Age | Commit message (Collapse) | Author |
|
* Merge akpm patch series: (122 commits)
drivers/connector/cn_proc.c: remove unused local
Documentation/SubmitChecklist: add RCU debug config options
reiserfs: use hweight_long()
reiserfs: use proper little-endian bitops
pnpacpi: register disabled resources
drivers/rtc/rtc-tegra.c: properly initialize spinlock
drivers/rtc/rtc-twl.c: check return value of twl_rtc_write_u8() in twl_rtc_set_time()
drivers/rtc: add support for Qualcomm PMIC8xxx RTC
drivers/rtc/rtc-s3c.c: support clock gating
drivers/rtc/rtc-mpc5121.c: add support for RTC on MPC5200
init: skip calibration delay if previously done
misc/eeprom: add eeprom access driver for digsy_mtc board
misc/eeprom: add driver for microwire 93xx46 EEPROMs
checkpatch.pl: update $logFunctions
checkpatch: make utf-8 test --strict
checkpatch.pl: add ability to ignore various messages
checkpatch: add a "prefer __aligned" check
checkpatch: validate signature styles and To: and Cc: lines
checkpatch: add __rcu as a sparse modifier
checkpatch: suggest using min_t or max_t
...
Did this as a merge because of (trivial) conflicts in
- Documentation/feature-removal-schedule.txt
- arch/xtensa/include/asm/uaccess.h
that were just easier to fix up in the merge than in the patch series.
|
|
It is not necessary to share the same notifier.h.
This patch already moves register_reboot_notifier() and
unregister_reboot_notifier() from kernel/notifier.c to kernel/sys.c.
[amwang@redhat.com: make allyesconfig succeed on ppc64]
Signed-off-by: WANG Cong <amwang@redhat.com>
Cc: David Miller <davem@davemloft.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: WANG Cong <amwang@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (43 commits)
fs: Merge split strings
treewide: fix potentially dangerous trailing ';' in #defined values/expressions
uwb: Fix misspelling of neighbourhood in comment
net, netfilter: Remove redundant goto in ebt_ulog_packet
trivial: don't touch files that are removed in the staging tree
lib/vsprintf: replace link to Draft by final RFC number
doc: Kconfig: `to be' -> `be'
doc: Kconfig: Typo: square -> squared
doc: Konfig: Documentation/power/{pm => apm-acpi}.txt
drivers/net: static should be at beginning of declaration
drivers/media: static should be at beginning of declaration
drivers/i2c: static should be at beginning of declaration
XTENSA: static should be at beginning of declaration
SH: static should be at beginning of declaration
MIPS: static should be at beginning of declaration
ARM: static should be at beginning of declaration
rcu: treewide: Do not use rcu_read_lock_held when calling rcu_dereference_check
Update my e-mail address
PCIe ASPM: forcedly -> forcibly
gma500: push through device driver tree
...
Fix up trivial conflicts:
- arch/arm/mach-ep93xx/dma-m2p.c (deleted)
- drivers/gpio/gpio-ep93xx.c (renamed and context nearby)
- drivers/net/r8169.c (just context changes)
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-for-linus:
modpost: Fix modpost's license checking V3
module: add /sys/module/<name>/uevent files
module: change attr callbacks to take struct module_kobject
modules: make arch's use default loader hooks
modules: add default loader hook implementations
param: fix return value handling in param_set_*
|
|
* 'kvm-updates/3.1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (143 commits)
KVM: IOMMU: Disable device assignment without interrupt remapping
KVM: MMU: trace mmio page fault
KVM: MMU: mmio page fault support
KVM: MMU: reorganize struct kvm_shadow_walk_iterator
KVM: MMU: lockless walking shadow page table
KVM: MMU: do not need atomicly to set/clear spte
KVM: MMU: introduce the rules to modify shadow page table
KVM: MMU: abstract some functions to handle fault pfn
KVM: MMU: filter out the mmio pfn from the fault pfn
KVM: MMU: remove bypass_guest_pf
KVM: MMU: split kvm_mmu_free_page
KVM: MMU: count used shadow pages on prepareing path
KVM: MMU: rename 'pt_write' to 'emulate'
KVM: MMU: cleanup for FNAME(fetch)
KVM: MMU: optimize to handle dirty bit
KVM: MMU: cache mmio info on page fault path
KVM: x86: introduce vcpu_mmio_gva_to_gpa to cleanup the code
KVM: MMU: do not update slot bitmap if spte is nonpresent
KVM: MMU: fix walking shadow page table
KVM guest: KVM Steal time registration
...
