Age | Commit message (Collapse) | Author |
|
|
|
Currently _edata does not include several data sections, this causes
the kernel's report of memory usage at boot to not match reality, and
also prevents kmemleak from working - because it scan between _sdata
and _edata for pointers to allocated memory.
This mirrors a similar change made recently to the x86 linker script.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Make it possible to enable GCOV code coverage measurement on powerpc.
Lightly tested on 64-bit, seems to work as expected.
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The kernel.h macro DIV_ROUND_CLOSEST performs the computation (x + d/2)/d
but is perhaps more readable.
The semantic patch that makes this change is as follows:
(http://www.emn.fr/x-info/coccinelle/)
// <smpl>
@haskernel@
@@
#include <linux/kernel.h>
@depends on haskernel@
expression x,__divisor;
@@
- (((x) + ((__divisor) / 2)) / (__divisor))
+ DIV_ROUND_CLOSEST(x,__divisor)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Evaluate mem kernel parameter for early memory allocations. If mem is set
no allocation in the region above the given boundary is allowed. The current
code doesn't take care about this and allocate memory above the given mem
boundary.
Signed-off-by: Benjamin Krill <ben@codiert.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Signed-off-by: Stefan Roese <sr@denx.de>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
This contains all the bits that didn't fit in previous patches :-) This
includes the actual exception handlers assembly, the changes to the
kernel entry, other misc bits and wiring it all up in Kconfig.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
This adds the TLB miss handler assembly, the low level TLB flush routines
along with the necessary hook for dealing with our virtual page tables
or indirect TLB entries that need to be flushes when PTE pages are freed.
There is currently no support for hugetlbfs
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
This adds various fields in the PACA that are for use specifically
by Book3E processors, such as exception save areas, current pgd
pointer, special exceptions kernel stacks etc...
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
This adds the PTE and pgtable format definitions, along with changes
to the kernel memory map and other definitions related to implementing
support for 64-bit Book3E. This also shields some asm-offset bits that
are currently only relevant on 32-bit
We also move the definition of the "linux" page size constants to
the common mmu.h file and add a few sizes that are relevant to
embedded processors.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Those definitions are currently declared extern in the .c file where
they are used, move them to a header file instead.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Currently, a single ifdef covers SLB related bits and more generic ppc64
related bits, split this in two separate ifdef's since 64-bit BookE will
need one but not the other.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Our 64-bit hash context handling has no init function, but 64-bit Book3E
will use the common mmu_context_nohash.c code which does, so define an
empty inline mmu_context_init() for 64-bit server and call it from
our 64-bit setup_arch()
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
|
|
enter_prom() used to save and restore registers such as CTR, XER etc..
which are volatile, or SRR0,1... which we don't care about. This
removes a bunch of useless code and while at it turns an mtmsrd into
an MTMSRD macro which will be useful to Book3E.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The truncate syscall has a signed long parameter, so when using a 32-
bit userspace with a 64-bit kernel the argument is zero-extended
instead of sign-extended. Adding the compat_sys_truncate function
fixes the issue.
This was noticed during an LSB truncate test failure. The test was
checking for the correct error number set when truncate is called with
a length of -1. The test can be found at:
http://bzr.linuxfoundation.org/lsb/devel/runtime-test?cmd=inventory;rev=stewb%40linux-foundation.org-20090626205411-sfb23cc0tjj7jzgm;path=modules/vsx-pcts/tset/POSIX.os/files/truncate/
BenH: Added compat_sys_ftruncate() as well, same issue.
Signed-off-by: Chase Douglas <cndougla@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The STAB code used on Power3 and RS/64 uses a second scratch SPRG to
save a GPR in order to decide whether to go to do_stab_bolted_* or
to handle a normal data access exception.
This prevents our scheme of freeing SPRG3 which is user visible for
user uses since we cannot use SPRG0 which, on RS/64, seems to be
read-only for supervisor mode (like POWER4).
This reworks the STAB exception entry to use the PACA as temporary
storage instead.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The kernel uses SPRG registers for various purposes, typically in
low level assembly code as scratch registers or to hold per-cpu
global infos such as the PACA or the current thread_info pointer.
We want to be able to easily shuffle the usage of those registers
as some implementations have specific constraints realted to some
of them, for example, some have userspace readable aliases, etc..
and the current choice isn't always the best.
