summaryrefslogtreecommitdiffstats
path: root/arch/x86/mm
AgeCommit message (Collapse)Author
2014-08-22Merge tag 'efi-urgent' of ↵Ingo Molnar
git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into x86/urgent Pull EFI fixes from Matt Fleming: * WARN_ON(!spin_is_locked()) always triggers on non-SMP machines. Swap it for the more canonical lockdep_assert_held() which always does the right thing - Guenter Roeck * Assign the correct value to efi.runtime_version on arm64 so that all the runtime services can be invoked - Semen Protsenko Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-10x86/mm: Fix sparse 'tlb_single_page_flush_ceiling' warning and make the ↵Jeremiah Mahler
variable read-mostly A sparse warning is generated about 'tlb_single_page_flush_ceiling' not being declared. arch/x86/mm/tlb.c:177:15: warning: symbol 'tlb_single_page_flush_ceiling' was not declared. Should it be static? Since it isn't used anywhere outside this file, fix the warning by making it static. Also, optimize the use of this variable by adding the __read_mostly directive, as suggested by David Rientjes. Suggested-by: David Rientjes <rientjes@google.com> Signed-off-by: Jeremiah Mahler <jmmahler@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Link: http://lkml.kernel.org/r/1407569913-4035-1-git-send-email-jmmahler@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-08x86/mm: Fix RCU splat from new TLB tracepointsDave Hansen
Dave Jones reported seeing a bug from one of my TLB tracepoints: http://lkml.kernel.org/r/20140806181801.GA4605@redhat.com According to Paul McKenney, the right way to fix this is adding an _rcuidle suffix to the tracepoint. http://lkml.kernel.org/r/20140807065055.GA5821@linux.vnet.ibm.com This patch does just that. Reported-by: Dave Jones <davej@redhat.com>, Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Dave Hansen <dave@sr71.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20140807175841.5C92D878@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-06memory-hotplug: x86_32: suitable memory should go to ZONE_MOVABLEWang Nan
This patch introduces zone_for_memory() to arch_add_memory() on x86_32 to ensure new, higher memory added into ZONE_MOVABLE if movable zone has already setup. Signed-off-by: Wang Nan <wangnan0@huawei.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: "Mel Gorman" <mgorman@suse.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06memory-hotplug: x86_64: suitable memory should go to ZONE_MOVABLEWang Nan
This patch introduces zone_for_memory() to arch_add_memory() on x86_64 to ensure new, higher memory added into ZONE_MOVABLE if movable zone has already setup. Signed-off-by: Wang Nan <wangnan0@huawei.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: "Mel Gorman" <mgorman@suse.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Chris Metcalf <cmetcalf@tilera.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-06mm: describe mmap_sem rules for __lock_page_or_retry() and callersPaul Cassella
Add a comment describing the circumstances in which __lock_page_or_retry() will or will not release the mmap_sem when returning 0. Add comments to lock_page_or_retry()'s callers (filemap_fault(), do_swap_page()) noting the impact on VM_FAULT_RETRY returns. Add comments on up the call tree, particularly replacing the false "We return with mmap_sem still held" comments. Signed-off-by: Paul Cassella <cassella@cray.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-04Merge branch 'x86-mm-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 mm changes from Ingo Molnar: "The main change in this cycle is the rework of the TLB range flushing code, to simplify, fix and consolidate the code. By Dave Hansen" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm: Set TLB flush tunable to sane value (33) x86/mm: New tunable for single vs full TLB flush x86/mm: Add tracepoints for TLB flushes x86/mm: Unify remote INVLPG code x86/mm: Fix missed global TLB flush stat x86/mm: Rip out complicated, out-of-date, buggy TLB flushing x86/mm: Clean up the TLB flushing code x86/smep: Be more informative when signalling an SMEP fault
2014-07-31x86/mm: Set TLB flush tunable to sane value (33)Dave Hansen
This has been run through Intel's LKP tests across a wide range of modern sytems and workloads and it wasn't shown to make a measurable performance difference positive or negative. Now that we have some shiny new tracepoints, we can actually figure out what the heck is going on. During a kernel compile, 60% of the flush_tlb_mm_range() calls are for a single page. It breaks down like this: size percent percent<= V V V GLOBAL: 2.20% 2.20% avg cycles: 2283 1: 56.92% 59.12% avg cycles: 1276 2: 13.78% 72.90% avg cycles: 1505 3: 8.26% 81.16% avg cycles: 1880 4: 7.41% 88.58% avg cycles: 2447 5: 1.73% 90.31% avg cycles: 2358 6: 1.32% 91.63% avg cycles: 2563 7: 1.14% 92.77% avg cycles: 2862 8: 0.62% 93.39% avg cycles: 3542 9: 0.08% 93.47% avg cycles: 3289 10: 0.43% 93.90% avg cycles: 3570 11: 0.20% 94.10% avg cycles: 3767 12: 0.08% 94.18% avg cycles: 3996 13: 0.03% 94.20% avg cycles: 4077 14: 0.02% 94.23% avg cycles: 4836 15: 0.04% 94.26% avg cycles: 5699 16: 0.06% 94.32% avg cycles: 5041 17: 0.57% 94.89% avg cycles: 5473 18: 0.02% 94.91% avg cycles: 5396 19: 0.03% 94.95% avg cycles: 5296 20: 0.02% 94.96% avg cycles: 6749 21: 0.18% 95.14% avg cycles: 6225 22: 0.01% 95.15% avg cycles: 6393 23: 0.01% 95.16% avg cycles: 6861 24: 0.12% 95.28% avg cycles: 6912 25: 0.05% 95.32% avg cycles: 7190 26: 0.01% 95.33% avg cycles: 7793 27: 