembler: cleanup and encapsulate descriptor and task ↵Zachary Amsden
register management i386 inline assembler cleanup. This change encapsulates descriptor and task register management. Also, it is possible to improve assembler generation in two cases; savesegment may store the value in a register instead of a memory location, which allows GCC to optimize stack variables into registers, and MOV MEM, SEG is always a 16-bit write to memory, making the casting in math-emu unnecessary. Signed-off-by: Zachary Amsden <zach@vmware.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-05[PATCH] i386: inline asm cleanupZachary Amsden
i386 Inline asm cleanup. Use cr/dr accessor functions. Also, a potential bugfix. Also, some CR accessors really should be volatile. Reads from CR0 (numeric state may change in an exception handler), writes to CR4 (flipping CR4.TSD) and reads from CR2 (page fault) prevent instruction re-ordering. I did not add memory clobber to CR3 / CR4 / CR0 updates, as it was not there to begin with, and in no case should kernel memory be clobbered, except when doing a TLB flush, which already has memory clobber. I noticed that page invalidation does not have a memory clobber. I can't find a bug as a result, but there is definitely a potential for a bug here: #define __flush_tlb_single(addr) \ __asm__ __volatile__("invlpg %0": :"m" (*(char *) addr)) Signed-off-by: Zachary Amsden <zach@vmware.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-07[PATCH] MTRR suspend/resume cleanupShaohua Li
There has been some discuss about solving the SMP MTRR suspend/resume breakage, but I didn't find a patch for it. This is an intent for it. The basic idea is moving mtrr initializing into cpu_identify for all APs (so it works for cpu hotplug). For BP, restore_processor_state is responsible for restoring MTRR. Signed-off-by: Shaohua Li <shaohua.li@intel.com> Acked-by: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25[PATCH] swsusp: clean assembly partsPavel Machek
This patch fixes register saving so that each register is only saved once, and adds missing saving of %cr8 on x86-64. Some reordering so that save/restore is more logical/safer (segment registers should be restored after gdt). Signed-off-by: Pavel Machek <pavel@suse.cz> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-25[PATCH] sep initializing reworkLi Shaohua
Make SEP init per-cpu, so it is hotplug safe. Signed-off-by: Li Shaohua<shaohua.li@intel.com> Signed-off-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-23[PATCH] xen: x86: Use new macro for debugregVincent Hanquez
Make use of the 2 new macro set_debugreg and get_debugreg. Signed-off-by: Vincent Hanquez <vincent.hanquez@cl.cam.ac.uk> Cc: Ian Pratt <m+Ian.Pratt@cl.cam.ac.uk> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-16Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!