This patch should not change any code generation, and replaces the
usage of SPRN_SPRGn everywhere in the kernel with a named replacement
and adds documentation next to the definition of the names as to
what those are used for on each processor family.
The only parts that still use the original numbers are bits of KVM
or suspend/resume code that just blindly needs to save/restore all
the SPRGs.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The file include/asm/exception.h contains definitions
that are specific to exception handling on 64-bit server
type processors.
This renames the file to exception-64s.h to reflect that
fact and avoid confusion.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
On 64bit applications the VDSO is the only thing in segment 0. Since the VDSO
is position independent we can remove the hint and let get_unmapped_area pick
an area. This will mean the vdso will be near other mmaps and will share
an SLB entry:
10000000-10001000 r-xp 00000000 08:06 5778459 /root/context_switch_64
10010000-10011000 r--p 00000000 08:06 5778459 /root/context_switch_64
10011000-10012000 rw-p 00001000 08:06 5778459 /root/context_switch_64
fffa92ae000-fffa92b0000 rw-p 00000000 00:00 0
fffa92b0000-fffa9453000 r-xp 00000000 08:06 4334051 /lib64/power6/libc-2.9.so
fffa9453000-fffa9462000 ---p 001a3000 08:06 4334051 /lib64/power6/libc-2.9.so
fffa9462000-fffa9466000 r--p 001a2000 08:06 4334051 /lib64/power6/libc-2.9.so
fffa9466000-fffa947c000 rw-p 001a6000 08:06 4334051 /lib64/power6/libc-2.9.so
fffa947c000-fffa9480000 rw-p 00000000 00:00 0
fffa9480000-fffa94a8000 r-xp 00000000 08:06 4333852 /lib64/ld-2.9.so
fffa94b3000-fffa94b4000 rw-p 00000000 00:00 0
fffa94b4000-fffa94b7000 r-xp 00000000 00:00 0 [vdso] <----- here I am
fffa94b7000-fffa94b8000 r--p 00027000 08:06 4333852 /lib64/ld-2.9.so
fffa94b8000-fffa94bb000 rw-p 00028000 08:06 4333852 /lib64/ld-2.9.so
fffa94bb000-fffa94bc000 rw-p 00000000 00:00 0
fffe4c10000-fffe4c25000 rw-p 00000000 00:00 0 [stack]
On a microbenchmark that bounces a token between two 64bit processes over pipes
and calls gettimeofday each iteration (to access the VDSO), our context switch
rate goes from 268k to 277k ctx switches/sec (tested on a 4GHz POWER6).
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
This adds support for tracing callchains for powerpc, both 32-bit
and 64-bit, and both in the kernel and userspace, from PMU interrupt
context.
The first three entries stored for each callchain are the NIP (next
instruction pointer), LR (link register), and the contents of the LR
save area in the second stack frame (the first is ignored because the
ABI convention on powerpc is that functions save their return address
in their caller's stack frame). Because leaf functions don't have to
save their return address (LR value) and don't have to establish a
stack frame, it's possible for either or both of LR and the second
stack frame's LR save area to have valid return addresses in them.
This is basically impossible to disambiguate without either reading
the code or looking at auxiliary information such as CFI tables.
Since we don't want to do either of those things at interrupt time,
we store both LR and the second stack frame's LR save area.
Once we get past the second stack frame, there is no ambiguity; all
return addresses we get are reliable.
For kernel traces, we check whether they are valid kernel instruction
addresses and store zero instead if they are not (rather than
omitting them, which would make it impossible for userspace to know
which was which). We also store zero instead of the second stack
frame's LR save area value if it is the same as LR.
For kernel traces, we check for interrupt frames, and for user traces,
we check for signal frames. In each case, since we're starting a new
trace, we store a PERF_CONTEXT_KERNEL/USER marker so that userspace
knows that the next three entries are NIP, LR and the second stack frame
for the interrupted context.