0.01% 95.34% avg cycles: 7833 28: 0.01% 95.35% avg cycles: 8253 29: 0.08% 95.42% avg cycles: 8024 30: 0.03% 95.45% avg cycles: 9670 31: 0.01% 95.46% avg cycles: 8949 32: 0.01% 95.46% avg cycles: 9350 33: 3.11% 98.57% avg cycles: 8534 34: 0.02% 98.60% avg cycles: 10977 35: 0.02% 98.62% avg cycles: 11400 We get in to dimishing returns pretty quickly. On pre-IvyBridge CPUs, we used to set the limit at 8 pages, and it was set at 128 on IvyBrige. That 128 number looks pretty silly considering that less than 0.5% of the flushes are that large. The previous code tried to size this number based on the size of the TLB. Good idea, but it's error-prone, needs maintenance (which it didn't get up to now), and probably would not matter in practice much. Settting it to 33 means that we cover the mallopt M_TRIM_THRESHOLD, which is the most universally common size to do flushes. That's the short version. Here's the long one for why I chose 33: 1. These numbers have a constant bias in the timestamps from the tracing. Probably counts for a couple hundred cycles in each of these tests, but it should be fairly _even_ across all of them. The smallest delta between the tracepoints I have ever seen is 335 cycles. This is one reason the cycles/page cost goes down in general as the flushes get larger. The true cost is nearer to 100 cycles. 2. A full flush is more expensive than a single invlpg, but not by much (single percentages). 3. A dtlb miss is 17.1ns (~45 cycles) and a itlb miss is 13.0ns (~34 cycles). At those rates, refilling the 512-entry dTLB takes 22,000 cycles. 4. 22,000 cycles is approximately the equivalent of doing 85 invlpg operations. But, the odds are that the TLB can actually be filled up faster than that because TLB misses that are close in time also tend to leverage the same caches. 6. ~98% of flushes are <=33 pages. There are a lot of flushes of 33 pages, probably because libc's M_TRIM_THRESHOLD is set to 128k (32 pages) 7. I've found no consistent data to support changing the IvyBridge vs. SandyBridge tunable by a factor of 16 I used the performance counters on this hardware (IvyBridge i5-3320M) to figure out the tlb miss costs: ocperf.py stat -e dtlb_load_misses.walk_duration,dtlb_load_misses.walk_completed,dtlb_store_misses.walk_duration,dtlb_store_misses.walk_completed,itlb_misses.walk_duration,itlb_misses.walk_completed,itlb.itlb_flush 7,720,030,970 dtlb_load_misses_walk_duration [57.13%] 169,856,353 dtlb_load_misses_walk_completed [57.15%] 708,832,859 dtlb_store_misses_walk_duration [57.17%] 19,346,823 dtlb_store_misses_walk_completed [57.17%] 2,779,687,402 itlb_misses_walk_duration [57.15%] 82,241,148 itlb_misses_walk_completed [57.13%] 770,717 itlb_itlb_flush [57.11%] Show that a dtlb miss is 17.1ns (~45 cycles) and a itlb miss is 13.0ns (~34 cycles). At those rates, refilling the 512-entry dTLB takes 22,000 cycles. On a SandyBridge system with more cores and larger caches, those are dtlb=13.4ns and itlb=9.5ns. cat perf.stat.txt | perl -pe 's/,//g' | awk '/itlb_misses_walk_duration/ { icyc+=$1 } /itlb_misses_walk_completed/ { imiss+=$1 } /dtlb_.*_walk_duration/ { dcyc+=$1 } /dtlb_.*.*completed/ { dmiss+=$1 } END {print "itlb cyc/miss: ", icyc/imiss, " dtlb cyc/miss: ", dcyc/dmiss, " ----- ", icyc,imiss, dcyc,dmiss } On Westmere CPUs, the counters to use are: itlb_flush,itlb_misses.walk_cycles,itlb_misses.any,dtlb_misses.walk_cycles,dtlb_misses.any The assumptions that this code went in under: https://lkml.org/lkml/2012/6/12/119 say that a flush and a refill are about 100ns. Being generous, that is over by a factor of 6 on the refill side, although it is fairly close on the cost of an invlpg. An increase of a single invlpg operation seems to lengthen the flush range operation by about 200 cycles. Here is one example of the data collected for flushing 10 and 11 pages (full data are below): 10: 0.43% 93.90% avg cycles: 3570 cycles/page: 357 samples: 4714 11: 0.20% 94.10% avg cycles: 3767 cycles/page: 342 samples: 2145 How to generate this table: echo 10000 > /sys/kernel/debug/tracing/buffer_size_kb echo x86-tsc > /sys/kernel/debug/tracing/trace_clock echo 'reason != 0' > /sys/kernel/debug/tracing/events/tlb/tlb_flush/filter echo 1 > /sys/kernel/debug/tracing/events/tlb/tlb_flush/enable Pipe the trace output in to this script: http://sr71.net/~dave/intel/201402-tlb/trace-time-diff-process.pl.txt Note that these data were gathered with the invlpg threshold set to 150 pages. Only data points with >=50 of samples were printed: Flush % of %<= in flush this pages es size ------------------------------------------------------------------------------ -1: 2.20% 2.20% avg cycles: 2283 cycles/page: xxxx samples: 23960 1: 56.92% 59.12% avg cycles: 1276 cycles/page: 1276 samples: 620895 2: 13.78% 72.90% avg cycles: 1505 cycles/page: 752 samples: 150335 3: 8.26% 81.16% avg cycles: 1880 cycles/page: 626 samples: 90131 4: 7.41% 88.58% avg cycles: 2447 cycles/page: 611 samples: 80877 5: 1.73% 90.31% avg cycles: 2358 cycles/page: 471 samples: 18885 6: 1.32% 91.63% avg cycles: 2563 cycles/page: 427 samples: 14397 7: 1.14% 92.77% avg cycles: 2862 cycles/page: 408 samples: 12441 8: 0.62% 93.39% avg cycles: 3542 cycles/page: 442 samples: 6721 9: 0.08% 93.47% avg cycles: 3289 cycles/page: 365 samples: 917 10: 0.43% 93.90% avg cycles: 3570 cycles/page: 357 samples: 4714 11: 0.20% 94.10% avg cycles: 3767 cycles/page: 342 samples: 2145 12: 0.08% 94.18% avg cycles: 3996 cycles/page: 333 samples: 864 13: 0.03% 94.20% avg cycles: 4077 cycles/page: 313 samples: 