Age | Commit message (Collapse) | Author |
|
save_xstate_sig()->drop_init_fpu() doesn't look right. setup_rt_frame()
can fail after that, in this case the next setup_rt_frame() triggered
by SIGSEGV won't save fpu simply because the old state was lost. This
obviously mean that fpu won't be restored after sys_rt_sigreturn() from
SIGSEGV handler.
Shift drop_init_fpu() into !failed branch in handle_signal().
Test-case (needs -O2):
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <sys/syscall.h>
#include <sys/mman.h>
#include <pthread.h>
#include <assert.h>
volatile double D;
void test(double d)
{
int pid = getpid();
for (D = d; D == d; ) {
/* sys_tkill(pid, SIGHUP); asm to avoid save/reload
* fp regs around "C" call */
asm ("" : : "a"(200), "D"(pid), "S"(1));
asm ("syscall" : : : "ax");
}
printf("ERR!!\n");
}
void sigh(int sig)
{
}
char altstack[4096 * 10] __attribute__((aligned(4096)));
void *tfunc(void *arg)
{
for (;;) {
mprotect(altstack, sizeof(altstack), PROT_READ);
mprotect(altstack, sizeof(altstack), PROT_READ|PROT_WRITE);
}
}
int main(void)
{
stack_t st = {
.ss_sp = altstack,
.ss_size = sizeof(altstack),
.ss_flags = SS_ONSTACK,
};
struct sigaction sa = {
.sa_handler = sigh,
};
pthread_t pt;
sigaction(SIGSEGV, &sa, NULL);
sigaltstack(&st, NULL);
sa.sa_flags = SA_ONSTACK;
sigaction(SIGHUP, &sa, NULL);
pthread_create(&pt, NULL, tfunc, NULL);
test(123.456);
return 0;
}
Reported-by: Bean Anderson <bean@azulsystems.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Link: http://lkml.kernel.org/r/20140902175713.GA21646@redhat.com
Cc: <stable@kernel.org> # v3.7+
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
This commit:
commit 6f121e548f83674ab4920a4e60afb58d4f61b829
Author: Andy Lutomirski <luto@amacapital.net>
Date: Mon May 5 12:19:34 2014 -0700
x86, vdso: Reimplement vdso.so preparation in build-time C
Contained this obvious typo:
- restorer = VDSO32_SYMBOL(current->mm->context.vdso, rt_sigreturn);
+ restorer = current->mm->context.vdso +
+ selected_vdso32->sym___kernel_sigreturn;
Note the missing 'rt_' in the new code. Fix it.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/1eb40ad923acde2e18357ef2832867432e70ac42.1403361010.git.luto@amacapital.net
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Currently, vdso.so files are prepared and analyzed by a combination
of objcopy, nm, some linker script tricks, and some simple ELF
parsers in the kernel. Replace all of that with plain C code that
runs at build time.
All five vdso images now generate .c files that are compiled and
linked in to the kernel image.
This should cause only one userspace-visible change: the loaded vDSO
images are stripped more heavily than they used to be. Everything
outside the loadable segment is dropped. In particular, this causes
the section table and section name strings to be missing. This
should be fine: real dynamic loaders don't load or inspect these
tables anyway. The result is roughly equivalent to eu-strip's
--strip-sections option.
The purpose of this change is to enable the vvar and hpet mappings
to be moved to the page following the vDSO load segment. Currently,
it is possible for the section table to extend into the page after
the load segment, so, if we map it, it risks overlapping the vvar or
hpet page. This happens whenever the load segment is just under a
multiple of PAGE_SIZE.
The only real subtlety here is that the old code had a C file with
inline assembler that did 'call VDSO32_vsyscall' and a linker script
that defined 'VDSO32_vsyscall = __kernel_vsyscall'. This most
likely worked by accident: the linker script entry defines a symbol
associated with an address as opposed to an alias for the real
dynamic symbol __kernel_vsyscall. That caused ld to relocate the
reference at link time instead of leaving an interposable dynamic
relocation. Since the VDSO32_vsyscall hack is no longer needed, I
now use 'call __kernel_vsyscall', and I added -Bsymbolic to make it
work. vdso2c will generate an error and abort the build if the
resulting image contains any dynamic relocations, so we won't
silently generate bad vdso images.