We read user memory with __get_user_inatomic. On 64-bit, if this
PMU interrupt occurred while interrupts are soft-disabled, and
there is no MMU hash table entry for the page, we will get an
-EFAULT return from __get_user_inatomic even if there is a valid
Linux PTE for the page, since hash_page isn't reentrant. Thus we
have code here to read the Linux PTE and access the page via the
kernel linear mapping. Since 64-bit doesn't use (or need) highmem
there is no need to do kmap_atomic. On 32-bit, we don't do soft
interrupt disabling, so this complication doesn't occur and there
is no need to fall back to reading the Linux PTE, since hash_page
(or the TLB miss handler) will get called automatically if necessary.
Note that we cannot get PMU interrupts in the interval during
context switch between switch_mm (which switches the user address
space) and switch_to (which actually changes current to the new
process). On 64-bit this is because interrupts are hard-disabled
in switch_mm and stay hard-disabled until they are soft-enabled
later, after switch_to has returned. So there is no possibility
of trying to do a user stack trace when the user address space is
not current's address space.
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
This provides a mechanism to allow the perf_counters code to access
user memory in a PMU interrupt routine. Such an access can cause
various kinds of interrupt: SLB miss, MMU hash table miss, segment
table miss, or TLB miss, depending on the processor. This commit
only deals with 64-bit classic/server processors, which use an MMU
hash table. 32-bit processors are already able to access user memory
at interrupt time. Since we don't soft-disable on 32-bit, we avoid
the possibility of reentering hash_page or the TLB miss handlers,
since they run with interrupts disabled.
On 64-bit processors, an SLB miss interrupt on a user address will
update the slb_cache and slb_cache_ptr fields in the paca. This is
OK except in the case where a PMU interrupt occurs in switch_slb,
which also accesses those fields. To prevent this, we hard-disable
interrupts in switch_slb. Interrupts are already soft-disabled at
this point, and will get hard-enabled when they get soft-enabled
later.
This also reworks slb_flush_and_rebolt: to avoid hard-disabling twice,
and to make sure that it clears the slb_cache_ptr when called from
other callers than switch_slb, the existing routine is renamed to
__slb_flush_and_rebolt, which is called by switch_slb and the new
version of slb_flush_and_rebolt.
Similarly, switch_stab (used on POWER3 and RS64 processors) gets a
hard_irq_disable() to protect the per-cpu variables used there and
in ste_allocate.
If a MMU hashtable miss interrupt occurs, normally we would call
hash_page to look up the Linux PTE for the address and create a HPTE.
However, hash_page is fairly complex and takes some locks, so to
avoid the possibility of deadlock, we check the preemption count
to see if we are in a (pseudo-)NMI handler, and if so, we don't call
hash_page but instead treat it like a bad access that will get
reported up through the exception table mechanism. An interrupt
whose handler runs even though the interrupt occurred when
soft-disabled (such as the PMU interrupt) is considered a pseudo-NMI
handler, which should use nmi_enter()/nmi_exit() rather than
irq_enter()/irq_exit().
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'perfcounters-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (27 commits)
perf_counter: Zero dead bytes from ftrace raw samples size alignment
perf_counter: Subtract the buffer size field from the event record size
perf_counter: Require CAP_SYS_ADMIN for raw tracepoint data
perf_counter: Correct PERF_SAMPLE_RAW output
perf tools: callchain: Fix bad rounding of minimum rate
perf_counter tools: Fix libbfd detection for systems with libz dependency
perf: "Longum est iter per praecepta, breve et efficax per exempla"
perf_counter: Fix a race on perf_counter_ctx
perf_counter: Fix tracepoint sampling to be part of generic sampling
perf_counter: Work around gcc warning by initializing tracepoint record unconditionally
perf tools: callchain: Fix sum of percentages to be 100% by displaying amount of ignored chains in fractal mode
perf tools: callchain: Fix 'perf report' display to be callchain by default
perf tools: callchain: Fix spurious 'perf report' warnings: ignore empty callchains
perf record: Fix the -A UI for empty or non-existent perf.data
perf util: Fix do_read() to fail on EOF instead of busy-looping
perf list: Fix the output to not include tracepoints without an id
perf_counter/powerpc: Fix oops on cpus without perf_counter hardware support
perf stat: Fix tool option consistency: rename -S/--scale to -c/--scale
perf report: Add debug help for the finding of symbol bugs - show the symtab origin (DSO, build-id, kernel, etc)
perf report: Fix per task mult-counter stat reporting
...
|
|
On an iMac G5, the b43 driver is failing to initialise because trying to
set the dma mask to 30-bit fails. Even though there's only 512MiB of RAM
in the machine anyway:
https://bugzilla.redhat.com/show_bug.cgi?id=514787
We should probably let it succeed if the available RAM in the system
doesn't exceed the requested limit.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
If we have the powerpc perf_counter backend compiled in, but
the cpu we are running on is one where we don't support the
PMU, we currently oops in hw_perf_group_sched_in if we try to
use any counters, because ppmu is NULL in that case, and we
unconditionally dereference ppmu.