289 14: 0.02% 94.23% avg cycles: 4836 cycles/page: 345 samples: 236 15: 0.04% 94.26% avg cycles: 5699 cycles/page: 379 samples: 390 16: 0.06% 94.32% avg cycles: 5041 cycles/page: 315 samples: 643 17: 0.57% 94.89% avg cycles: 5473 cycles/page: 321 samples: 6229 18: 0.02% 94.91% avg cycles: 5396 cycles/page: 299 samples: 224 19: 0.03% 94.95% avg cycles: 5296 cycles/page: 278 samples: 367 20: 0.02% 94.96% avg cycles: 6749 cycles/page: 337 samples: 185 21: 0.18% 95.14% avg cycles: 6225 cycles/page: 296 samples: 1964 22: 0.01% 95.15% avg cycles: 6393 cycles/page: 290 samples: 83 23: 0.01% 95.16% avg cycles: 6861 cycles/page: 298 samples: 61 24: 0.12% 95.28% avg cycles: 6912 cycles/page: 288 samples: 1307 25: 0.05% 95.32% avg cycles: 7190 cycles/page: 287 samples: 533 26: 0.01% 95.33% avg cycles: 7793 cycles/page: 299 samples: 94 27: 0.01% 95.34% avg cycles: 7833 cycles/page: 290 samples: 66 28: 0.01% 95.35% avg cycles: 8253 cycles/page: 294 samples: 73 29: 0.08% 95.42% avg cycles: 8024 cycles/page: 276 samples: 846 30: 0.03% 95.45% avg cycles: 9670 cycles/page: 322 samples: 296 31: 0.01% 95.46% avg cycles: 8949 cycles/page: 288 samples: 79 32: 0.01% 95.46% avg cycles: 9350 cycles/page: 292 samples: 60 33: 3.11% 98.57% avg cycles: 8534 cycles/page: 258 samples: 33936 34: 0.02% 98.60% avg cycles: 10977 cycles/page: 322 samples: 268 35: 0.02% 98.62% avg cycles: 11400 cycles/page: 325 samples: 177 36: 0.01% 98.63% avg cycles: 11504 cycles/page: 319 samples: 161 37: 0.02% 98.65% avg cycles: 11596 cycles/page: 313 samples: 182 38: 0.02% 98.66% avg cycles: 11850 cycles/page: 311 samples: 195 39: 0.01% 98.68% avg cycles: 12158 cycles/page: 311 samples: 128 40: 0.01% 98.68% avg cycles: 11626 cycles/page: 290 samples: 78 41: 0.04% 98.73% avg cycles: 11435 cycles/page: 278 samples: 477 42: 0.01% 98.73% avg cycles: 12571 cycles/page: 299 samples: 74 43: 0.01% 98.74% avg cycles: 12562 cycles/page: 292 samples: 78 44: 0.01% 98.75% avg cycles: 12991 cycles/page: 295 samples: 108 45: 0.01% 98.76% avg cycles: 13169 cycles/page: 292 samples: 78 46: 0.02% 98.78% avg cycles: 12891 cycles/page: 280 samples: 261 47: 0.01% 98.79% avg cycles: 13099 cycles/page: 278 samples: 67 48: 0.01% 98.80% avg cycles: 13851 cycles/page: 288 samples: 77 49: 0.01% 98.80% avg cycles: 13749 cycles/page: 280 samples: 66 50: 0.01% 98.81% avg cycles: 13949 cycles/page: 278 samples: 73 52: 0.00% 98.82% avg cycles: 14243 cycles/page: 273 samples: 52 54: 0.01% 98.83% avg cycles: 15312 cycles/page: 283 samples: 87 55: 0.01% 98.84% avg cycles: 15197 cycles/page: 276 samples: 109 56: 0.02% 98.86% avg cycles: 15234 cycles/page: 272 samples: 208 57: 0.00% 98.86% avg cycles: 14888 cycles/page: 261 samples: 53 58: 0.01% 98.87% avg cycles: 15037 cycles/page: 259 samples: 59 59: 0.01% 98.87% avg cycles: 15752 cycles/page: 266 samples: 63 62: 0.00% 98.89% avg cycles: 16222 cycles/page: 261 samples: 54 64: 0.02% 98.91% avg cycles: 17179 cycles/page: 268 samples: 248 65: 0.12% 99.03% avg cycles: 18762 cycles/page: 288 samples: 1324 85: 0.00% 99.10% avg cycles: 21649 cycles/page: 254 samples: 50 127: 0.01% 99.18% avg cycles: 32397 cycles/page: 255 samples: 75 128: 0.13% 99.31% avg cycles: 31711 cycles/page: 247 samples: 1466 129: 0.18% 99.49% avg cycles: 33017 cycles/page: 255 samples: 1927 181: 0.33% 99.84% avg cycles: 2489 cycles/page: 13 samples: 3547 256: 0.05% 99.91% avg cycles: 2305 cycles/page: 9 samples: 550 512: 0.03% 99.95% avg cycles: 2133 cycles/page: 4 samples: 304 1512: 0.01% 99.99% avg cycles: 3038 cycles/page: 2 samples: 65 Here are the tlb counters during a 10-second slice of a kernel compile for a SandyBridge system. It's better than IvyBridge, but probably due to the larger caches since this was one of the 'X' extreme parts. 10,873,007,282 dtlb_load_misses_walk_duration 250,711,333 dtlb_load_misses_walk_completed 1,212,395,865 dtlb_store_misses_walk_duration 31,615,772 dtlb_store_misses_walk_completed 5,091,010,274 itlb_misses_walk_duration 163,193,511 itlb_misses_walk_completed 1,321,980 itlb_itlb_flush 10.008045158 seconds time elapsed # cat perf.stat.1392743721.txt | perl -pe 's/,//g' | awk '/itlb_misses_walk_duration/ { icyc+=$1 } /itlb_misses_walk_completed/ { imiss+=$1 } /dtlb_.*_walk_duration/ { dcyc+=$1 } /dtlb_.*.*completed/ { dmiss+=$1 } END {print "itlb cyc/miss: ", icyc/imiss/3.3, " dtlb cyc/miss: ", dcyc/dmiss/3.3, " ----- ", icyc,imiss, dcyc,dmiss }' itlb ns/miss: 9.45338 dtlb ns/miss: 12.9716 Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: http://lkml.kernel.org/r/20140731154103.10C1115E@viggo.jf.intel.com Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-07-31x86/mm: New tunable for single vs full TLB flushDave Hansen
Most of the logic here is in the documentation file. Please take a look at it. I know we've come full-circle here back to a tunable, but this new one is *WAY* simpler. I challenge anyone to describe in one sentence how the old one worked. Here's the way the new one works: If we are flushing more pages than the ceiling, we use the full flush, otherwise we use per-page flushes. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: http://lkml.kernel.org/r/20140731154101.12B52CAF@viggo.jf.intel.com Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-07-31x86/mm: Add tracepoints for TLB flushesDave Hansen