|
|
This patch removes all the module loader hook implementations in the
architecture specific code where the functionality is the same as that
now provided by the recently added default hooks.
Signed-off-by: Jonas Bonn <jonas@southpole.se>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Michal Simek <monstr@monstr.eu>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
virtio has been so far used only in the context of virtualization,
and the virtio Kconfig was sourced directly by the relevant arch
Kconfigs when VIRTUALIZATION was selected.
Now that we start using virtio for inter-processor communications,
we need to source the virtio Kconfig outside of the virtualization
scope too.
Moreover, some architectures might use virtio for both virtualization
and inter-processor communications, so directly sourcing virtio
might yield unexpected results due to conflicting selections.
The simple solution offered by this patch is to always source virtio's
Kconfig in drivers/Kconfig, and remove it from the appropriate arch
Kconfigs. Additionally, a virtio menu entry has been added so virtio
drivers don't show up in the general drivers menu.
This way anyone can use virtio, though it's arguably less accessible
(and neat!) for virtualization users now.
Note: some architectures (mips and sh) seem to have a VIRTUALIZATION
menu merely for sourcing virtio's Kconfig, so that menu is removed too.
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (107 commits)
vfs: use ERR_CAST for err-ptr tossing in lookup_instantiate_filp
isofs: Remove global fs lock
jffs2: fix IN_DELETE_SELF on overwriting rename() killing a directory
fix IN_DELETE_SELF on overwriting rename() on ramfs et.al.
mm/truncate.c: fix build for CONFIG_BLOCK not enabled
fs:update the NOTE of the file_operations structure
Remove dead code in dget_parent()
AFS: Fix silly characters in a comment
switch d_add_ci() to d_splice_alias() in "found negative" case as well
simplify gfs2_lookup()
jfs_lookup(): don't bother with . or ..
get rid of useless dget_parent() in btrfs rename() and link()
get rid of useless dget_parent() in fs/btrfs/ioctl.c
fs: push i_mutex and filemap_write_and_wait down into ->fsync() handlers
drivers: fix up various ->llseek() implementations
fs: handle SEEK_HOLE/SEEK_DATA properly in all fs's that define their own llseek
Ext4: handle SEEK_HOLE/SEEK_DATA generically
Btrfs: implement our own ->llseek
fs: add SEEK_HOLE and SEEK_DATA flags
reiserfs: make reiserfs default to barrier=flush
...
