Age | Commit message (Collapse) | Author |
|
pte alloc routines must wait for split_huge_page if the pmd is not present
and not null (i.e. pmd_trans_splitting). The additional branches are
optimized away at compile time by pmd_trans_splitting if the config option
is off. However we must pass the vma down in order to know the anon_vma
lock to wait for.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
kunmap_atomic() takes a pointer to within the page, not the struct page.
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Cc: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The i386 subarch happens to pull in original NR_syscalls. Maybe we can
make that work for all host arch, but for now just avoid the clash by
using an all-upper-case name.
CC arch/um/kernel/skas/syscall.o/data/linux-2.6/arch/um/kernel/skas/syscall.c:13:1: warning: "NR_syscalls" redefined
In file included from /data/linux-2.6/arch/x86/include/asm/unistd.h:3,
from /data/linux-2.6/arch/um/sys-i386/shared/sysdep/syscalls.h:6,
from /data/linux-2.6/arch/um/kernel/skas/syscall.c:10:
/data/linux-2.6/arch/x86/include/asm/unistd_32.h:349:1: warning: this is the location of the previous definition
Signed-off-by: Jan Kiszka <jan.kiszka@web.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|
If pmd_alloc() fails we should only free the prior allocated pud, if
pte_alloc_map() fails, we should free pmd as well.
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Cc: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
[ Spotted by Miklos ]
Fix a memory leak in init_new_context. The struct page ** buffer allocated
for install_special_mapping was never recorded, and thus leaked when the
mm_struct was freed. Fix it by saving the pointer in mm_context_t and freeing
it in arch_exit_mmap.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Redo the calculation of NR_syscalls since that disappeared from i386 and
use a similar mechanism on x86_64.
We now figure out the size of the system call table in arch code and stick
that in syscall_table_size. arch/um/kernel/skas/syscall.c defines
NR_syscalls in terms of that since its the only thing that needs to know
how many system calls there are.
The old mechananism that was used on x86_64 is gone.
arch/um/include/sysdep-i386/syscalls.h got some formatting since I was
looking at it.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Get rid of some syscall counters which haven't been useful in ages.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A bit of defensive programming - during development, it ocassionally
happens that a call to init_new_context is missed, resulting in
context holding a host pid of zero. When that address space is torn
down, destroy_context does a kill(0), which instantly kills the whole
UML without any errors whatsoever.
This patch add a check for pids less than 2, to also catch 1 and
negative pids.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
setjmp_wrapper existed to provide setjmp to kernel code when UML used libc's
setjmp and longjmp. Now that UML has its own implementation, this isn't
needed and kernel code can invoke setjmp directly.
do_buffer_op is massively cleaned up since it is no longer a callback from
setjmp_wrapper and given a va_list from which it must extract its arguments.
The actual setjmp is moved from buffer_op to do_op_one_page because the copy
operation is inside an atomic section (kmap_atomic to kunmap_atomic) and it
shouldn't be longjmp-ed out of.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Give the stubs a VMA. This allows the removal of a truly nasty kludge to make
sure that mm->nr_ptes was correct in exit_mmap. The underlying problem was
always that the stubs, which have ptes, and thus allocated a page table,
weren't covered by a VMA.
This patch fixes that by using install_special_mapping in arch_dup_mmap and
activate_context to create the VMA. The stubs have to be moved, since
shift_arg_pages seems to assume that the stack is the only VMA present at that
point during exec, and uses vma_adjust to fiddle its VMA. However, that
extends the stub VMA by the amount removed from the stack VMA.
To avoid this problem, the stubs were moved to a different fixed location at
the start of the address space.
The init_stub_pte calls were moved from init_new_context to arch_dup_mmap
because I was occasionally seeing arch_dup_mmap not being called, causing
exit_mmap to die. Rather than figure out what was really happening, I decided
it was cleaner to just move the calls so that there's no doubt that both the
pte and VMA creation happen, no matter what. arch_exit_mmap is used to clear
the stub ptes at exit time.