This fixes the problem by adding a check if ppmu is NULL at the
beginning of hw_perf_group_sched_in, and also at the beginning
of the other functions that get called from the perf_counter
core, i.e. hw_perf_disable, hw_perf_enable, and
hw_perf_counter_setup.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: benh@kernel.crashing.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
If the current CPU doesn't support performance counters,
cur_cpu_spec->oprofile_cpu_type can be NULL. The current
perf_counter modules don't test for that case and would thus
crash at boot time.
Bug reported by David Woodhouse.
Reported-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul Mackerras <paulus@samba.org>
LKML-Reference: <19066.48028.446975.501454@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
When moving load_up_altivec to vector.S a typo in a comment caused a
thinko setting the wrong variable.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
On booke processors, gdb is seeing spurious SIGTRAPs when setting a
watchpoint.
user_disable_single_step() simply quits when the DAC is non-zero. It should
be clearing the DBCR0_IC and DBCR0_BT bits from the dbcr0 register and
TIF_SINGLESTEP from the thread flag.
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
* Remove smp_lock.h from files which don't need it (including some headers!)
* Add smp_lock.h to files which do need it
* Make smp_lock.h include conditional in hardirq.h
It's needed only for one kernel_locked() usage which is under CONFIG_PREEMPT
This will make hardirq.h inclusion cheaper for every PREEMPT=n config
(which includes allmodconfig/allyesconfig, BTW)
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'perfcounters-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (50 commits)
perf report: Add "Fractal" mode output - support callchains with relative overhead rate
perf_counter tools: callchains: Manage the cumul hits on the fly
perf report: Change default callchain parameters
perf report: Use a modifiable string for default callchain options
perf report: Warn on callchain output request from non-callchain file
x86: atomic64: Inline atomic64_read() again
x86: atomic64: Clean up atomic64_sub_and_test() and atomic64_add_negative()
x86: atomic64: Improve atomic64_xchg()
x86: atomic64: Export APIs to modules
x86: atomic64: Improve atomic64_read()
x86: atomic64: Code atomic(64)_read and atomic(64)_set in C not CPP
x86: atomic64: Fix unclean type use in atomic64_xchg()
x86: atomic64: Make atomic_read() type-safe
x86: atomic64: Reduce size of functions
x86: atomic64: Improve atomic64_add_return()
x86: atomic64: Improve cmpxchg8b()
x86: atomic64: Improve atomic64_read()
x86: atomic64: Move the 32-bit atomic64_t implementation to a .c file
x86: atomic64: The atomic64_t data type should be 8 bytes aligned on 32-bit too
perf report: Annotate variable initialization
...
|
|
Remove duplicated #include('s) in
arch/powerpc/kernel/mpc7450-pmu.c
arch/powerpc/kernel/ppc970-pmu.c
Signed-off-by: Huang Weiyi <weiyi.huang@gmail.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
POWER7 has the same PR/HV bit layout as POWER6, so set the flag.
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Paul Mackerras <paulus@samba.org>
Cc: a.p.zijlstra@chello.nl
Cc: benh@kernel.crashing.org
LKML-Reference: <20090701030701.GI3563@kryten>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
The function udbg_44x_as1_flush() has the wrong prototype causing
a warning when enabling 440 early debug.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
dev_set_name() takes a format string, so use it properly and avoid
a warning with recent gcc's
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Several platforms use their own copy of what is essentially the same code,
using RTAS to synchronize the timebases when bringing up new CPUs. This
moves it all into a single common implementation and additionally
turns the spinlock into a raw spinlock since the former can rely on
the timebase not being frozen when spinlock debugging is enabled, and finally
masks interrupts while the timebase is disabled.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
RTAS currently uses a normal spinlock. However it can be called from
contexts where this is not necessarily a good idea. For example, it
can be called while syncing timebases, with the core timebase being
frozen. Unfortunately, that will deadlock in case of lock contention
when spinlock debugging is enabled as the spin lock debugging code
will try to use __delay() which ... relies on the timebase being
enabled.