(Dynamic relocations are a problem because nothing will even attempt
to relocate the vdso.)
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/2c4fcf45524162a34d87fdda1eb046b2a5cecee7.1399317206.git.luto@amacapital.net
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SMAP fixes from Ingo Molnar:
"Fixes for Intel SMAP support, to fix SIGSEGVs during bootup"
* 'x86-smap-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Introduce [compat_]save_altstack_ex() to unbreak x86 SMAP
x86, smap: Handle csum_partial_copy_*_user()
|
|
For performance reasons, when SMAP is in use, SMAP is left open for an
entire put_user_try { ... } put_user_catch(); block, however, calling
__put_user() in the middle of that block will close SMAP as the
STAC..CLAC constructs intentionally do not nest.
Furthermore, using __put_user() rather than put_user_ex() here is bad
for performance.
Thus, introduce new [compat_]save_altstack_ex() helpers that replace
__[compat_]save_altstack() for x86, being currently the only
architecture which supports put_user_try { ... } put_user_catch().
Reported-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org> # v3.8+
Link: http://lkml.kernel.org/n/tip-es5p6y64if71k8p5u08agv9n@git.kernel.org
|
|
visible
Plus one function, load_gs_index().
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1375740170-7446-10-git-send-email-andi@firstfloor.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
FWIW I suspect sys_rt_sigreturn/sys_sigreturn should use
standard SYSCALL wrappers. But I didn't do that change in this
patch.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1375740170-7446-7-git-send-email-andi@firstfloor.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Merging EFLAGS bit clearing into a single statement, to
ensure EFLAGS bits are being cleared in a single instruction.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Tested-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Originally-Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Stephane Eranian <eranian@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1367421944-19082-4-git-send-email-jolsa@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Clearing RF EFLAGS bit for signal handler. The reason is
that this flag is set by debug exception code to prevent
the recursive exception entry.
Leaving it set for signal handler might prevent debug
exception of the signal handler itself.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Tested-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Originally-Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Stephane Eranian <eranian@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1367421944-19082-3-git-send-email-jolsa@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
While porting Vince's perf overflow tests I found perf event
breakpoint overflow does not work properly.
I found the x86 RF EFLAG bit not being set when returning
from debug exception after triggering signal handler. Which
is exactly what you get when you set perf breakpoint overflow
SIGIO handler.
This patch and the next two patches fix the underlying bugs.
This patch adds the RF EFLAGS bit to be restored on return from
signal from the original register context before the signal was
entered.
This will prevent the RF flag to disappear when returning
from exception due to the signal handler being executed.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Tested-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Originally-Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Stephane Eranian <eranian@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1367421944-19082-2-git-send-email-jolsa@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
Pull signal handling cleanups from Al Viro:
"sigaltstack infrastructure + conversion for x86, alpha and um,
COMPAT_SYSCALL_DEFINE infrastructure.
Note that there are several conflicts between "unify
SS_ONSTACK/SS_DISABLE definitions" and UAPI patches in mainline;
resolution is trivial - just remove definitions of SS_ONSTACK and
SS_DISABLED from arch/*/uapi/asm/signal.h; they are all identical and
include/uapi/linux/signal.h contains the unified variant."
Fixed up conflicts as per Al.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal:
alpha: switch to generic sigaltstack
new helpers: __save_altstack/__compat_save_altstack, switch x86 and um to those
generic compat_sys_sigaltstack()
introduce generic sys_sigaltstack(), switch x86 and um to it
new helper: compat_user_stack_pointer()
new helper: restore_altstack()
unify SS_ONSTACK/SS_DISABLE definitions
new helper: current_user_stack_pointer()
missing user_stack_pointer() instances
Bury the conditionals from kernel_thread/kernel_execve series
COMPAT_SYSCALL_DEFINE: infrastructure
|
|
note that they are relying on access_ok() already checked by caller.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Again, conditional on CONFIG_GENERIC_SIGALTSTACK
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Conditional on CONFIG_GENERIC_SIGALTSTACK; architectures that do not
select it are completely unaffected
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into core/rcu
Conflicts:
arch/x86/kernel/ptrace.c
Pull the latest RCU tree from Paul E. McKenney:
" The major features of this series are:
1. A first version of no-callbacks CPUs. This version prohibits
offlining CPU 0, but only when enabled via CONFIG_RCU_NOCB_CPU=y.