We don't have any good way to figure out what kinds of flushes are being attempted. Right now, we can try to use the vm counters, but those only tell us what we actually did with the hardware (one-by-one vs full) and don't tell us what was actually _requested_. This allows us to select out "interesting" TLB flushes that we might want to optimize (like the ranged ones) and ignore the ones that we have very little control over (the ones at context switch). Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: http://lkml.kernel.org/r/20140731154059.4C96CBA5@viggo.jf.intel.com Acked-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-07-31x86/mm: Unify remote INVLPG codeDave Hansen
There are currently three paths through the remote flush code: 1. full invalidation 2. single page invalidation using invlpg 3. ranged invalidation using invlpg This takes 2 and 3 and combines them in to a single path by making the single-page one just be the start and end be start plus a single page. This makes placement of our tracepoint easier. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: http://lkml.kernel.org/r/20140731154058.E0F90408@viggo.jf.intel.com Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-07-31x86/mm: Fix missed global TLB flush statDave Hansen
If we take the if (end == TLB_FLUSH_ALL || vmflag & VM_HUGETLB) { local_flush_tlb(); goto out; } path out of flush_tlb_mm_range(), we will have flushed the tlb, but not incremented NR_TLB_LOCAL_FLUSH_ALL. This unifies the way out of the function so that we always take a single path when doing a full tlb flush. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: http://lkml.kernel.org/r/20140731154056.FF763B76@viggo.jf.intel.com Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-07-31x86/mm: Rip out complicated, out-of-date, buggy TLB flushingDave Hansen
I think the flush_tlb_mm_range() code that tries to tune the flush sizes based on the CPU needs to get ripped out for several reasons: 1. It is obviously buggy. It uses mm->total_vm to judge the task's footprint in the TLB. It should certainly be using some measure of RSS, *NOT* ->total_vm since only resident memory can populate the TLB. 2. Haswell, and several other CPUs are missing from the intel_tlb_flushall_shift_set() function. Thus, it has been demonstrated to bitrot quickly in practice. 3. It is plain wrong in my vm: [ 0.037444] Last level iTLB entries: 4KB 0, 2MB 0, 4MB 0 [ 0.037444] Last level dTLB entries: 4KB 0, 2MB 0, 4MB 0 [ 0.037444] tlb_flushall_shift: 6 Which leads to it to never use invlpg. 4. The assumptions about TLB refill costs are wrong: http://lkml.kernel.org/r/1337782555-8088-3-git-send-email-alex.shi@intel.com (more on this in later patches) 5. I can not reproduce the original data: https://lkml.org/lkml/2012/5/17/59 I believe the sample times were too short. Running the benchmark in a loop yields times that vary quite a bit. Note that this leaves us with a static ceiling of 1 page. This is a conservative, dumb setting, and will be revised in a later patch. This also removes the code which attempts to predict whether we are flushing data or instructions. We expect instruction flushes to be relatively rare and not worth tuning for explicitly. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: http://lkml.kernel.org/r/20140731154055.ABC88E89@viggo.jf.intel.com Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-07-31x86/mm: Clean up the TLB flushing codeDave Hansen
The if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids) line of code is not exactly the easiest to audit, especially when it ends up at two different indentation levels. This eliminates one of the the copy-n-paste versions. It also gives us a unified exit point for each path through this function. We need this in a minute for our tracepoint. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: http://lkml.kernel.org/r/20140731154054.44F1CDDC@viggo.jf.intel.com Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-06-12Merge branch 'perf-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull more perf updates from Ingo Molnar: "A second round of perf updates: - wide reaching kprobes sanitization and robustization, with the hope of fixing all 'probe this function crashes the kernel' bugs, by Masami Hiramatsu. - uprobes updates from Oleg Nesterov: tmpfs support, corner case fixes and robustization work. - perf tooling updates and fixes from Jiri Olsa, Namhyung Ki, Arnaldo et al: * Add support to accumulate hist periods (Namhyung Kim) * various fixes, refactorings and enhancements" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits) perf: Differentiate exec() and non-exec() comm events perf: Fix perf_event_comm() vs. exec() assumption uprobes/x86: Rename arch_uprobe->def to ->defparam, minor comment updates perf/documentation: Add description for conditional branch filter perf/x86: Add conditional branch filtering support perf/tool: Add conditional branch filter 'cond' to perf record perf: Add new conditional branch filter 'PERF_SAMPLE_BRANCH_COND' uprobes: Teach copy_insn() to support tmpfs uprobes: Shift ->readpage check from __copy_insn() to uprobe_register() perf/x86: Use common PMU interrupt disabled code perf/ARM: Use common PMU interrupt disabled code perf: Disable sampled events if no PMU interrupt perf: Fix use after free in perf_remove_from_context() perf tools: Fix 'make help' message error perf record: Fix poll return value propagation perf tools: Move elide bool into perf_hpp_fmt struct perf tools: Remove elide setup for SORT_MODE__MEMORY mode perf tools: Fix "==" into "=" in ui_browser__warning assignment perf tools: Allow overriding sysfs and proc finding with env var perf tools: Consider header files outside perf directory in tags target ...