The STUB_* constants in as-layout.h no longer depend on UM_TASK_SIZE, that
that definition is removed, along with the comments complaining about gcc.
Because the stubs are no longer at the top of the address space, some care is
needed while flushing TLBs. update_pte_range checks for addresses in the stub
range and skips them. flush_thread now issues two unmaps, one for the range
before STUB_START and one for the range after STUB_END.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
UML was panicing in the case of failures of libc calls which shouldn't happen.
This is an overreaction since a failure from libc doesn't normally mean that
kernel data structures are in an unknown state. Instead, the current process
should just be killed if there is no way to recover.
The case that prompted this was a failure of PTRACE_SETREGS restoring the same
state that was read by PTRACE_GETREGS. It appears that when a process tries
to load a bogus value into a segment register, it segfaults (as expected) and
the value is actually loaded and is seen by PTRACE_GETREGS (not expected).
This case is fixed by forcing a fatal SIGSEGV on the process so that it
immediately dies. fatal_sigsegv was added for this purpose. It was declared
as noreturn, so in order to pursuade gcc that it actually does not return, I
added a call to os_dump_core (and declared it noreturn) so that I get a core
file if somehow the process survives.
All other calls in arch/um/os-Linux/skas/process.c got the same treatment,
with failures causing the process to die instead of a kernel panic, with some
exceptions.
userspace_tramp exits with status 1 if anything goes wrong there. That will
cause start_userspace to return an error. copy_context_skas0 and
map_stub_pages also now return errors instead of panicing. Callers of thes
functions were changed to check for errors and do something appropriate.
Usually that's to return an error to their callers.
check_skas3_ptrace_faultinfo just exits since that's too early to do anything
else.
save_registers, restore_registers, and init_registers now return status
instead of panicing on failure, with their callers doing something
appropriate.
There were also duplicate declarations of save_registers and restore_registers
in os.h - these are gone.
I noticed and fixed up some whitespace damage.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Turn um_virt_to_phys into virt_to_pte, cleaning up a horrid interface.
It's also made non-static and declared in pgtable.h because it'll be
needed when the stubs get a vma.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Untangle UML headers somewhat and add some includes where they were
needed explicitly, but gotten accidentally via some other header.
arch/um/include/um_uaccess.h loses asm/fixmap.h because it uses no
fixmap stuff and gains elf.h, because it needs FIXADDR_USER_*, and
archsetjmp.h, because it needs jmp_buf.
pmd_alloc_one is uninlined because it needs mm_struct, and that's
inconvenient to provide in asm-um/pgtable-3level.h.
elf_core_copy_fpregs is also uninlined from elf-i386.h and
elf-x86_64.h, which duplicated the code anyway, to
arch/um/kernel/process.c, so that the reference to current_thread
doesn't pull sched.h or anything related into asm/elf.h.
arch/um/sys-i386/ldt.c, arch/um/kernel/tlb.c and
arch/um/kernel/skas/uaccess.c got sched.h because they dereference
task_structs. Its includes of linux and asm headers got turned from
"" to <>.
arch/um/sys-i386/bug.c gets asm/errno.h because it needs errno
constants.
asm/elf-i386 gets asm/user.h because it needs user_regs_struct.
asm/fixmap.h gets page.h because it needs PAGE_SIZE and PAGE_MASK and
system.h for BUG_ON.
asm/pgtable doesn't need sched.h.
asm/processor-generic.h defined mm_segment_t, but didn't use it. So,
that definition is moved to uaccess.h, which defines a bunch of
mm_segment_t-related stuff. thread_info.h uses mm_segment_t, and
includes uaccess.h, which causes a recursion. So, the definition is
placed above the include of thread_info. in uaccess.h. thread_info.h
also gets page.h because it needs PAGE_SIZE.