Fix up trivial conflicts in fs/xfs/linux-2.6/xfs_super.c due to the new
shrinker callout for the inode cache, that clashed with the xfs code to
start the periodic workers later.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-cleanup-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
mips: Fix i8253 clockevent fallout
i8253: Cleanup outb/inb magic
arm: Footbridge: Use common i8253 clockevent
mips: Use common i8253 clockevent
x86: Use common i8253 clockevent
i8253: Create common clockevent implementation
i8253: Export i8253_lock unconditionally
pcpskr: MIPS: Make config dependencies finer grained
pcspkr: Cleanup Kconfig dependencies
i8253: Move remaining content and delete asm/i8253.h
i8253: Consolidate definitions of PIT_LATCH
x86: i8253: Consolidate definitions of global_clock_event
i8253: Alpha, PowerPC: Remove unused asm/8253pit.h
alpha: i8253: Cleanup remaining users of i8253pit.h
i8253: Remove I8253_LOCK config
i8253: Make pcsp sound driver use the shared i8253_lock
i8253: Make pcspkr input driver use the shared i8253_lock
i8253: Consolidate all kernel definitions of i8253_lock
i8253: Unify all kernel declarations of i8253_lock
i8253: Create linux/i8253.h and use it in all 8253 related files
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (123 commits)
perf: Remove the nmi parameter from the oprofile_perf backend
x86, perf: Make copy_from_user_nmi() a library function
perf: Remove perf_event_attr::type check
x86, perf: P4 PMU - Fix typos in comments and style cleanup
perf tools: Make test use the preset debugfs path
perf tools: Add automated tests for events parsing
perf tools: De-opt the parse_events function
perf script: Fix display of IP address for non-callchain path
perf tools: Fix endian conversion reading event attr from file header
perf tools: Add missing 'node' alias to the hw_cache[] array
perf probe: Support adding probes on offline kernel modules
perf probe: Add probed module in front of function
perf probe: Introduce debuginfo to encapsulate dwarf information
perf-probe: Move dwarf library routines to dwarf-aux.{c, h}
perf probe: Remove redundant dwarf functions
perf probe: Move strtailcmp to string.c
perf probe: Rename DIE_FIND_CB_FOUND to DIE_FIND_CB_END
tracing/kprobe: Update symbol reference when loading module
tracing/kprobes: Support module init function probing
kprobes: Return -ENOENT if probe point doesn't exist
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
* 'of-pci' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
pci/of: Consolidate pci_bus_to_OF_node()
pci/of: Consolidate pci_device_to_OF_node()
x86/devicetree: Use generic PCI <-> OF matching
microblaze/pci: Move the remains of pci_32.c to pci-common.c
microblaze/pci: Remove powermac originated cruft
pci/of: Match PCI devices to OF nodes dynamically
|
|
* 'gpio/next' of git://git.secretlab.ca/git/linux-2.6: (61 commits)
gpio/mxc/mxs: fix build error introduced by the irq_gc_ack() renaming
mcp23s08: add i2c support
mcp23s08: isolate spi specific parts
mcp23s08: get rid of setup/teardown callbacks
gpio/tegra: dt: add binding for gpio polarity
mcp23s08: remove unused work queue
gpio/da9052: remove a redundant assignment for gpio->da9052
gpio/mxc: add device tree probe support
ARM: mxc: use ARCH_NR_GPIOS to define gpio number
gpio/mxc: get rid of the uses of cpu_is_mx()
gpio/mxc: add missing initialization of basic_mmio_gpio shadow variables
gpio: Move mpc5200 gpio driver to drivers/gpio
GPIO: DA9052 GPIO module v3
gpio/tegra: Use engineering names in DT compatible property
of/gpio: Add new method for getting gpios under different property names
gpio/dt: Refine GPIO device tree binding
gpio/ml-ioh: fix off-by-one for displaying variable i in dev_err
gpio/pca953x: Deprecate meaningless device-tree bindings
gpio/pca953x: Remove dynamic platform data pointer
gpio/pca953x: Fix IRQ support.
...
|
|
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
An implementation of a code generator for BPF programs to speed up packet
filtering on PPC64, inspired by Eric Dumazet's x86-64 version.
Filter code is generated as an ABI-compliant function in module_alloc()'d mem
with stackframe & prologue/epilogue generated if required (simple filters don't
need anything more than an li/blr). The filter's local variables, M[], live in
registers. Supports all BPF opcodes, although "complicated" loads from negative
packet offsets (e.g. SKF_LL_OFF) are not yet supported.
There are a couple of further optimisations left for future work; many-pass
assembly with branch-reach reduction and a register allocator to push M[]
variables into volatile registers would improve the code quality further.
This currently supports big-endian 64-bit PowerPC only (but is fairly simple
to port to PPC32 or LE!).