Relaxing this constraint is in progress, but not yet ready
for prime time. These commits were posted to LKML at
https://lkml.org/lkml/2012/10/30/724, and are at branch rcu/nocb.
2. Changes to SRCU that allows statically initialized srcu_struct
structures. These commits were posted to LKML at
https://lkml.org/lkml/2012/10/30/296, and are at branch rcu/srcu.
3. Restructuring of RCU's debugfs output. These commits were posted
to LKML at https://lkml.org/lkml/2012/10/30/341, and are at
branch rcu/tracing.
4. Additional CPU-hotplug/RCU improvements, posted to LKML at
https://lkml.org/lkml/2012/10/30/327, and are at branch rcu/hotplug.
Note that the commit eliminating __stop_machine() was judged to
be too-high of risk, so is deferred to 3.9.
5. Changes to RCU's idle interface, most notably a new module
parameter that redirects normal grace-period operations to
their expedited equivalents. These were posted to LKML at
https://lkml.org/lkml/2012/10/30/739, and are at branch rcu/idle.
6. Additional diagnostics for RCU's CPU stall warning facility,
posted to LKML at https://lkml.org/lkml/2012/10/30/315, and
are at branch rcu/stall. The most notable change reduces the
default RCU CPU stall-warning time from 60 seconds to 21 seconds,
so that it once again happens sooner than the softlockup timeout.
7. Documentation updates, which were posted to LKML at
https://lkml.org/lkml/2012/10/30/280, and are at branch rcu/doc.
A couple of late-breaking changes were posted at
https://lkml.org/lkml/2012/11/16/634 and
https://lkml.org/lkml/2012/11/16/547.
8. Miscellaneous fixes, which were posted to LKML at
https://lkml.org/lkml/2012/10/30/309, along with a late-breaking
change posted at Fri, 16 Nov 2012 11:26:25 -0800 with message-ID
<20121116192625.GA447@linux.vnet.ibm.com>, but which lkml.org
seems to have missed. These are at branch rcu/fixes.
9. Finally, a fix for an lockdep-RCU splat was posted to LKML
at https://lkml.org/lkml/2012/11/7/486. This is at rcu/next. "
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Create a new subsystem that probes on kernel boundaries
to keep track of the transitions between level contexts
with two basic initial contexts: user or kernel.
This is an abstraction of some RCU code that use such tracking
to implement its userspace extended quiescent state.
We need to pull this up from RCU into this new level of indirection
because this tracking is also going to be used to implement an "on
demand" generic virtual cputime accounting. A necessary step to
shutdown the tick while still accounting the cputime.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Gilad Ben-Yossef <gilad@benyossef.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
[ paulmck: fix whitespace error and email address. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/oleg/misc into perf/urgent
Pull various uprobes bugfixes from Oleg Nesterov - mostly race and
failure path fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
Pull generic execve() changes from Al Viro:
"This introduces the generic kernel_thread() and kernel_execve()
functions, and switches x86, arm, alpha, um and s390 over to them."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal: (26 commits)
s390: convert to generic kernel_execve()
s390: switch to generic kernel_thread()
s390: fold kernel_thread_helper() into ret_from_fork()
s390: fold execve_tail() into start_thread(), convert to generic sys_execve()
um: switch to generic kernel_thread()
x86, um/x86: switch to generic sys_execve and kernel_execve
x86: split ret_from_fork
alpha: introduce ret_from_kernel_execve(), switch to generic kernel_execve()
alpha: switch to generic kernel_thread()
alpha: switch to generic sys_execve()
arm: get rid of execve wrapper, switch to generic execve() implementation
arm: optimized current_pt_regs()
arm: introduce ret_from_kernel_execve(), switch to generic kernel_execve()
arm: split ret_from_fork, simplify kernel_thread() [based on patch by rmk]
generic sys_execve()
generic kernel_execve()
new helper: current_pt_regs()
preparation for generic kernel_thread()
um: kill thread->forking
um: let signal_delivered() do SIGTRAP on singlestepping into handler
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/smap support from Ingo Molnar:
"This adds support for the SMAP (Supervisor Mode Access Prevention) CPU
feature on Intel CPUs: a hardware feature that prevents unintended
user-space data access from kernel privileged code.
