summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/ftrace.c
AgeCommit message (Collapse)Author
2008-06-23ftrace: store mcount address in rec->ipAbhishek Sagar
Record the address of the mcount call-site. Currently all archs except sparc64 record the address of the instruction following the mcount call-site. Some general cleanups are entailed. Storing mcount addresses in rec->ip enables looking them up in the kprobe hash table later on to check if they're kprobe'd. Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com> Cc: davem@davemloft.net Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-17ftrace: build fix with gcc 4.3Ingo Molnar
fix: arch/x86/kernel/ftrace.c: Assembler messages: arch/x86/kernel/ftrace.c:82: Error: bad register name `%sil' make[1]: *** [arch/x86/kernel/ftrace.o] Error 1 Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-10ftrace: remove ftrace_ip_converted()Abhishek Sagar
Remove the unneeded function ftrace_ip_converted(). Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-05-23ftrace: fix the fault label in updating codeSteven Rostedt
The fault label to jump to on fault of updating the code was misplaced preventing the fault from being recorded. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23ftrace: use dynamic patching for updating mcount callsSteven Rostedt
This patch replaces the indirect call to the mcount function pointer with a direct call that will be patched by the dynamic ftrace routines. On boot up, the mcount function calls the ftace_stub function. When the dynamic ftrace code is initialized, the ftrace_stub is replaced with a call to the ftrace_record_ip, which records the instruction pointers of the locations that call it. Later, the ftraced daemon will call kstop_machine and patch all the locations to nops. When a ftrace is enabled, the original calls to mcount will now be set top call ftrace_caller, which will do a direct call to the registered ftrace function. This direct call is also patched when the function that should be called is updated. All patching is performed by a kstop_machine routine to prevent any type of race conditions that is associated with modifying code on the fly. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23ftrace: move memory management out of arch codeSteven Rostedt
This patch moves the memory management of the ftrace records out of the arch code and into the generic code making the arch code simpler. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23ftrace: use nops instead of jmpSteven Rostedt
This patch patches the call to mcount with nops instead of a jmp over the mcount call. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2008-05-23ftrace: dynamic enabling/disabling of function callsSteven Rostedt
This patch adds a feature to dynamically replace the ftrace code with the jmps to allow a kernel with ftrace configured to run as fast as it can without it configured. The way this works, is on bootup (if ftrace is enabled), a ftrace function is registered to record the instruction pointer of all places that call the function. Later, if there's still any code to patch, a kthread is awoken (rate limited to at most once a second) that performs a stop_machine, and replaces all the code that was called with a jmp over the call to ftrace. It only replaces what was found the previous time. Typically the system reaches equilibrium quickly after bootup and there's no code patching needed at all. e.g. call ftrace /* 5 bytes */ is replaced with jmp 3f /* jmp is 2 bytes and we jump 3 forward */ 3: When we want to enable ftrace for function tracing, the IP recording is removed, and stop_machine is called again to replace all the locations of that were recorded back to the call of ftrace. When it is disabled, we replace the code back to the jmp. Allocation is done by the kthread. If the ftrace recording function is called, and we don't have any record slots available, then we simply skip that call. Once a second a new page (if needed) is allocated for recording new ftrace function calls. A large batch is allocated at boot up to get most of the calls there. Because we do this via stop_machine, we don't have to worry about another CPU executing a ftrace call as we modify it. But we do need to worry about NMI's so all functions that might be called via nmi must be annotated with notrace_nmi. When this code is configured in, the NMI code will not call notrace. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>