Enabled in the same way as x86-64:
echo 1 > /proc/sys/net/core/bpf_jit_enable
Or, enabled with extra debug output:
echo 2 > /proc/sys/net/core/bpf_jit_enable
Signed-off-by: Matt Evans <matt@ozlabs.org>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
All these are instances of
#define NAME value;
or
#define NAME(params_opt) value;
These of course fail to build when used in contexts like
if(foo $OP NAME)
while(bar $OP NAME)
and may silently generate the wrong code in contexts such as
foo = NAME + 1; /* foo = value; + 1; */
bar = NAME - 1; /* bar = value; - 1; */
baz = NAME & quux; /* baz = value; & quux; */
Reported on comp.lang.c,
Message-ID: <ab0d55fe-25e5-482b-811e-c475aa6065c3@c29g2000yqd.googlegroups.com>
Initial analysis of the dangers provided by Keith Thompson in that thread.
There are many more instances of more complicated macros having unnecessary
trailing semicolons, but this pile seems to be all of the cases of simple
values suffering from the problem. (Thus things that are likely to be found
in one of the contexts above, more complicated ones aren't.)
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
Btrfs needs to be able to control how filemap_write_and_wait_range() is called
in fsync to make it less of a painful operation, so push down taking i_mutex and
the calling of filemap_write_and_wait() down into the ->fsync() handlers. Some
file systems can drop taking the i_mutex altogether it seems, like ext3 and
ocfs2. For correctness sake I just pushed everything down in all cases to make
sure that we keep the current behavior the same for everybody, and then each
individual fs maintainer can make up their mind about what to do from there.
Thanks,
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Commit c8f729d408 (KVM: PPC: Deliver program interrupts right away instead
of queueing them) made away with all users of prog_flags, so we can just
remove it from the headers.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode. Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.
There are several differences between the PPC970 and POWER7 in how
guests are managed. These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits. Notably, on PPC970:
* The LPCR, LPID or RMOR registers don't exist, and the functions of
those registers are provided by bits in HID4 and one bit in HID0.
* External interrupts can be directed to the hypervisor, but unlike
POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
SRR0/1 not HSRR0/1.
* There is no virtual RMA (VRMA) mode; the guest must use an RMO
(real mode offset) area.
* The TLB entries are not tagged with the LPID, so it is necessary to
flush the whole TLB on partition switch. Furthermore, when switching
partitions we have to ensure that no other CPU is executing the tlbie
or tlbsync instructions in either the old or the new partition,
otherwise undefined behaviour can occur.
* The PMU has 8 counters (PMC registers) rather than 6.
* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.
* The SLB has 64 entries rather than 32.
* There is no mediated external interrupt facility, so if we switch to
a guest that has a virtual external interrupt pending but the guest
has MSR[EE] = 0, we have to arrange to have an interrupt pending for
it so that we can get control back once it re-enables interrupts. We
do that by sending ourselves an IPI with smp_send_reschedule after
hard-disabling interrupts.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
architecture bits
This replaces the single CPU_FTR_HVMODE_206 bit with two bits, one to
indicate that we have a usable hypervisor mode, and another to indicate
that the processor conforms to PowerISA version 2.06. We also add
another bit to indicate that the processor conforms to ISA version 2.01
and set that for PPC970 and derivatives.
Some PPC970 chips (specifically those in Apple machines) have a
hypervisor mode in that MSR[HV] is always 1, but the hypervisor mode
is not useful in the sense that there is no way to run any code in
supervisor mode (HV=0 PR=0). On these processors, the LPES0 and LPES1
bits in HID4 are always 0, and we use that as a way of detecting that
hypervisor mode is not useful.
Where we have a feature section in assembly code around code that
only applies on POWER7 in hypervisor mode, we use a construct like
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
The definition of END_FTR_SECTION_IFSET is such that the code will
be enabled (not overwritten with nops) only if all bits in the
provided mask are set.