It's turned on automatically when possible.
This, in combination with SMEP, makes it even harder to exploit kernel
bugs such as NULL pointer dereferences."
Fix up trivial conflict in arch/x86/kernel/entry_64.S due to newly added
includes right next to each other.
* 'x86-smap-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, smep, smap: Make the switching functions one-way
x86, suspend: On wakeup always initialize cr4 and EFER
x86-32: Start out eflags and cr4 clean
x86, smap: Do not abuse the [f][x]rstor_checking() functions for user space
x86-32, smap: Add STAC/CLAC instructions to 32-bit kernel entry
x86, smap: Reduce the SMAP overhead for signal handling
x86, smap: A page fault due to SMAP is an oops
x86, smap: Turn on Supervisor Mode Access Prevention
x86, smap: Add STAC and CLAC instructions to control user space access
x86, uaccess: Merge prototypes for clear_user/__clear_user
x86, smap: Add a header file with macros for STAC/CLAC
x86, alternative: Add header guards to <asm/alternative-asm.h>
x86, alternative: Use .pushsection/.popsection
x86, smap: Add CR4 bit for SMAP
x86-32, mm: The WP test should be done on a kernel page
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/fpu update from Ingo Molnar:
"The biggest change is the addition of the non-lazy (eager) FPU saving
support model and enabling it on CPUs with optimized xsaveopt/xrstor
FPU state saving instructions.
There are also various Sparse fixes"
Fix up trivial add-add conflict in arch/x86/kernel/traps.c
* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, kvm: fix kvm's usage of kernel_fpu_begin/end()
x86, fpu: remove cpu_has_xmm check in the fx_finit()
x86, fpu: make eagerfpu= boot param tri-state
x86, fpu: enable eagerfpu by default for xsaveopt
x86, fpu: decouple non-lazy/eager fpu restore from xsave
x86, fpu: use non-lazy fpu restore for processors supporting xsave
lguest, x86: handle guest TS bit for lazy/non-lazy fpu host models
x86, fpu: always use kernel_fpu_begin/end() for in-kernel FPU usage
x86, kvm: use kernel_fpu_begin/end() in kvm_load/put_guest_fpu()
x86, fpu: remove unnecessary user_fpu_end() in save_xstate_sig()
x86, fpu: drop_fpu() before restoring new state from sigframe
x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels
x86, fpu: Consolidate inline asm routines for saving/restoring fpu state
x86, signal: Cleanup ifdefs and is_ia32, is_x32
|
|
Move clear_thread_flag(TIF_UPROBE) from do_notify_resume() to
uprobe_notify_resume() for !CONFIG_UPROBES case.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
|
|
do_notify_resume() may be called on irq or exception
exit. But at that time the exception has already called
rcu_user_enter() and the irq has already called rcu_irq_exit().
Since it can use RCU read side critical section, we must call
rcu_user_exit() before doing anything there. Then we must call
back rcu_user_enter() after this function because we know we are
going to userspace from there.
This complete support for userspace RCU extended quiescent state
in x86-64.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Alessio Igor Bogani <abogani@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kevin Hilman <khilman@ti.com>
Cc: Max Krasnyansky <maxk@qualcomm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sven-Thorsten Dietrich <thebigcorporation@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
|
|
Reason for merge:
x86/fpu changed the structure of some of the code that x86/smap
changes; mostly fpu-internal.h but also minor changes to the
signal code.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Resolved Conflicts:
arch/x86/ia32/ia32_signal.c
arch/x86/include/asm/fpu-internal.h
arch/x86/kernel/signal.c
|
|
Signal handling contains a bunch of accesses to individual user space
items, which causes an excessive number of STAC and CLAC
instructions. Instead, let get/put_user_try ... get/put_user_catch()
contain the STAC and CLAC instructions.