2014-06-11x86/smep: Be more informative when signalling an SMEP faultJiri Kosina
If pagefault triggers due to SMEP triggering, it can't be really easily distinguished from any other oops-causing pagefault, which might lead to quite some confusion when trying to understand the reason for the oops. Print an explanatory message in case the fault happened during instruction fetch for _PAGE_USER page which is present and executable on SMEP-enabled CPUs. This is consistent with what we are doing for NX already; in addition to immediately seeing from the oops what might be happening, it can even easily give a good indication to sysadmins who are carefully monitoring their kernel logs that someone might be trying to pwn them. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Link: http://lkml.kernel.org/r/alpine.LNX.2.00.1406102248490.1321@pobox.suse.cz Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-06-05Merge branch 'x86/vdso' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into next Pull x86 cdso updates from Peter Anvin: "Vdso cleanups and improvements largely from Andy Lutomirski. This makes the vdso a lot less ''special''" * 'x86/vdso' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/vdso, build: Make LE access macros clearer, host-safe x86/vdso, build: Fix cross-compilation from big-endian architectures x86/vdso, build: When vdso2c fails, unlink the output x86, vdso: Fix an OOPS accessing the HPET mapping w/o an HPET x86, mm: Replace arch_vma_name with vm_ops->name for vsyscalls x86, mm: Improve _install_special_mapping and fix x86 vdso naming mm, fs: Add vm_ops->name as an alternative to arch_vma_name x86, vdso: Fix an OOPS accessing the HPET mapping w/o an HPET x86, vdso: Remove vestiges of VDSO_PRELINK and some outdated comments x86, vdso: Move the vvar and hpet mappings next to the 64-bit vDSO x86, vdso: Move the 32-bit vdso special pages after the text x86, vdso: Reimplement vdso.so preparation in build-time C x86, vdso: Move syscall and sysenter setup into kernel/cpu/common.c x86, vdso: Clean up 32-bit vs 64-bit vdso params x86, mm: Ensure correct alignment of the fixmap
2014-06-05Merge branch 'x86/espfix' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into next Pull x86-64 espfix changes from Peter Anvin: "This is the espfix64 code, which fixes the IRET information leak as well as the associated functionality problem. With this code applied, 16-bit stack segments finally work as intended even on a 64-bit kernel. Consequently, this patchset also removes the runtime option that we added as an interim measure. To help the people working on Linux kernels for very small systems, this patchset also makes these compile-time configurable features" * 'x86/espfix' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: Revert "x86-64, modify_ldt: Make support for 16-bit segments a runtime option" x86, espfix: Make it possible to disable 16-bit support x86, espfix: Make espfix64 a Kconfig option, fix UML x86, espfix: Fix broken header guard x86, espfix: Move espfix definitions into a separate header file x86-32, espfix: Remove filter for espfix32 due to race x86-64, espfix: Don't leak bits 31:16 of %esp returning to 16-bit stack
2014-06-04arch/x86/mm/numa.c: use for_each_memblock()Emil Medve
Signed-off-by: Emil Medve <Emilian.Medve@Freescale.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04x86, mm: probe memory block size for generic x86 64bitYinghai Lu
On system with 2TiB ram, current x86_64 have 128M as section size, and one memory_block only include one section. So will have 16400 entries under /sys/devices/system/memory/. Current code try to use block id to find block pointer in /sys for any section, and reuse that block pointer. that finding will take some time even after commit 7c243c7168dc ("mm: speedup in __early_pfn_to_nid") that will skip the search in that case during booting up. So solution could be increase block size just like SGI UV system did. (harded code to 2g). This patch is trying to probe the block size to make it match mmio remap size. for example, Intel Nehalem later system will have memory range [0, TOML), [4g, TOMH]. If the memory hole is 2g and total is 128g, TOM will be 2g, and TOM2 will be 130g. We could use 2g as block size instead of default 128M. That will reduce number of entries in /sys/devices/system/memory/ On system 6TiB system will reduce boot time by 35 seconds. Signed-off-by: Yinghai Lu <yinghai@kernel.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04x86: define _PAGE_NUMA by reusing software bits on the PMD and PTE levelsMel Gorman
_PAGE_NUMA is currently an alias of _PROT_PROTNONE to trap NUMA hinting faults on x86. Care is taken such that _PAGE_NUMA is used only in situations where the VMA flags distinguish between NUMA hinting faults and prot_none faults. This decision was x86-specific and conceptually it is difficult requiring special casing to distinguish between PROTNONE and NUMA ptes based on context. Fundamentally, we only need the _PAGE_NUMA bit to tell the difference between an entry that is really unmapped and a page that is protected for NUMA hinting faults as if the PTE is not present then a fault will be trapped. Swap PTEs on x86-64 use the bits after _PAGE_GLOBAL for the offset. This patch shrinks the maximum possible swap size and uses the bit to uniquely distinguish between NUMA hinting ptes and swap ptes. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Anvin <hpa@zytor.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Steven Noonan <steven@uplinklabs.net> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04hugetlb: restrict hugepage_migration_support() to x86_64Naoya Horiguchi
Currently hugepage migration is available for all archs which support pmd-level hugepage, but testing is done only for x86_64 and there're bugs for other archs. So to avoid breaking such archs, this patch limits the availability strictly to x86_64 until developers of other archs get interested in enabling this feature. Simply disabling hugepage migration on non-x86_64 archs is not enough to fix the reported problem where sys_move_pages() hits the BUG_ON() in follow_page(FOLL_GET), so let's fix this by checking if hugepage migration is supported in vma_migratable(). Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Michael Ellerman <mpe@ellerman.id.au> Tested-by: Michael Ellerman <mpe@ellerman.id.au> Acked-by: Hugh Dickins <hughd@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: James Hogan <james.hogan@imgtec.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Miller <davem@davemloft.net> Cc: <stable@vger.kernel.org> [3.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-21Merge remote-tracking branch 'origin/x86/espfix' into x86/vdsoH. Peter Anvin
Merge x86/espfix into x86/vdso, due to changes in the vdso setup code that otherwise cause conflicts. Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-20x86, mm: Replace arch_vma_name with vm_ops->name for vsyscallsAndy Lutomirski
This removes the last vestiges of arch_vma_name from x86, replacing it with vm_ops->name. Good riddance. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/e681cb56096eee5b8b8767093a4f6fb82839f0a4.1400538962.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-20x86, mm: Improve _install_special_mapping and fix x86 vdso namingAndy Lutomirski