ObCheckpatchViolationJustification - I'm not adding a typedef; I'm
moving mm_segment_t from one place to another.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patchset makes UML build and run with three-level page tables on
32-bit hosts. This is an uncommon use case, but the code here needed
fixing and cleaning up, so 32-bit three-level pages tables were tested
to make sure the changes are good.
Patch 1 - code movement
Patch 2 - header untangling
Patch 3 - style fixups in files affected so far
Patch 4 - clean up use of current.h
Patch 5 - fix sizes of types that are different between 2 and 3-level
page tables - three-level page table support should build at
this point
Patch 6 - tidy (i.e. eliminate much of) the code that figures out how
big the address space is
Patch 7 - change um_virt_to_phys into virt_to_pte, clean its
interface, and clean its (so far) one caller
Patch 8 - the stub pages are covered with a VMA, allowing some nasty
code to be thrown out - three-level page tables now work
This patch:
um_virt_to_phys only has one user, so it can be moved to the same file
and made static. Its declarations in pgtable.h and ksyms.c are also
gone.
current_cmd was another apparent user, but it itself isn't used, so it
is deleted.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
clone.c needed some style attention -
updated copyright
include trimming
coding style
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
(with Martin Schwidefsky <schwidefsky@de.ibm.com>)
The pgd/pud/pmd/pte page table allocation functions get a mm_struct pointer as
first argument. The free functions do not get the mm_struct argument. This
is 1) asymmetrical and 2) to do mm related page table allocations the mm
argument is needed on the free function as well.
[kamalesh@linux.vnet.ibm.com: i386 fix]
[akpm@linux-foundation.org: coding-syle fixes]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
asm/page.h is disappearing from the libc headers and we don't need it anyway.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The calculation of CONFIG_STUB_CODE and CONFIG_STUB_DATA didn't take into
account anything but 3G/1G and 2G/2G, leaving the other vmsplits out in the
cold.
I'd rather not duplicate the four known host vmsplit cases for each of these
symbols. I'd also like to calculate them based on the highest userspace
address.
The Kconfig language seems not to allow calculation of hex constants, so I
moved this to as-layout.h. CONFIG_STUB_CODE, CONFIG_STUB_DATA, and
CONFIG_STUB_START are now gone. In their place are STUB_CODE, STUB_DATA, and
STUB_START in as-layout.h.
i386 and x86_64 seem to differ as to whether an unadorned constant is an int
or a long, so I cast them to unsigned long so they can be printed
consistently. However, they are also used in stub.S, where C types don't work
so well. So, there are ASM_ versions of these constants for use in stub.S. I
also ifdef-ed the non-asm-friendly portion of as-layout.h.
With this in place, most of the rest of this patch is changing CONFIG_STUB_*
to STUB_*, except in stub.S, where they are changed to ASM_STUB_*.
defconfig has the old symbols deleted.
I also print these addresses out in case there is any problem mapping them on
the host.
The two stub.S files had some trailing whitespace, so that is cleaned up here.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch fixes some userspace files which were calling libc through the os_*
wrappers.
It turns out that there was only one user of os_new_tty_pgrp, so it can be
deleted.
There are also some style and whitespace fixes in here.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The space allocated for a process LDT wasn't being freed when the process
exited.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Before the removal of tt mode, access to a register on the skas-mode side of a
pt_regs struct looked like pt_regs.regs.skas.regs.regs[FOO]. This was bad
enough, but it became pt_regs.regs.regs.regs[FOO] with the removal of the
union from the middle. To get rid of the run of three "regs", the last field
is renamed to "gp".
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch folds mmu_context_skas into struct mm_context, changing all users
of these structures as needed.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Formatting changes in the files which have been changed in the course
of folding foo_skas functions into their callers. These include:
copyright updates
header file trimming
style fixes
adding severity to printks
These changes should be entirely non-functional.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch makes a number of simplifications enabled by the removal of
CHOOSE_MODE. There were lots of functions that looked like
int foo(args){
foo_skas(args);
}
The bodies of foo_skas are now folded into foo, and their declarations (and
sometimes entire header files) are deleted.