This means that get/put_user_try no longer nests, and furthermore that
it is no longer legal to use user space access functions other than
__get/put_user_ex() inside those blocks. However, these macros are
x86-specific anyway and are only used in the signal-handling paths; a
simple reordering of moving the larger subroutine calls out of the
try...catch blocks resolves that problem.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1348256595-29119-12-git-send-email-hpa@linux.intel.com
|
|
TIF_NOTIFY_RESUME will work in precisely the same way; all that
is achieved by TIF_IRET is appearing that there's some work to be
done, so we end up on the iret exit path. Just use NOTIFY_RESUME.
And for execve() do that in 32bit start_thread(), not sys_execve()
itself.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Currently for x86 and x86_32 binaries, fpstate in the user sigframe is copied
to/from the fpstate in the task struct.
And in the case of signal delivery for x86_64 binaries, if the fpstate is live
in the CPU registers, then the live state is copied directly to the user
sigframe. Otherwise fpstate in the task struct is copied to the user sigframe.
During restore, fpstate in the user sigframe is restored directly to the live
CPU registers.
Historically, different code paths led to different bugs. For example,
x86_64 code path was not preemption safe till recently. Also there is lot
of code duplication for support of new features like xsave etc.
Unify signal handling code paths for x86 and x86_64 kernels.
New strategy is as follows:
Signal delivery: Both for 32/64-bit frames, align the core math frame area to
64bytes as needed by xsave (this where the main fpu/extended state gets copied
to and excludes the legacy compatibility fsave header for the 32-bit [f]xsave
frames). If the state is live, copy the register state directly to the user
frame. If not live, copy the state in the thread struct to the user frame. And
for 32-bit [f]xsave frames, construct the fsave header separately before
the actual [f]xsave area.
Signal return: As the 32-bit frames with [f]xstate has an additional
'fsave' header, copy everything back from the user sigframe to the
fpstate in the task structure and reconstruct the fxstate from the 'fsave'
header (Also user passed pointers may not be correctly aligned for
any attempt to directly restore any partial state). At the next fpstate usage,
everything will be restored to the live CPU registers.
For all the 64-bit frames and the 32-bit fsave frame, restore the state from
the user sigframe directly to the live CPU registers. 64-bit signals always
restored the math frame directly, so we can expect the math frame pointer
to be correctly aligned. For 32-bit fsave frames, there are no alignment
requirements, so we can restore the state directly.
"lat_sig catch" microbenchmark numbers (for x86, x86_64, x86_32 binaries) are
with in the noise range with this change.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-4-git-send-email-suresh.b.siddha@intel.com
[ Merged in compilation fix ]
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Use config_enabled() to cleanup the definitions of is_ia32/is_x32. Move
the function prototypes to the header file to cleanup ifdefs,
and move the x32_setup_rt_frame() code around.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/1343171129-2747-2-git-send-email-suresh.b.siddha@intel.com
Merged in compilation fix from,
Link: http://lkml.kernel.org/r/1344544736.8326.17.camel@sbsiddha-desk.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Use a more current logging style:
- Bare printks should have a KERN_<LEVEL> for consistency's sake
- Add pr_fmt where appropriate
- Neaten some macro definitions
- Convert some Ok output to OK
- Use "%s: ", __func__ in pr_fmt for summit
- Convert some printks to pr_<level>
Message output is not identical in all cases.
Signed-off-by: Joe Perches <joe@perches.com>
Cc: levinsasha928@gmail.com
Link: http://lkml.kernel.org/r/1337655007.24226.10.camel@joe2Laptop
[ merged two similar patches, tidied up the changelog ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
If we end up calling do_notify_resume() with !user_mode(refs), it
does nothing (do_signal() explicitly bails out and we can't get there
with TIF_NOTIFY_RESUME in such situations). Then we jump to
resume_userspace_sig, which rechecks the same thing and bails out
to resume_kernel, thus breaking the loop.
It's easier and cheaper to check *before* calling do_notify_resume()
and bail out to resume_kernel immediately. And kill the check in
do_signal()...
Note that on amd64 we can't get there with !user_mode() at all - asm
glue takes care of that.
Acked-and-reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Does block_sigmask() + tracehook_signal_handler(); called when
sigframe has been successfully built. All architectures converted
to it; block_sigmask() itself is gone now (merged into this one).