Also RTAS can be used in some low level IRQ handling code path so it
may as well be a raw spinlock for -rt sake.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Based on initial work from: Dale Farnsworth <dale@farnsworth.org>
Add the low level irq tracing hooks for 32-bit powerpc needed
to enable full lockdep functionality.
The approach taken to deal with the code in entry_32.S is that
we don't trace all the transitions of MSR:EE when we just turn
it off to peek at TI_FLAGS without races. Only when we are
calling into C code or returning from exceptions with a state
that have changed from what lockdep thinks.
There's a little bugger though: If we take an exception that
keeps interrupts enabled (such as an alignment exception) while
interrupts are enabled, we will call trace_hardirqs_on() on the
way back spurriously. Not a big deal, but to get rid of it would
require remembering in pt_regs that the exception was one of the
type that kept interrupts enabled which we don't know at this
stage. (Well, we could test all cases for regs->trap but that
sucks too much).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Kumar Gala <galak@kernel.crashing.org>
|
|
The 32-bit kernel relies on some memory being mapped covering
the kernel text,data and bss at least, early during boot before
the full MMU setup is done. On 32-bit "classic" processors, this
is done using BAT registers.
On 601, the size of BATs is limited to 8M and we use 2 of them
for that initial mapping. This can become quite tight when enabling
features like lockdep, so let's use a 3rd one to bump that mapping
from 16M to 24M. We keep the 4th BAT free as it can be useful for
debugging early boot code to map things like serial ports.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
For some reason we've had an explicit KERN_INFO for GPR dumps. With
recent changes we get output like:
<6>GPR00: 00000000 ef855eb0 ef858000 00000001 000000d0 f1000000 ffbc8000 ffffffff
The KERN_INFO is causing the <6>. Don't see any reason to keep it
around.
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The old PowerSurge SMP (ie, dual or quad 604 machines) code has
numerous issues in modern world.
One is cpu_possible_map is set too late (the device-tree is bogus)
so we fail to allocate the interrupt stacks and crash. Another
problem is the fact the timebase is frozen by the bringup of the
second CPU so the delays in the generic code will hang, we need
to move some of the calling procedure to inside the powermac code.
This makes it boot again for me
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'perfcounters-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (49 commits)
perfcounter: Handle some IO return values
perf_counter: Push perf_sample_data through the swcounter code
perf_counter tools: Define and use our own u64, s64 etc. definitions
perf_counter: Close race in perf_lock_task_context()
perf_counter, x86: Improve interactions with fast-gup
perf_counter: Simplify and fix task migration counting
perf_counter tools: Add a data file header
perf_counter: Update userspace callchain sampling uses
perf_counter: Make callchain samples extensible
perf report: Filter to parent set by default
perf_counter tools: Handle lost events
perf_counter: Add event overlow handling
fs: Provide empty .set_page_dirty() aop for anon inodes
perf_counter: tools: Makefile tweaks for 64-bit powerpc
perf_counter: powerpc: Add processor back-end for MPC7450 family
perf_counter: powerpc: Make powerpc perf_counter code safe for 32-bit kernels
perf_counter: powerpc: Change how processor-specific back-ends get selected
perf_counter: powerpc: Use unsigned long for register and constraint values
perf_counter: powerpc: Enable use of software counters on 32-bit powerpc
perf_counter tools: Add and use isprint()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (24 commits)
tracing/urgent: warn in case of ftrace_start_up inbalance
tracing/urgent: fix unbalanced ftrace_start_up
function-graph: add stack frame test
function-graph: disable when both x86_32 and optimize for size are configured
ring-buffer: have benchmark test print to trace buffer
ring-buffer: do not grab locks in nmi
ring-buffer: add locks around rb_per_cpu_empty
ring-buffer: check for less than two in size allocation
ring-buffer: remove useless compile check for buffer_page size
ring-buffer: remove useless warn on check
ring-buffer: use BUF_PAGE_HDR_SIZE in calculating index
tracing: update sample event documentation
tracing/filters: fix race between filter setting and module unload
tracing/filters: free filter_string in destroy_preds()
ring-buffer: use commit counters for commit pointer accounting
ring-buffer: remove unused variable
ring-buffer: have benchmark test handle discarded events
ring-buffer: prevent adding write in discarded area
tracing/filters: strloc should be unsigned short
tracing/filters: operand can be negative
...