Using arch_vma_name to give special mappings a name is awkward. x86 currently implements it by comparing the start address of the vma to the expected address of the vdso. This requires tracking the start address of special mappings and is probably buggy if a special vma is split or moved. Improve _install_special_mapping to just name the vma directly. Use it to give the x86 vvar area a name, which should make CRIU's life easier. As a side effect, the vvar area will show up in core dumps. This could be considered weird and is fixable. [hpa: I say we accept this as-is but be prepared to deal with knocking out the vvars from core dumps if this becomes a problem.] Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/276b39b6b645fb11e345457b503f17b83c2c6fd0.1400538962.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-05x86, vdso: Move the vvar and hpet mappings next to the 64-bit vDSOAndy Lutomirski
This makes the 64-bit and x32 vdsos use the same mechanism as the 32-bit vdso. Most of the churn is deleting all the old fixmap code. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/8af87023f57f6bb96ec8d17fce3f88018195b49b.1399317206.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-05x86, vdso: Reimplement vdso.so preparation in build-time CAndy Lutomirski
Currently, vdso.so files are prepared and analyzed by a combination of objcopy, nm, some linker script tricks, and some simple ELF parsers in the kernel. Replace all of that with plain C code that runs at build time. All five vdso images now generate .c files that are compiled and linked in to the kernel image. This should cause only one userspace-visible change: the loaded vDSO images are stripped more heavily than they used to be. Everything outside the loadable segment is dropped. In particular, this causes the section table and section name strings to be missing. This should be fine: real dynamic loaders don't load or inspect these tables anyway. The result is roughly equivalent to eu-strip's --strip-sections option. The purpose of this change is to enable the vvar and hpet mappings to be moved to the page following the vDSO load segment. Currently, it is possible for the section table to extend into the page after the load segment, so, if we map it, it risks overlapping the vvar or hpet page. This happens whenever the load segment is just under a multiple of PAGE_SIZE. The only real subtlety here is that the old code had a C file with inline assembler that did 'call VDSO32_vsyscall' and a linker script that defined 'VDSO32_vsyscall = __kernel_vsyscall'. This most likely worked by accident: the linker script entry defines a symbol associated with an address as opposed to an alias for the real dynamic symbol __kernel_vsyscall. That caused ld to relocate the reference at link time instead of leaving an interposable dynamic relocation. Since the VDSO32_vsyscall hack is no longer needed, I now use 'call __kernel_vsyscall', and I added -Bsymbolic to make it work. vdso2c will generate an error and abort the build if the resulting image contains any dynamic relocations, so we won't silently generate bad vdso images. (Dynamic relocations are a problem because nothing will even attempt to relocate the vdso.) Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/2c4fcf45524162a34d87fdda1eb046b2a5cecee7.1399317206.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-05x86, mm: Ensure correct alignment of the fixmapAndy Lutomirski
The early_ioremap code requires that its buffers not span a PMD boundary. The logic for ensuring that only works if the fixmap is aligned, so assert that it's aligned correctly. To make this work reliably, reserve_top_address needs to be adjusted. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/e59a5f4362661f75dd4841fa74e1f2448045e245.1399317206.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-05-02x86, ioremap: Speed up check for RAM pagesRoland Dreier
In __ioremap_caller() (the guts of ioremap), we loop over the range of pfns being remapped and checks each one individually with page_is_ram(). For large ioremaps, this can be very slow. For example, we have a device with a 256 GiB PCI BAR, and ioremapping this BAR can take 20+ seconds -- sometimes long enough to trigger the soft lockup detector! Internally, page_is_ram() calls walk_system_ram_range() on a single page. Instead, we can make a single call to walk_system_ram_range() from __ioremap_caller(), and do our further checks only for any RAM pages that we find. For the common case of MMIO, this saves an enormous amount of work, since the range being ioremapped doesn't intersect system RAM at all. With this change, ioremap on our 256 GiB BAR takes less than 1 second. Signed-off-by: Roland Dreier <roland@purestorage.com> Link: http://lkml.kernel.org/r/1399054721-1331-1-git-send-email-roland@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-04-30x86-64, espfix: Don't leak bits 31:16 of %esp returning to 16-bit stackH. Peter Anvin
The IRET instruction, when returning to a 16-bit segment, only restores the bottom 16 bits of the user space stack pointer. This causes some 16-bit software to break, but it also leaks kernel state to user space. We have a software workaround for that ("espfix") for the 32-bit kernel, but it relies on a nonzero stack segment base which is not available in 64-bit mode. In checkin: b3b42ac2cbae x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernels we "solved" this by forbidding 16-bit segments on 64-bit kernels, with the logic that 16-bit support is crippled on 64-bit kernels anyway (no V86 support), but it turns out that people are doing stuff like running old Win16 binaries under Wine and expect it to work. This works around this by creating percpu "ministacks", each of which is mapped 2^16 times 64K apart. When we detect that the return SS is on the LDT, we copy the IRET frame to the ministack and use the relevant alias to return to userspace. The ministacks are mapped readonly, so if IRET faults we promote #GP to #DF which is an IST vector and thus has its own stack; we then do the fixup in the #DF handler. (Making #GP an IST exception would make the msr_safe functions unsafe in NMI/MC context, and quite possibly have other effects.) Special thanks to: - Andy Lutomirski, for the suggestion of using very small stack slots and copy (as opposed to map) the IRET frame there, and for the suggestion to mark them readonly and let the fault promote to #DF. - Konrad Wilk for paravirt fixup and testing. - Borislav Petkov for testing help and useful comments. Reported-by: Brian Gerst <brgerst@gmail.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/1398816946-3351-1-git-send-email-hpa@linux.intel.com Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andrew Lutomriski <amluto@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dirk Hohndel <dirk@hohndel.org> Cc: Arjan van de Ven <arjan.van.de.ven@intel.com> Cc: comex <comexk@gmail.com> Cc: Alexander van Heukelum <heukelum@fastmail.fm> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: <stable@vger.kernel.org> # consider after upstream merge