I'm still not too happy with the signature, but that's a separate
story (IMO we need a structure that would contain signal number +
siginfo + k_sigaction, so that get_signal_to_deliver() would fill one,
signal_delivered(), handle_signal() and probably setup...frame() -
take one).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Only 3 out of 63 do not. Renamed the current variant to __set_current_blocked(),
added set_current_blocked() that will exclude unblockable signals, switched
open-coded instances to it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
replace boilerplate "should we use ->saved_sigmask or ->blocked?"
with calls of obvious inlined helper...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
first fruits of ..._restore_sigmask() helpers: now we can take
boilerplate "signal didn't have a handler, clear RESTORE_SIGMASK
and restore the blocked mask from ->saved_mask" into a common
helper. Open-coded instances switched...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
Pull second pile of signal handling patches from Al Viro:
"This one is just task_work_add() series + remaining prereqs for it.
There probably will be another pull request from that tree this
cycle - at least for helpers, to get them out of the way for per-arch
fixes remaining in the tree."
Fix trivial conflict in kernel/irq/manage.c: the merge of Andrew's pile
had brought in commit 97fd75b7b8e0 ("kernel/irq/manage.c: use the
pr_foo() infrastructure to prefix printks") which changed one of the
pr_err() calls that this merge moves around.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal:
keys: kill task_struct->replacement_session_keyring
keys: kill the dummy key_replace_session_keyring()
keys: change keyctl_session_to_parent() to use task_work_add()
genirq: reimplement exit_irq_thread() hook via task_work_add()
task_work_add: generic process-context callbacks
avr32: missed _TIF_NOTIFY_RESUME on one of do_notify_resume callers
parisc: need to check NOTIFY_RESUME when exiting from syscall
move key_repace_session_keyring() into tracehook_notify_resume()
TIF_NOTIFY_RESUME is defined on all targets now
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull user-space probe instrumentation from Ingo Molnar:
"The uprobes code originates from SystemTap and has been used for years
in Fedora and RHEL kernels. This version is much rewritten, reviews
from PeterZ, Oleg and myself shaped the end result.
This tree includes uprobes support in 'perf probe' - but SystemTap
(and other tools) can take advantage of user probe points as well.
Sample usage of uprobes via perf, for example to profile malloc()
calls without modifying user-space binaries.
First boot a new kernel with CONFIG_UPROBE_EVENT=y enabled.
If you don't know which function you want to probe you can pick one
from 'perf top' or can get a list all functions that can be probed
within libc (binaries can be specified as well):
$ perf probe -F -x /lib/libc.so.6
To probe libc's malloc():
$ perf probe -x /lib64/libc.so.6 malloc
Added new event:
probe_libc:malloc (on 0x7eac0)
You can now use it in all perf tools, such as:
perf record -e probe_libc:malloc -aR sleep 1
Make use of it to create a call graph (as the flat profile is going to
look very boring):
$ perf record -e probe_libc:malloc -gR make
[ perf record: Woken up 173 times to write data ]
[ perf record: Captured and wrote 44.190 MB perf.data (~1930712
$ perf report | less
32.03% git libc-2.15.so [.] malloc
|
--- malloc
29.49% cc1 libc-2.15.so [.] malloc
|
--- malloc
|
|--0.95%-- 0x208eb1000000000
|
|--0.63%-- htab_traverse_noresize
11.04% as libc-2.15.so [.] malloc
|
--- malloc
|
7.15% ld libc-2.15.so [.] malloc
|
--- malloc
|
5.07% sh libc-2.15.so [.] malloc
|
--- malloc
|
4.99% python-config libc-2.15.so [.] malloc
|
--- malloc
|
4.54% make libc-2.15.so [.] malloc
|
--- malloc
|
|--7.34%-- glob
| |
| |--93.18%-- 0x41588f
| |
| --6.82%-- glob
| 0x41588f
...
Or:
$ perf report -g flat | less
# Overhead Command Shared Object Symbol
# ........ ............. ............. ..........
#
32.03% git libc-2.15.so [.] malloc
27.19%
malloc
29.49% cc1 libc-2.15.so [.] malloc
24.77%
malloc
11.04% as libc-2.15.so [.] malloc
11.02%
malloc
7.15% ld libc-2.15.so [.] malloc
6.57%
malloc
...