Fix up kmemcheck-induced conflict in kernel/trace/ring_buffer.c manually
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (35 commits)
powerpc/5121: make clock debug output more readable
powerpc/5xxx: Add common mpc5xxx_get_bus_frequency() function
powerpc/5200: Update pcm030.dts to add i2c eeprom and delete cruft
powerpc/5200: convert mpc52xx_psc_spi to use cs_control callback
fbdev/xilinxfb: Fix improper casting and tighen up probe path
usb/ps3: Add missing annotations
powerpc: Add memory clobber to mtspr()
powerpc: Fix invalid construct in our CPU selection Kconfig
ps3rom: Use ps3_system_bus_[gs]et_drvdata() instead of direct access
powerpc: Add configurable -Werror for arch/powerpc
of_serial: Add UPF_FIXED_TYPE flag
drivers/hvc: Add missing __devexit_p()
net/ps3: gelic - Add missing annotations
powerpc: Introduce macro spin_event_timeout()
powerpc/warp: Fix ISA_DMA_THRESHOLD default
powerpc/bootwrapper: Custom build options for XPedite52xx targets
powerpc/85xx: Add defconfig for X-ES MPC85xx boards
powerpc/85xx: Add dts files for X-ES MPC85xx boards
powerpc/85xx: Add platform support for X-ES MPC85xx boards
83xx: add support for the kmeter1 board.
...
|
|
In case gcc does something funny with the stack frames, or the return
from function code, we would like to detect that.
An arch may implement passing of a variable that is unique to the
function and can be saved on entering a function and can be tested
when exiting the function. Usually the frame pointer can be used for
this purpose.
This patch also implements this for x86. Where it passes in the stack
frame of the parent function, and will test that frame on exit.
There was a case in x86_32 with optimize for size (-Os) where, for a
few functions, gcc would align the stack frame and place a copy of the
return address into it. The function graph tracer modified the copy and
not the actual return address. On return from the funtion, it did not go
to the tracer hook, but returned to the parent. This broke the function
graph tracer, because the return of the parent (where gcc did not do
this funky manipulation) returned to the location that the child function
was suppose to. This caused strange kernel crashes.
This test detected the problem and pointed out where the issue was.
This modifies the parameters of one of the functions that the arch
specific code calls, so it includes changes to arch code to accommodate
the new prototype.
Note, I notice that the parsic arch implements its own push_return_trace.
This is now a generic function and the ftrace_push_return_trace should be
used instead. This patch does not touch that code.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
|
Fix up the number of cells for the values of CPC925 Memory Controller,
and setup related platform device during system booting up, against
which CPC925 Memory Controller EDAC driver would be matched.
Signed-off-by: Harry Ciao <qingtao.cao@windriver.com>
Cc: Doug Thompson <norsk5@yahoo.com>
Cc: Michael Ellerman <michael@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@gate.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This adds support for the performance monitor hardware on the
MPC7450 family of processors (7450, 7451, 7455, 7447/7457, 7447A,
7448), used in the later Apple G4 powermacs/powerbooks and other
machines. These machines have 6 hardware counters with a unique
set of events which can be counted on each counter, with some
events being available on multiple counters.
Raw event codes for these processors are (PMC << 8) + PMCSEL.
If PMC is non-zero then the event is that selected by the given
PMCSEL value for that PMC (hardware counter). If PMC is zero
then the event selected is one of the low-numbered ones that are
common to several PMCs. In this case PMCSEL must be <= 22 and
the event is what that PMCSEL value would select on PMC1 (but
it may be placed any other PMC that has the same event for that
PMCSEL value).
For events that count cycles or occurrences that exceed a threshold,
the threshold requested can be specified in the 0x3f000 bits of the
raw event codes. If the event uses the threshold multiplier bit
and that bit should be set, that is indicated with the 0x40000 bit
of the raw event code.