In addition, the union uml_pt_regs, which was a union between the tt and skas
register formats, is now a struct, with the tt-mode arm of the union being
removed.
It turns out that usr2_handler was unused, so it is gone.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The next stage after removing code which depends on CONFIG_MODE_TT is removing
the CHOOSE_MODE abstraction, which provided both compile-time and run-time
branching to either tt-mode or skas-mode code.
This patch removes choose-mode.h and all inclusions of it, and replaces all
CHOOSE_MODE invocations with the skas branch. This leaves a number of trivial
functions which will be dealt with in a later patch.
There are some changes in the uaccess and tls support which go somewhat beyond
this and eliminate some of the now-redundant functions.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
2.6.23-rc1 turned up another batch of references from non-__init code to
__init code. In most cases, these were missing __init annotations. In one
case (os_drop_memory), the annotation was present but wrong.
init_maps is __init, but for some reason was being very careful about the
mechanism by which it allocated memory, checking whether it was OK to use
kmalloc (at this point in the boot, it definitely isn't) and using either
alloc_bootmem_low_pages or kmalloc/vmalloc. So, the kmalloc/vmalloc code is
removed.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add a separate IRQ stack. This differs from i386 in having the entire
interrupt run on a separate stack rather than starting on the normal kernel
stack and switching over once some preparation has been done. The underlying
mechanism, is of course, sigaltstack.
Another difference is that interrupts that happen in userspace are handled on
the normal kernel stack. These cause a wait wakeup instead of a signal
delivery so there is no point in trying to switch stacks for these. There's
no other stuff on the stack, so there is no extra stack consumption.
This quirk makes it possible to have the entire interrupt run on a separate
stack - process preemption (and calls to schedule()) happens on a normal
kernel stack. If we enable CONFIG_PREEMPT, this will need to be rethought.
The IRQ stack for CPU 0 is declared in the same way as the initial kernel
stack. IRQ stacks for other CPUs will be allocated dynamically.
An extra field was added to the thread_info structure. When the active
thread_info is copied to the IRQ stack, the real_thread field points back to
the original stack. This makes it easy to tell where to copy the thread_info
struct back to when the interrupt is finished. It also serves as a marker of
a nested interrupt. It is NULL for the first interrupt on the stack, and
non-NULL for any nested interrupts.
Care is taken to behave correctly if a second interrupt comes in when the
thread_info structure is being set up or taken down. I could just disable
interrupts here, but I don't feel like giving up any of the performance gained
by not flipping signals on and off.
If an interrupt comes in during these critical periods, the handler can't run
because it has no idea what shape the stack is in. So, it sets a bit for its
signal in a global mask and returns. The outer handler will deal with this
signal itself.
Atomicity is had with xchg. A nested interrupt that needs to bail out will
xchg its signal mask into pending_mask and repeat in case yet another
interrupt hit at the same time, until the mask stabilizes.
The outermost interrupt will set up the thread_info and xchg a zero into
pending_mask when it is done. At this point, nested interrupts will look at
->real_thread and see that no setup needs to be done. They can just continue
normally.
Similar care needs to be taken when exiting the outer handler. If another
interrupt comes in while it is copying the thread_info, it will drop a bit
into pending_mask. The outer handler will check this and if it is non-zero,
will loop, set up the stack again, and handle the interrupt.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
These haven't been fixed for ages. Just make comments out of them.
arch/um/kernel/skas/process.c:181:2: warning: #warning Need to look up
+userspace_pid by cpu
arch/um/kernel/skas/process.c:187:2: warning: #warning Need to look up
+userspace_pid by cpu
arch/um/kernel/skas/process.c:194:2: warning: #warning need to loop over
+userspace_pids in kill_off_processes_skas
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When doing a full address space flush, only look at areas covered by a VMA.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
More trimming of the page fault path.