The core uprobes design is fairly straightforward: uprobes probe
points register themselves at (inode:offset) addresses of
libraries/binaries, after which all existing (or new) vmas that map
that address will have a software breakpoint injected at that address.
vmas are COW-ed to preserve original content. The probe points are
kept in an rbtree.
If user-space executes the probed inode:offset instruction address
then an event is generated which can be recovered from the regular
perf event channels and mmap-ed ring-buffer.
Multiple probes at the same address are supported, they create a
dynamic callback list of event consumers.
The basic model is further complicated by the XOL speedup: the
original instruction that is probed is copied (in an architecture
specific fashion) and executed out of line when the probe triggers.
The XOL area is a single vma per process, with a fixed number of
entries (which limits probe execution parallelism).
The API: uprobes are installed/removed via
/sys/kernel/debug/tracing/uprobe_events, the API is integrated to
align with the kprobes interface as much as possible, but is separate
to it.
Injecting a probe point is privileged operation, which can be relaxed
by setting perf_paranoid to -1.
You can use multiple probes as well and mix them with kprobes and
regular PMU events or tracepoints, when instrumenting a task."
Fix up trivial conflicts in mm/memory.c due to previous cleanup of
unmap_single_vma().
* 'perf-uprobes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
perf probe: Detect probe target when m/x options are absent
perf probe: Provide perf interface for uprobes
tracing: Fix kconfig warning due to a typo
tracing: Provide trace events interface for uprobes
tracing: Extract out common code for kprobes/uprobes trace events
tracing: Modify is_delete, is_return from int to bool
uprobes/core: Decrement uprobe count before the pages are unmapped
uprobes/core: Make background page replacement logic account for rss_stat counters
uprobes/core: Optimize probe hits with the help of a counter
uprobes/core: Allocate XOL slots for uprobes use
uprobes/core: Handle breakpoint and singlestep exceptions
uprobes/core: Rename bkpt to swbp
uprobes/core: Make order of function parameters consistent across functions
uprobes/core: Make macro names consistent
uprobes: Update copyright notices
uprobes/core: Move insn to arch specific structure
uprobes/core: Remove uprobe_opcode_sz
uprobes/core: Make instruction tables volatile
uprobes: Move to kernel/events/
uprobes/core: Clean up, refactor and improve the code
...
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
guts of saved_sigmask-based sigsuspend/rt_sigsuspend. Takes
kernel sigset_t *.
Open-coded instances replaced with calling it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Merge in latest upstream (and the latest perf development tree),
to prepare for tooling changes, and also to pick up v3.4 MM
changes that the uprobes code needs to take care of.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Peter Anvin:
"The biggest textual change is the cleanup to use symbolic constants
for x86 trap values.
The only *functional* change and the reason for the x86/x32 dependency
is the move of is_ia32_task() into <asm/thread_info.h> so that it can
be used in other code that needs to understand if a system call comes
from the compat entry point (and therefore uses i386 system call
numbers) or not. One intended user for that is the BPF system call
filter. Moving it out of <asm/compat.h> means we can define it
unconditionally, returning always true on i386."
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Move is_ia32_task to asm/thread_info.h from asm/compat.h
x86: Rename trap_no to trap_nr in thread_struct
x86: Use enum instead of literals for trap values
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x32 support for x86-64 from Ingo Molnar:
"This tree introduces the X32 binary format and execution mode for x86:
32-bit data space binaries using 64-bit instructions and 64-bit kernel
syscalls.
This allows applications whose working set fits into a 32 bits address
space to make use of 64-bit instructions while using a 32-bit address
space with shorter pointers, more compressed data structures, etc."
Fix up trivial context conflicts in arch/x86/{Kconfig,vdso/vma.c}
* 'x86-x32-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits)
x32: Fix alignment fail in struct compat_siginfo
x32: Fix stupid ia32/x32 inversion in the siginfo format
x32: Add ptrace for x32
x32: Switch to a 64-bit clock_t
x32: Provide separate is_ia32_task() and is_x32_task() predicates
x86, mtrr: Use explicit sizing and padding for the 64-bit ioctls
x86/x32: Fix the binutils auto-detect
x32: Warn and disable rather than error if binutils too old
x32: Only clear TIF_X32 flag once
x32: Make sure TS_COMPAT is cleared for x32 tasks
fs: Remove missed ->fds_bits from cessation use of fd_set structs internally
fs: Fix close_on_exec pointer in alloc_fdtable
x32: Drop non-__vdso weak symbols from the x32 VDSO
x32: Fix coding style violations in the x32 VDSO code
x32: Add x32 VDSO support
x32: Allow x32 to be configured
x32: If configured, add x32 system calls to system call tables
x32: Handle process creation
x32: Signal-related system calls
x86: Add #ifdef CONFIG_COMPAT to <asm/sys_ia32.h>
...