This fills in some of the generic cache events. Unfortunately there
are quite a few blank spaces in the table, partly because these
processors tend to count cache hits rather than cache accesses.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linuxppc-dev@ozlabs.org
Cc: benh@kernel.crashing.org
LKML-Reference: <19000.55631.802122.696927@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This abstracts a few things in arch/powerpc/kernel/perf_counter.c
that are specific to 64-bit kernels, and provides definitions for
32-bit kernels. In particular,
* Only 64-bit has MMCRA and the bits in it that give information
about a PMU interrupt (sampled PR, HV, slot number etc.)
* Only 64-bit has the lppaca and the lppaca->pmcregs_in_use field
* Use of SDAR is confined to 64-bit for now
* Only 64-bit has soft/lazy interrupt disable and therefore
pseudo-NMIs (interrupts that occur while interrupts are soft-disabled)
* Only 64-bit has PMC7 and PMC8
* Only 64-bit has the MSR_HV bit.
This also fixes the types used in a couple of places, where we were
using long types for things that need to be 64-bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linuxppc-dev@ozlabs.org
Cc: benh@kernel.crashing.org
LKML-Reference: <19000.55590.634126.876084@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
At present, the powerpc generic (processor-independent) perf_counter
code has list of processor back-end modules, and at initialization,
it looks at the PVR (processor version register) and has a switch
statement to select a suitable processor-specific back-end.
This is going to become inconvenient as we add more processor-specific
back-ends, so this inverts the order: now each back-end checks whether
it applies to the current processor, and registers itself if so.
Furthermore, instead of looking at the PVR, back-ends now check the
cur_cpu_spec->oprofile_cpu_type string and match on that.
Lastly, each back-end now specifies a name for itself so the core can
print a nice message when a back-end registers itself.
This doesn't provide any support for unregistering back-ends, but that
wouldn't be hard to do and would allow back-ends to be modules.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linuxppc-dev@ozlabs.org
Cc: benh@kernel.crashing.org
LKML-Reference: <19000.55529.762227.518531@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This changes the powerpc perf_counter back-end to use unsigned long
types for hardware register values and for the value/mask pairs used
in checking whether a given set of events fit within the hardware
constraints. This is in preparation for adding support for the PMU
on some 32-bit powerpc processors. On 32-bit processors the hardware
registers are only 32 bits wide, and the PMU structure is generally
simpler, so 32 bits should be ample for expressing the hardware
constraints. On 64-bit processors, unsigned long is 64 bits wide,
so using unsigned long vs. u64 (unsigned long long) makes no actual
difference.
This makes some other very minor changes: adjusting whitespace to line
things up in initialized structures, and simplifying some code in
hw_perf_disable().
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linuxppc-dev@ozlabs.org
Cc: benh@kernel.crashing.org
LKML-Reference: <19000.55473.26174.331511@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This enables the perf_counter subsystem on 32-bit powerpc. Since we
don't have any support for hardware counters on 32-bit powerpc yet,
only software counters can be used.
Besides selecting HAVE_PERF_COUNTERS for 32-bit powerpc as well as
64-bit, the main thing this does is add an implementation of
set_perf_counter_pending(). This needs to arrange for
perf_counter_do_pending() to be called when interrupts are enabled.
Rather than add code to local_irq_restore as 64-bit does, the 32-bit
set_perf_counter_pending() generates an interrupt by setting the
decrementer to 1 so that a decrementer interrupt will become pending
in 1 or 2 timebase ticks (if a decrementer interrupt isn't already
pending). When interrupts are enabled, timer_interrupt() will be
called, and some new code in there calls perf_counter_do_pending().
We use a per-cpu array of flags to indicate whether we need to call
perf_counter_do_pending() or not.
This introduces a couple of new Kconfig symbols: PPC_HAVE_PMU_SUPPORT,
which is selected by processor families for which we have hardware PMU
support (currently only PPC64), and PPC_PERF_CTRS, which enables the
powerpc-specific perf_counter back-end.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linuxppc-dev@ozlabs.org
Cc: benh@kernel.crashing.org
LKML-Reference: <19000.55404.103840.393470@cargo.ozlabs.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|