Note that the CPU feature check in __tlbie() only needs to check the
ARCH_206 bit, not the HVMODE bit, because __tlbie() can only get called
if we are running bare-metal, i.e. in hypervisor mode.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility. These processors require a physically
contiguous, aligned area of memory for each guest. When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access. The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.
Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator. The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.
KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs. The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.
This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA. It
also returns the size of the RMA in the argument structure.
Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace. To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory. Subsequently we will get rid of this
array and use memory associated with each memslot instead.
This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region. Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB. However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.
Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest. This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This improves I/O performance for guests using the PAPR
paravirtualization interface by making the H_PUT_TCE hcall faster, by
implementing it in real mode. H_PUT_TCE is used for updating virtual
IOMMU tables, and is used both for virtual I/O and for real I/O in the
PAPR interface.
Since this moves the IOMMU tables into the kernel, we define a new
KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables. The
ioctl returns a file descriptor which can be used to mmap the newly
created table. The qemu driver models use them in the same way as
userspace managed tables, but they can be updated directly by the
guest with a real-mode H_PUT_TCE implementation, reducing the number
of host/guest context switches during guest IO.
There are certain circumstances where it is useful for userland qemu
to write to the TCE table even if the kernel H_PUT_TCE path is used
most of the time. Specifically, allowing this will avoid awkwardness
when we need to reset the table. More importantly, we will in the
future need to write the table in order to restore its state after a
checkpoint resume or migration.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This adds the infrastructure for handling PAPR hcalls in the kernel,
either early in the guest exit path while we are still in real mode,
or later once the MMU has been turned back on and we are in the full
kernel context. The advantage of handling hcalls in real mode if
possible is that we avoid two partition switches -- and this will
become more important when we support SMT4 guests, since a partition
switch means we have to pull all of the threads in the core out of
the guest. The disadvantage is that we can only access the kernel
linear mapping, not anything vmalloced or ioremapped, since the MMU
is off.
This also adds code to handle the following hcalls in real mode:
H_ENTER Add an HPTE to the hashed page table
H_REMOVE Remove an HPTE from the hashed page table
H_READ Read HPTEs from the hashed page table
H_PROTECT Change the protection bits in an HPTE
H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table
H_SET_DABR Set the data address breakpoint register
Plus code to handle the following hcalls in the kernel:
H_CEDE Idle the vcpu until an interrupt or H_PROD hcall arrives
H_PROD Wake up a ceded vcpu
H_REGISTER_VPA Register a virtual processor area (VPA)
The code that runs in real mode has to be in the base kernel, not in
the module, if KVM is compiled as a module. The real-mode code can
only access the kernel linear mapping, not vmalloc or ioremap space.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
There are several fields in struct kvmppc_book3s_shadow_vcpu that
temporarily store bits of host state while a guest is running,
rather than anything relating to the particular guest or vcpu.
This splits them out into a new kvmppc_host_state structure and
modifies the definitions in asm-offsets.c to suit.
On 32-bit, we have a kvmppc_host_state structure inside the
kvmppc_book3s_shadow_vcpu since the assembly code needs to be able
to get to them both with one pointer. On 64-bit they are separate
fields in the PACA. This means that on 64-bit we don't need to
copy the kvmppc_host_state in and out on vcpu load/unload, and
in future will mean that the book3s_hv code doesn't need a
shadow_vcpu struct in the PACA at all. That does mean that we
have to be careful not to rely on any values persisting in the
hstate field of the paca across any point where we could block
or get preempted.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
In hypervisor mode, the LPCR controls several aspects of guest
partitions, including virtual partition memory mode, and also controls
whether the hypervisor decrementer interrupts are enabled. This sets
up LPCR at boot time so that guest partitions will use a virtual real
memory area (VRMA) composed of 16MB large pages, and hypervisor
decrementer interrupts are disabled.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Instead of doing the kvm_guest_enter/exit() and local_irq_dis/enable()
calls in powerpc.c, this moves them down into the subarch-specific
book3s_pr.c and booke.c. This eliminates an extra local_irq_enable()
call in book3s_pr.c, and will be needed for when we do SMT4 guest
support in the book3s hypervisor mode code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This arranges for the top-level arch/powerpc/kvm/powerpc.c file to
pass down some of the calls it gets to the lower-level subarchitecture
specific code. The lower-level implementations (in booke.c and book3s.c)
are no-ops. The coming book3s_hv.c will need this.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Doing so means that we don't have to save the flags anywhere and gets
rid of the last reference to to_book3s(vcpu) in arch/powerpc/kvm/book3s.c.