|
|
Uprobes uses exception notifiers to get to know if a thread hit
a breakpoint or a singlestep exception.
When a thread hits a uprobe or is singlestepping post a uprobe
hit, the uprobe exception notifier sets its TIF_UPROBE bit,
which will then be checked on its return to userspace path
(do_notify_resume() ->uprobe_notify_resume()), where the
consumers handlers are run (in task context) based on the
defined filters.
Uprobe hits are thread specific and hence we need to maintain
information about if a task hit a uprobe, what uprobe was hit,
the slot where the original instruction was copied for xol so
that it can be singlestepped with appropriate fixups.
In some cases, special care is needed for instructions that are
executed out of line (xol). These are architecture specific
artefacts, such as handling RIP relative instructions on x86_64.
Since the instruction at which the uprobe was inserted is
executed out of line, architecture specific fixups are added so
that the thread continues normal execution in the presence of a
uprobe.
Postpone the signals until we execute the probed insn.
post_xol() path does a recalc_sigpending() before return to
user-mode, this ensures the signal can't be lost.
Uprobes relies on DIE_DEBUG notification to notify if a
singlestep is complete.
Adds x86 specific uprobe exception notifiers and appropriate
hooks needed to determine a uprobe hit and subsequent post
processing.
Add requisite x86 fixups for xol for uprobes. Specific cases
needing fixups include relative jumps (x86_64), calls, etc.
Where possible, we check and skip singlestepping the
breakpointed instructions. For now we skip single byte as well
as few multibyte nop instructions. However this can be extended
to other instructions too.
Credits to Oleg Nesterov for suggestions/patches related to
signal, breakpoint, singlestep handling code.
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com>
Cc: Linux-mm <linux-mm@kvack.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120313180011.29771.89027.sendpatchset@srdronam.in.ibm.com
[ Performed various cleanliness edits ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
There are precedences of trap number being referred to as
trap_nr. However thread struct refers trap number as trap_no.
Change it to trap_nr.
Also use enum instead of left-over literals for trap values.
This is pure cleanup, no functional change intended.
Suggested-by: Ingo Molnar <mingo@eltu.hu>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Jim Keniston <jkenisto@linux.vnet.ibm.com>
Cc: Linux-mm <linux-mm@kvack.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20120312092555.5379.942.sendpatchset@srdronam.in.ibm.com
[ Fixed the math-emu build ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
While various modules include <asm/i387.h> to get access to things we
actually *intend* for them to use, most of that header file was really
pretty low-level internal stuff that we really don't want to expose to
others.
So split the header file into two: the small exported interfaces remain
in <asm/i387.h>, while the internal definitions that are only used by
core architecture code are now in <asm/fpu-internal.h>.
The guiding principle for this was to expose functions that we export to
modules, and leave them in <asm/i387.h>, while stuff that is used by
task switching or was marked GPL-only is in <asm/fpu-internal.h>.
The fpu-internal.h file could be further split up too, especially since
arch/x86/kvm/ uses some of the remaining stuff for its module. But that
kvm usage should probably be abstracted out a bit, and at least now the
internal FPU accessor functions are much more contained. Even if it
isn't perhaps as contained as it _could_ be.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1202211340330.5354@i5.linux-foundation.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
x32 uses the 64-bit signal frame format, obviously, but there are some
structures which mixes that with pointers or sizeof(long) types, as
such we have to create a handful of system calls specific to x32. By
and large these are a mixture of the 64-bit and the compat system
calls.
Originally-by: H. J. Lu <hjl.tools@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
Export setup_sigcontext() and restore_sigcontext() from signal.c, so
we can use the 64-bit versions verbatim for x32.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|