Age | Commit message (Collapse) | Author |
|
get_signal_to_deliver() takes care of this, kill off the redundancies, as
per the avr32 change.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
The old ctrl in/out routines are non-portable and unsuitable for
cross-platform use. While drivers/sh has already been sanitized, there
is still quite a lot of code that is not. This converts the arch/sh/ bits
over, which permits us to flag the routines as deprecated whilst still
building with -Werror for the architecture code, and to ensure that
future users are not added.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
This follows the x86 xstate changes and implements a task_xstate slab
cache that is dynamically sized to match one of hard FP/soft FP/FPU-less.
This also tidies up and consolidates some of the SH-2A/SH-4 FPU
fragmentation. Now fpu state restorers are commonly defined, with the
init_fpu()/fpu_init() mess reworked to follow the x86 convention.
The fpu_init() register initialization has been replaced by xstate setup
followed by writing out to hardware via the standard restore path.
As init_fpu() now performs a slab allocation a secondary lighterweight
restorer is also introduced for the context switch.
In the future the DSP state will be rolled in here, too.
More work remains for math emulation and the SH-5 FPU, which presently
uses its own special (UP-only) interfaces.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
Replace TIF_RESTORE_SIGMASK with TS_RESTORE_SIGMASK and define our own
set_restore_sigmask() function. This saves the costly SMP-safe set_bit
operation, which we do not need for the sigmask flag since TIF_SIGPENDING
always has to be set too.
Based on the x86 and powerpc change.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
This only needs to flush the return code via the legacy path, and just
invalidates uselessly otherwise. This makes the behaviour consistent for
all of the trampoline setup paths.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
We do not want to use smp_processor_id() from these paths, as they trip
preempt BUGs. Switch the test over to the boot cpu directly.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
Conflicts:
arch/sh/kernel/vmlinux.lds.S
|
|
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
GCC does not issue unwind information for function epilogues.
Unfortunately we can catch a signal during an epilogue. The signal
handler writes the current context and signal return code onto the stack
overwriting previous contents. During unwinding, libgcc can try to
restore registers from the stack and restores corrupted ones. This can
lead to segmentation, misaligned access and sigbus faults.
For example, consider the following code:
mov.l r12,@-r15
mov.l r14,@-r15
sts.l pr,@-r15
mov r15,r14
<do stuff>
mov r14, r15
lds.l @r15+, pr
<<< SIGNAL HERE
mov.l @r15+, r14
mov.l @r15+, r12
rts
Unwind is aware that pr was pushed to stack in prolog, so tries to
restore it. Unfortunately it restores the last word of the signal
handler code placed on the stack by the kernel.
This patch tries to avoid the problem by adding a guard region on the
stack between where the function pushes data and where the signal handler
pushes its return code. We probably don't see this problem often because
exception handling unwinding in an epilogue only occurs due to a pthread
cancel signal. Also the kernel signal stack handler alignment of 8 bytes
could hide the occurance of this problem sometimes as the stack may not
be trampled at a particular required word.
This is not guaranteed to always work. It relies on a frame pointer
existing for the function (so it can get the correct sp value) which is
not always the case for the SH4.
Modifications will also be made to libgcc for the case where there is no
fp.
Signed-off-by: Carl Shaw <carl.shaw@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
GCC 4.5.0 complains about the declaration of variables
__kernel_sigreturn and __kernel_rt_sigreturn because they have type
void. Correctly declare these symbols as functions to fix the
following error,
arch/sh/kernel/signal_32.c: In function 'setup_frame':
arch/sh/kernel/signal_32.c:368:14: error: taking address of expression of type 'void'
arch/sh/kernel/signal_32.c: In function 'setup_rt_frame':
arch/sh/kernel/signal_32.c:452:14: error: taking address of expression of type 'void'
make[1]: *** [arch/sh/kernel/signal_32.o] Error 1
make: *** [arch/sh/kernel] Error 2
Signed-off-by: Matt Fleming <matt@console-pimps.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
The T-bit manipulation for syscall error checking had the side effect of
spuriously returning ERESTART* errno values over EINTR. So, we simplify
the error checking a bit and leave the T-bit alone.
Reported-by: Kaz Kojima <kkojima@rr.iij4u.or.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
This provides the asm/syscall.h implementation for sh64 parts.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
This follows the changes in commits:
7d6d637dac2050f30a1b57b0a3dc5de4a10616ba
4f72c4279eab1e5f3ed1ac4e55d4527617582392
on powerpc. Adding in TIF_NOTIFY_RESUME, and cleaning up the syscall
tracing to be more generic. This is an incremental step to turning
on tracehook, as well as unifying more of the ptrace and signal code
across the 32/64 split.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
The current kernel behaviour is to reenable interrupts unconditionally
when taking a page fault. This patch changes this to only enable them
if interrupts were previously enabled.
It also fixes a problem seen with this fix in place: the kernel previously
flushed the vsyscall page when handling a signal, which is not only
unncessary, but caused a possible sleep with interrupts disabled.
Signed-off-by: Stuart Menefy <stuart.menefy@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
Add implementation of flush_icache_range() suitable for signal handler
and kprobes. Remove flush_cache_sigtramp() and change signal.c to use
flush_icache_range().
Signed-off-by: Chris Smith <chris.smith@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
This adds initial support for ELF FDPIC on MMU-less SH, as per version
0.2 of the ABI definition at:
http://www.codesourcery.com/public/docs/sh-fdpic/sh-fdpic-abi.txt
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
Presently with preempt enabled there's the possibility to be preempted
after the TIF_USEDFPU test and the register save, leading to bogus
state post-__switch_to(). Use an explicit preempt_disable()/enable()
pair around unlazy_fpu()/clear_fpu() to avoid this. Follows the x86
change.
Reported-by: Takuo Koguchi <takuo.koguchi.sw@hitachi.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
This implements kernel-level atomic rollback built on top of gUSA,
as an alternative non-IRQ based atomicity method. This is generally
a faster method for platforms that are lacking the LL/SC pairs that
SH-4A and later use, and is only supportable on legacy cores.
Signed-off-by: Stuart Menefy <stuart.menefy@st.com>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|