Permissions are passed around in a single int rather than one bit per
int. The permission values are copied from libc so that they can be
passed to mmap and mprotect without any further conversion.
The register sets used by do_syscall_stub and copy_context_skas0 are
initialized once, at boot time, rather than once per call.
wait_stub_done checks whether it is getting the signals it expects by
comparing the wait status to a mask containing bits for the signals of
interest rather than comparing individually to the signal numbers. It
also has one check for a wait failure instead of two. The caller is
expected to do the initial continue of the stub. This gets rid of an
argument and some logic. The fname argument is gone, as that can be
had from a stack trace.
user_signal() is collapsed into userspace() as it is basically one or
two lines of code afterwards.
The physical memory remapping stuff is gone, as it is unused.
flush_tlb_page is inlined.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Give the page fault code a specialized path. There is only one page to look
at, so there's no point in going into the general page table walking code.
There's only going to be one host operation, so there are no opportunities for
merging. So, we go straight to the pte we want, figure out what needs doing,
and do it.
While I was in here, I fixed the wart where the address passed to unmap was a
void *, but an unsigned long to map and protect.
This gives me just under 10% on a kernel build.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
flush_thread doesn't need to do a full page table walk in order to clear the
address space. It knows what the end result needs to be, so it can call unmap
directly.
This results in a 10-20% speedup in an exec from bash.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
user_util.h isn't needed any more, so delete it and remove all includes of it.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch moves all the the symbols defined in um_arch.c, which are mostly
boundaries between different parts of the UML kernel address space, to a new
header, as-layout.h. There are also a few things here which aren't really
related to address space layout, but which don't really have a better place to
go.
Signed-off-by: Jeff Dike <jdike@linux.intel.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
CONFIG_HOST_TASK_SIZE doesn't exist any more.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Correct commit 5906e4171ad61ce68de95e51b773146707671f80 - this makes more
sense: we turn pte_mkexec + pte_wrprotect to pte_mkread. However, due to a
bug in pte_mkread, it does the exact same thing as pte_mkwrite, so this patch
improves the code but does not change anything in practice. The pte_mkread
bug is fixed separately, as it may have big impact.
Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
kbuild explicitly includes this at build time.
Signed-off-by: Dave Jones <davej@redhat.com>
|
|
Andi is making pte_mkexec go away, and UML had one of the last uses.
This removes the use and the definition.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Remove arch/um/kernel/skas/process_kern.c again. The stack alignment
change which resulted in this file being here is safely in
arch/um/kernel/process.c.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Move some foo_kern.c files to foo.c now that the old foo.c files are out
of the way.
Also cleaned up some whitespace and an emacs formatting comment.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
fork on UML has always somewhat subtle. The underlying cause has been the
need to initialize a stack for the new process. The only portable way to
initialize a new stack is to set it as the alternate signal stack and take a
signal. The signal handler does whatever initialization is needed and jumps
back to the original stack, where the fork processing is finished. The basic
context switching mechanism is a jmp_buf for each process. You switch to a
new process by longjmping to its jmp_buf.
Now that UML has its own implementation of setjmp and longjmp, and I can poke
around inside a jmp_buf without fear that libc will change the structure, a
much simpler mechanism is possible. The jmpbuf can simply be initialized by
hand.
This eliminates -
the need to set up and remove the alternate signal stack
sending and handling a signal
the signal blocking needed around the stack switching, since
there is no stack switching
setting up the jmp_buf needed to jump back to the original
stack after the new one is set up
In addition, since jmp_buf is now defined by UML, and not by libc, it can be
embedded in the thread struct. This makes it unnecessary to have it exist on
the stack, where it used to be. It also simplifies interfaces, since the
switch jmp_buf used to be a void * inside the thread struct, and functions
which took it as an argument needed to define a jmp_buf variable and assign it
from the void *.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
One of the changes necessary for shared page tables is to standardize the
pxx_page macros. pte_page and pmd_page have always returned the struct
page associated with their entry, while pte_page_kernel and pmd_page_kernel
have returned the kernel virtual address. pud_page and pgd_page, on the
other hand, return the kernel virtual address.