2014-04-24kprobes, x86: Use NOKPROBE_SYMBOL() instead of __kprobes annotationMasami Hiramatsu
Use NOKPROBE_SYMBOL macro for protecting functions from kprobes instead of __kprobes annotation under arch/x86. This applies nokprobe_inline annotation for some cases, because NOKPROBE_SYMBOL() will inhibit inlining by referring the symbol address. This just folds a bunch of previous NOKPROBE_SYMBOL() cleanup patches for x86 to one patch. Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com> Link: http://lkml.kernel.org/r/20140417081814.26341.51656.stgit@ltc230.yrl.intra.hitachi.co.jp Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fernando Luis Vázquez Cao <fernando_b1@lab.ntt.co.jp> Cc: Gleb Natapov <gleb@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Jesper Nilsson <jesper.nilsson@axis.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Jiri Slaby <jslaby@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Lebon <jlebon@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Matt Fleming <matt.fleming@intel.com> Cc: Michel Lespinasse <walken@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Cc: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vineet Gupta <vgupta@synopsys.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-16x86/mm: In the PTE swapout page reclaim case clear the accessed bit instead ↵Shaohua Li
of flushing the TLB We use the accessed bit to age a page at page reclaim time, and currently we also flush the TLB when doing so. But in some workloads TLB flush overhead is very heavy. In my simple multithreaded app with a lot of swap to several pcie SSDs, removing the tlb flush gives about 20% ~ 30% swapout speedup. Fortunately just removing the TLB flush is a valid optimization: on x86 CPUs, clearing the accessed bit without a TLB flush doesn't cause data corruption. It could cause incorrect page aging and the (mistaken) reclaim of hot pages, but the chance of that should be relatively low. So as a performance optimization don't flush the TLB when clearing the accessed bit, it will eventually be flushed by a context switch or a VM operation anyway. [ In the rare event of it not getting flushed for a long time the delay shouldn't really matter because there's no real memory pressure for swapout to react to. ] Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Shaohua Li <shli@fusionio.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: linux-mm@kvack.org Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20140408075809.GA1764@kernel.org [ Rewrote the changelog and the code comments. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-08arch/x86/mm/kmemcheck/kmemcheck.c: use kstrtoint() instead of sscanf()David Rientjes
Kmemcheck should use the preferred interface for parsing command line arguments, kstrto*(), rather than sscanf() itself. Use it appropriately. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Vegard Nossum <vegardno@ifi.uio.no> Acked-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07x86: use generic early_ioremapMark Salter
Move x86 over to the generic early ioremap implementation. Signed-off-by: Mark Salter <msalter@redhat.com> Acked-by: H. Peter Anvin <hpa@zytor.com> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Young <dyoung@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07x86/mm: sparse warning fix for early_memremapDave Young
This patch series takes the common bits from the x86 early ioremap implementation and creates a generic implementation which may be used by other architectures. The early ioremap interfaces are intended for situations where boot code needs to make temporary virtual mappings before the normal ioremap interfaces are available. Typically, this means before paging_init() has run. This patch (of 6): There's a lot of sparse warnings for code like below: void *a = early_memremap(phys_addr, size); early_memremap intend to map kernel memory with ioremap facility, the return pointer should be a kernel ram pointer instead of iomem one. For making the function clearer and supressing sparse warnings this patch do below two things: 1. cast to (__force void *) for the return value of early_memremap 2. add early_memunmap function and pass (__force void __iomem *) to iounmap From Boris: "Ingo told me yesterday, it makes sense too. I'd guess we can try it. FWIW, all callers of early_memremap use the memory they get remapped as normal memory so we should be safe" Signed-off-by: Dave Young <dyoung@redhat.com> Signed-off-by: Mark Salter <msalter@redhat.com> Acked-by: H. Peter Anvin <hpa@zytor.com> Cc: Borislav Petkov <borislav.petkov@amd.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-02Merge branch 'x86-nuke-platforms-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 old platform removal from Peter Anvin: "This patchset removes support for several completely obsolete platforms, where the maintainers either have completely vanished or acked the removal. For some of them it is questionable if there even exists functional specimens of the hardware" Geert Uytterhoeven apparently thought this was a April Fool's pull request ;) * 'x86-nuke-platforms-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86, platforms: Remove NUMAQ x86, platforms: Remove SGI Visual Workstation x86, apic: Remove support for IBM Summit/EXA chipset x86, apic: Remove support for ia32-based Unisys ES7000
2014-04-01Merge branch 'x86-mm-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 mm change from Ingo Molnar: "A micro-optimization for acpi_numa_slit_init()" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm: Avoid duplicated pxm_to_node() calls
2014-03-31Merge branch 'x86-efi-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 EFI changes from Ingo Molnar: "The main changes: - Add debug code to the dump EFI pagetable - Borislav Petkov - Make 1:1 runtime mapping robust when booting on machines with lots of memory - Borislav Petkov - Move the EFI facilities bits out of 'x86_efi_facility' and into efi.flags which is the standard architecture independent place to keep EFI state, by Matt Fleming. - Add 'EFI mixed mode' support: this allows 64-bit kernels to be booted from 32-bit firmware. This needs a bootloader that supports the 'EFI handover protocol'. By Matt Fleming" * 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (31 commits) x86, efi: Abstract x86 efi_early calls x86/efi: Restore 'attr' argument to query_variable_info() x86/efi: Rip out phys_efi_get_time() x86/efi: Preserve segment registers in mixed mode x86/boot: Fix non-EFI build x86, tools: Fix up compiler warnings x86/efi: Re-disable interrupts after calling firmware services x86/boot: Don't overwrite cr4 when enabling PAE x86/efi: Wire up CONFIG_EFI_MIXED x86/efi: Add mixed runtime services support x86/efi: Firmware agnostic handover entry points x86/efi: Split the boot stub into 32/64 code paths x86/efi: Add early thunk code to go from 64-bit to 32-bit x86/efi: Build our own EFI services pointer table efi: Add separate 32-bit/64-bit definitions x86/efi: Delete dead code when checking for non-native x86/mm/pageattr: Always dump the right page table in an oops x86, tools: Consolidate #ifdef code x86/boot: Cleanup header.S by removing some #ifdefs efi: Use NULL instead of 0 for pointer ...