Doing so is OK because a program interrupt won't be generated at the
same time as any other synchronous interrupt. If a program interrupt
and an asynchronous interrupt (external or decrementer) are generated
at the same time, the program interrupt will be delivered, which is
correct because it has a higher priority, and then the asynchronous
interrupt will be masked.
We don't ever generate system reset or machine check interrupts to the
guest, but if we did, then we would need to make sure they got delivered
rather than the program interrupt. The current code would be wrong in
this situation anyway since it would deliver the program interrupt as
well as the reset/machine check interrupt.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Instead of branching out-of-line with the DO_KVM macro to check if we
are in a KVM guest at the time of an interrupt, this moves the KVM
check inline in the first-level interrupt handlers. This speeds up
the non-KVM case and makes sure that none of the interrupt handlers
are missing the check.
Because the first-level interrupt handlers are now larger, some things
had to be move out of line in exceptions-64s.S.
This all necessitated some minor changes to the interrupt entry code
in KVM. This also streamlines the book3s_32 KVM test.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
In preparation for adding code to enable KVM to use hypervisor mode
on 64-bit Book 3S processors, this splits book3s.c into two files,
book3s.c and book3s_pr.c, where book3s_pr.c contains the code that is
specific to running the guest in problem state (user mode) and book3s.c
contains code which should apply to all Book 3S processors.
In doing this, we abstract some details, namely the interrupt offset,
updating the interrupt pending flag, and detecting if the guest is
in a critical section. These are all things that will be different
when we use hypervisor mode.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This moves the slb field, which represents the state of the emulated
SLB, from the kvmppc_vcpu_book3s struct to the kvm_vcpu_arch, and the
hpte_hash_[v]pte[_long] fields from kvm_vcpu_arch to kvmppc_vcpu_book3s.
This is in accord with the principle that the kvm_vcpu_arch struct
represents the state of the emulated CPU, and the kvmppc_vcpu_book3s
struct holds the auxiliary data structures used in the emulation.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Commit 69acc0d3ba ("KVM: PPC: Resolve real-mode handlers through
function exports") resulted in vcpu->arch.trampoline_lowmem and
vcpu->arch.trampoline_enter ending up with kernel virtual addresses
rather than physical addresses. This is OK on 64-bit Book3S machines,
which ignore the top 4 bits of the effective address in real mode,
but on 32-bit Book3S machines, accessing these addresses in real mode
causes machine check interrupts, as the hardware uses the whole
effective address as the physical address in real mode.
This fixes the problem by using __pa() to convert these addresses
to physical addresses.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Only look in the 4 entries that could possibly contain the
entry we're looking for.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Dynamically assign host PIDs to guest PIDs, splitting each guest PID into
multiple host (shadow) PIDs based on kernel/user and MSR[IS/DS]. Use
both PID0 and PID1 so that the shadow PIDs for the right mode can be
selected, that correspond both to guest TID = zero and guest TID = guest
PID.
This allows us to significantly reduce the frequency of needing to
invalidate the entire TLB. When the guest mode or PID changes, we just
update the host PID0/PID1. And since the allocation of shadow PIDs is
global, multiple guests can share the TLB without conflict.
Note that KVM does not yet support the guest setting PID1 or PID2 to
a value other than zero. This will need to be fixed for nested KVM
to work. Until then, we enforce the requirement for guest PID1/PID2
to stay zero by failing the emulation if the guest tries to set them
to something else.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Instead of a fully separate set of TLB entries, keep just the
pfn and dirty status.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This is a shared page used for paravirtualization. It is always present
in the guest kernel's effective address space at the address indicated
by the hypercall that enables it.