Shared page tables needs pud_page and pgd_page to return the actual page
structures. There are very few actual users of these functions, so it is
simple to standardize their usage.
Since this is basic cleanup, I am submitting these changes as a standalone
patch. Per Hugh Dickins' comments about it, I am also changing the
pxx_page_kernel macros to pxx_page_vaddr to clarify their meaning.
Signed-off-by: Dave McCracken <dmccr@us.ibm.com>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Eliminate an unused debug option.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
It turns out that init_new_thread_signals is always called with altstack == 1,
so we can eliminate the parameter.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
When UML is built as a static binary, it segfaults when run. The reason is
that a memory hole that is present in dynamic binaries isn't there in static
binaries, and it contains essential stuff.
This fix removes the code which maps some anonymous memory into that hole and
cleans up some related code.
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
I was looking at the code of the UML and more precisely at the functions
set_task_sizes_tt and set_task_sizes_skas. I noticed that these 2 functions
take a paramater (arg) which is not used : the function is always called with
the value 0.
I suppose that this value might change in the future (or even can be
configured), so I added a constant in mem_user.h file.
Also, I rounded CONFIG_HOST_TASk_SIZE to a 4M.
Signed-off-by: Tyler <tyler@agat.net>
Signed-off-by: Jeff Dike <jdike@addtoit.com>
Cc: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Make __copy_*_user_inatomic really atomic to avoid "Sleeping function called in
atomic context" warnings, especially from futex code.
This is made by adding another kmap_atomic slot and making copy_*_user_skas
use kmap_atomic; also copy_*_user() becomes atomic, but that's true and is not
a problem for i386 (and we can always add might_sleep there as done
elsewhere). For TT mode kmap is not used, so there's no need for this.
I've had to use another slot since both KM_USER0 and KM_USER1 are used
elsewhere and could cause conflicts. Till now we reused the kmap_atomic slot
list from the subarch, but that's not needed as that list must contain the
common ones (used by generic code) + the ones used in architecture specific
code (and Uml till now used none); so I've taken the i386 one after comparing
it with ones from other archs, and added KM_UML_USERCOPY.
Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Cc: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Conversion of nr_page_table_pages to a per zone counter
[akpm@osdl.org: bugfix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
*) Rather than duplicate in various buggy ways the application of
CFLAGS_NO_HARDENING and UNPROFILE (which apply to the same files),
centralize it in Makefile.rules. UNPROFILE_OBJS mustn't be listed in
USER_OBJS but are compiled as such.
I've also verified that unprofile didn't work in the current form, because we
set _c_flags directly (using CFLAGS and not USER_CFLAGS, which is wrong),
which is normally used by c_flags, but we also override c_flags for all
USER_OBJS, and there we don't call unprofile.
Instead it only worked for unmap.o, the only one which wasn't a USER_OBJ.
We need to set c_flags (which is not a public Kbuild API) to clear a lot of
compilation flags like -nostdinc which Kbuild forces on everything.
*) Rather than $(CFLAGS_$(notdir $@)), which expands to CFLAGS_anObj.s when
building "anObj.s", use $(CFLAGS_$(*F).o) which always accesses
CFLAGS_anObj.o, like done by Kbuild.
*) Make c_flags apply to all targets having the same basename, rather than
listing .s, .i, .lst and .o, with the use (which I tested) of
$(USER_OBJS:.o=.%): c_flags = ...
and of
- $(obj)/unmap.c: _c_flags = ...
+ $(obj)/unmap.%: _c_flags = ...
Signed-off-by: Paolo 'Blaisorblade' Giarrusso <blaisorblade@yahoo.it>
Acked-by: Jeff Dike <jdike@addtoit.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|