2014-03-31Merge branch 'x86-cpu-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpu handling changes from Ingo Molnar: "Bigger changes: - Intel CPU hardware-enablement: new vector instructions support (AVX-512), by Fenghua Yu. - Support the clflushopt instruction and use it in appropriate places. clflushopt is similar to clflush but with more relaxed ordering, by Ross Zwisler. - MSR accessor cleanups, by Borislav Petkov. - 'forcepae' boot flag for those who have way too much time to spend on way too old Pentium-M systems and want to live way too dangerously, by Chris Bainbridge" * 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86, cpu: Add forcepae parameter for booting PAE kernels on PAE-disabled Pentium M Rename TAINT_UNSAFE_SMP to TAINT_CPU_OUT_OF_SPEC x86, intel: Make MSR_IA32_MISC_ENABLE bit constants systematic x86, Intel: Convert to the new bit access MSR accessors x86, AMD: Convert to the new bit access MSR accessors x86: Add another set of MSR accessor functions x86: Use clflushopt in drm_clflush_virt_range x86: Use clflushopt in drm_clflush_page x86: Use clflushopt in clflush_cache_range x86: Add support for the clflushopt instruction x86, AVX-512: Enable AVX-512 States Context Switch x86, AVX-512: AVX-512 Feature Detection
2014-03-13x86, pageattr: Correct WBINVD spelling in commentBorislav Petkov
It is WBINVD, for INValiDate and not "wbindv". Use caps for instruction names, while at it. Signed-off-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1394633584-5509-4-git-send-email-bp@alien8.de Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-03-06x86, trace: Further robustify CR2 handling vs tracingPeter Zijlstra
Building on commit 0ac09f9f8cd1 ("x86, trace: Fix CR2 corruption when tracing page faults") this patch addresses another few issues: - Now that read_cr2() is lifted into trace_do_page_fault(), we should pass the address to trace_page_fault_entries() to avoid it re-reading a potentially changed cr2. - Put both trace_do_page_fault() and trace_page_fault_entries() under CONFIG_TRACING. - Mark both fault entry functions {,trace_}do_page_fault() as notrace to avoid getting __mcount or other function entry trace callbacks before we've observed CR2. - Mark __do_page_fault() as noinline to guarantee the function tracer does get to see the fault. Cc: <jolsa@redhat.com> Cc: <vincent.weaver@maine.edu> Acked-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20140306145300.GO9987@twins.programming.kicks-ass.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-03-05Merge remote-tracking branch 'tip/x86/efi-mixed' into efi-for-mingoMatt Fleming
Conflicts: arch/x86/kernel/setup.c arch/x86/platform/efi/efi.c arch/x86/platform/efi/efi_64.c
2014-03-05Merge remote-tracking branch 'tip/x86/urgent' into efi-for-mingoMatt Fleming
Conflicts: arch/x86/include/asm/efi.h
2014-03-04x86, trace: Fix CR2 corruption when tracing page faultsJiri Olsa
The trace_do_page_fault function trigger tracepoint and then handles the actual page fault. This could lead to error if the tracepoint caused page fault. The original cr2 value gets lost and the original page fault handler kills current process with SIGSEGV. This happens if you record page faults with callchain data, the user part of it will cause tracepoint handler to page fault: # perf record -g -e exceptions:page_fault_user ls Fixing this by saving the original cr2 value and using it after tracepoint handler is done. v2: Moving the cr2 read before exception_enter, because it could trigger tracepoint as well. Reported-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Reported-by: Vince Weaver <vincent.weaver@maine.edu> Tested-by: Vince Weaver <vincent.weaver@maine.edu> Acked-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Seiji Aguchi <seiji.aguchi@hds.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1402211701380.6395@vincent-weaver-1.um.maine.edu Link: http://lkml.kernel.org/r/20140228160526.GD1133@krava.brq.redhat.com
2014-03-04x86/mm/pageattr: Always dump the right page table in an oopsMatt Fleming
Now that we have EFI-specific page tables we need to lookup the pgd when dumping those page tables, rather than assuming that swapper_pgdir is the current pgdir. Remove the double underscore prefix, which is usually reserved for static functions. Acked-by: Borislav Petkov <bp@suse.de> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-03-04x86, pageattr: Export page unmapping interfaceBorislav Petkov
We will use it in efi so expose it. Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-03-04x86, ptdump: Add the functionality to dump an arbitrary pagetableBorislav Petkov
With reusing the ->trampoline_pgd page table for mapping EFI regions in order to use them after having switched to EFI virtual mode, it is very useful to be able to dump aforementioned page table in dmesg. This adds that functionality through the walk_pgd_level() interface which can be called from somewhere else. The original functionality of dumping to debugfs remains untouched. Cc: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com>
2014-02-27x86: Use clflushopt in clflush_cache_rangeRoss Zwisler
If clflushopt is available on the system, use it instead of clflush in clflush_cache_range. Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Link: http://lkml.kernel.org/r/1393441612-19729-3-git-send-email-ross.zwisler@linux.intel.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2014-02-27x86, platforms: Remove NUMAQH. Peter Anvin
The NUMAQ support seems to be unmaintained, remove it. Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: David Rientjes <rientjes@google.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/n/530CFD6C.7040705@zytor.com
2014-02-13x86, smap: smap_violation() is bogus if CONFIG_X86_SMAP is offH. Peter Anvin
If CONFIG_X86_SMAP is disabled, smap_violation() tests for conditions which are incorrect (as the AC flag doesn't matter), causing spurious faults. The dynamic disabling of SMAP (nosmap on the command line) is fine because it disables X86_FEATURE_SMAP, therefore causing the static_cpu_has() to return false. Found by Fengguang Wu's test system. [ v3: move all predicates into smap_violation() ] [ v2: use IS_ENABLED() instead of #ifdef ] Reported-by: Fengguang Wu <fengguang.wu@intel.com> Link: http://lkml.kernel.org/r/20140213124550.GA30497@localhost Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Cc: <stable@vger.kernel.org> # v3.7+