The physical address specified by the hypercall is not used, as
e500 does not have real mode.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This allows large pages to be used on guest mappings backed by things like
/dev/mem, resulting in a significant speedup when guest memory
is mapped this way (it's useful for directly-assigned MMIO, too).
This is not a substitute for hugetlbfs integration, but is useful for
configurations where devices are directly assigned on chips without an
IOMMU -- in these cases, we need guest physical and true physical to
match, and be contiguous, so static reservation and mapping via /dev/mem
is the most straightforward way to set things up.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This is in line with what other architectures do, and will allow us to
map things other than ordinary, unreserved kernel pages -- such as
dedicated devices, or large contiguous reserved regions.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This avoids races. It also means that we use the shadow TLB way,
rather than the hardware hint -- if this is a problem, we could do
a tlbsx before inserting a TLB0 entry.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Since TLB1 loading doesn't check the shadow TLB before allocating another
entry, you can get duplicates.
Once shadow PIDs are enabled in a later patch, we won't need to
invalidate the TLB on every switch, so this optimization won't be
needed anyway.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This is done lazily. The SPE save will be done only if the guest has
used SPE since the last preemption or heavyweight exit. Restore will be
done only on demand, when enabling MSR_SPE in the shadow MSR, in response
to an SPE fault or mtmsr emulation.
For SPEFSCR, Linux already switches it on context switch (non-lazily), so
the only remaining bit is to save it between qemu and the guest.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Keep the guest MSR and the guest-mode true MSR separate, rather than
modifying the guest MSR on each guest entry to produce a true MSR.
Any bits which should be modified based on guest MSR must be explicitly
propagated from vcpu->arch.shared->msr to vcpu->arch.shadow_msr in
kvmppc_set_msr().
While we're modifying the guest entry code, reorder a few instructions
to bury some load latencies.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Previously, these macros hardcoded THREAD_EVR0 as the base of the save
area, relative to the base register passed. This base offset is now
passed as a separate macro parameter, allowing reuse with other SPE
save areas, such as used by KVM.
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
giveup_spe() saves the SPE state which is protected by MSR[SPE].
However, modifying SPEFSCR does not trap when MSR[SPE]=0.
And since SPEFSCR is already saved/restored in _switch(),
not all the callers want to save SPEFSCR again.
Thus, saving SPEFSCR should not belong to giveup_spe().
This patch moves SPEFSCR saving to flush_spe_to_thread(),
and cleans up the caller that needs to save SPEFSCR accordingly.
Signed-off-by: Liu Yu <yu.liu@freescale.com>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Up until now, Book3S KVM had variables stored in the kernel that a kernel module
or the kvm code in the kernel could read from to figure out where some real mode
helper functions are located.
This is all unnecessary. The high bits of the EA get ignore in real mode, so we
can just use the pointer as is. Also, it's a lot easier on relocations when we
use the normal way of resolving the address to a function, instead of jumping
through hoops.
This patch fixes compilation with CONFIG_RELOCATABLE=y.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
When http://www.spinics.net/lists/kvm-ppc/msg02664.html
was applied to produce commit b51e7aa7ed6d8d134d02df78300ab0f91cfff4d2,
the removal of the conversion in add_exit_timing was left out.
Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Just compiling pseries in the kernel causes it to override
memory_block_size_bytes() regardless of what is the runtime
platform.
This cleans up the implementation of that function, fixing
a bug or two while at it, so that it's harmless (and potentially
useful) for other platforms. Without this, bugs in that code
would trigger a WARN_ON() in drivers/base/memory.c when
booting some different platforms.
If/when we have another platform supporting memory hotplug we
might want to either move that out to a generic place or
make it a ppc_md. callback.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Sync with Linus' tree to be able to apply pending patches that
are based on newer code already present upstream.
|