Age | Commit message (Collapse) | Author |
|
This patch attempts to fix:
https://bugzilla.kernel.org/show_bug.cgi?id=56461
The symptom is a crash and messages like this:
chrome: Corrupted page table at address 34a03000
*pdpt = 0000000000000000 *pde = 0000000000000000
Bad pagetable: 000f [#1] PREEMPT SMP
Ingo guesses this got introduced by commit 611ae8e3f520 ("x86/tlb:
enable tlb flush range support for x86") since that code started to free
unused pagetables.
On x86-32 PAE kernels, that new code has the potential to free an entire
PMD page and will clear one of the four page-directory-pointer-table
(aka pgd_t entries).
The hardware aggressively "caches" these top-level entries and invlpg
does not actually affect the CPU's copy. If we clear one we *HAVE* to
do a full TLB flush, otherwise we might continue using a freed pmd page.
(note, we do this properly on the population side in pud_populate()).
This patch tracks whenever we clear one of these entries in the 'struct
mmu_gather', and ensures that we follow up with a full tlb flush.
BTW, I disassembled and checked that:
if (tlb->fullmm == 0)
and
if (!tlb->fullmm && !tlb->need_flush_all)
generate essentially the same code, so there should be zero impact there
to the !PAE case.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Artem S Tashkinov <t.artem@mailcity.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Implement pcibios_{add|remove}_bus() hooks for x86 platforms.
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Signed-off-by: Yijing Wang <wangyijing@huawei.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Yinghai Lu <yinghai@kernel.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Myron Stowe <myron.stowe@redhat.com>
|
|
The last users of FIX_CYCLONE_TIMER were removed in v2.6.18. We
can remove this unneeded constant.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Link: http://lkml.kernel.org/r/1365698982.1427.3.camel@x61.thuisdomein
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When CONFIG_DEBUG_PAGEALLOC is set page table updates made by
kernel_map_pages() are not made visible (via TLB flush)
immediately if lazy MMU is on. In environments that support lazy
MMU (e.g. Xen) this may lead to fatal page faults, for example,
when zap_pte_range() needs to allocate pages in
__tlb_remove_page() -> tlb_next_batch().
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: konrad.wilk@oracle.com
Link: http://lkml.kernel.org/r/1365703192-2089-1-git-send-email-boris.ostrovsky@oracle.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
If the pmd is not present, _PAGE_PSE will not be set anymore.
Fix the false positive.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Stefan Bader <stefan.bader@canonical.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/1365687369-30802-1-git-send-email-aarcange@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
We check the TSS descriptor before we try to dereference it.
Also we document what the value '9' actually means using the
AMD64 Architecture Programmer's Manual Volume 2, pg 90:
"Hex value 9: Available 64-bit TSS" and pg 91:
"The available 32-bit TSS (09h), which is redefined as the
available 64-bit TSS."
Without this, on Xen, where the GDT is available as R/O (to
protect the hypervisor from the guest modifying it), we end up
with a pagetable fault.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: http://lkml.kernel.org/r/1365194544-14648-5-git-send-email-konrad.wilk@oracle.com
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
The two use-cases where we needed to store the GDT were during ACPI S3 suspend
and resume. As the patches:
x86/gdt/i386: store/load GDT for ACPI S3 or hibernation/resume path is not needed
x86/gdt/64-bit: store/load GDT for ACPI S3 or hibernate/resume path is not needed.
have demonstrated - there are other mechanism by which the GDT is
saved and reloaded during early resume path.
Hence we do not need to worry about the pvops call-chain for saving the
GDT and can and can eliminate it. The other areas where the store_gdt is
used are never going to be hit when running under the pvops platforms.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: http://lkml.kernel.org/r/1365194544-14648-4-git-send-email-konrad.wilk@oracle.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
During the ACPI S3 suspend, we store the GDT in the wakup_header (see
wakeup_asm.s) field called 'pmode_gdt'.
Which is then used during the resume path and has the same exact
value as what the store/load_gdt do with the saved_context
(which is saved/restored via save/restore_processor_state()).
The flow during resume from ACPI S3 is simpler than the 64-bit
counterpart. We only use the early bootstrap once (wakeup_gdt) and
do various checks in real mode.
After the checks are completed, we load the saved GDT ('pmode_gdt') and
continue on with the resume (by heading to startup_32 in trampoline_32.S) -
which quickly jumps to what was saved in 'pmode_entry'
aka 'wakeup_pmode_return'.
The 'wakeup_pmode_return' restores the GDT (saved_gdt) again (which was
saved in do_suspend_lowlevel initially). After that it ends up calling
the 'ret_point' which calls 'restore_processor_state()'.
We have two opportunities to remove code where we restore the same GDT
twice.
Here is the call chain:
wakeup_start
|- lgdtl wakeup_gdt [the work-around broken BIOSes]
|
| - lgdtl pmode_gdt [the real one]
|
\-- startup_32 (in trampoline_32.S)
\-- wakeup_pmode_return (in wakeup_32.S)
|- lgdtl saved_gdt [the real one]
\-- ret_point
|..
|- call restore_processor_state
The hibernate path is much simpler. During the saving of the hibernation
image we call save_processor_state() and save the contents of that
along with the rest of the kernel in the hibernation image destination.
We save the EIP of 'restore_registers' (restore_jump_address) and
cr3 (restore_cr3).
During hibernate resume, the 'restore_registers' (via the
'restore_jump_address) in hibernate_asm_32.S is invoked which
restores the contents of most registers. Naturally the resume path benefits
from already being in 32-bit mode, so it does not have to reload the GDT.
It only reloads the cr3 (from restore_cr3) and continues on. Note
that the restoration of the restore image page-tables is done prior to
this.
After the 'restore_registers' it returns and we end up called
restore_processor_state() - where we reload the GDT. The reload of
the GDT is not needed as bootup kernel has already loaded the GDT
which is at the same physical location as the the restored kernel.
Note that the hibernation path assumes the GDT is correct during its
'restore_registers'. The assumption in the code is that the restored
image is the same as saved - meaning we are not trying to restore
an different kernel in the virtual address space of a new kernel.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: http://lkml.kernel.org/r/1365194544-14648-3-git-send-email-konrad.wilk@oracle.com
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
During the ACPI S3 resume path the trampoline code handles it already.
During the ACPI S3 suspend phase (acpi_suspend_lowlevel) we set:
early_gdt_descr.address = (..)get_cpu_gdt_table(smp_processor_id());
which is then used during the resume path and has the same exact
value as what the store/load_gdt do with the saved_context
(which is saved/restored via save/restore_processor_state()).
The flow during resume is complex and for 64-bit kernels we use three GDTs
- one early bootstrap GDT (wakeup_igdt) that we load to workaround
broken BIOSes, an early Protected Mode to Long Mode transition one
(tr_gdt), and the final one - early_gdt_descr (which points to the real GDT).
The early ('wakeup_gdt') is loaded in 'trampoline_start' for working
around broken BIOSes, and then when we end up in Protected Mode in the
startup_32 (in trampoline_64.s, not head_32.s) we use the 'tr_gdt'
(still in trampoline_64.s). This 'tr_gdt' has a a 32-bit code segment,
64-bit code segment with L=1, and a 32-bit data segment.
Once we have transitioned from Protected Mode to Long Mode we then
set the GDT to 'early_gdt_desc' and then via an iretq emerge in
wakeup_long64 (set via 'initial_code' variable in acpi_suspend_lowlevel).
In the wakeup_long64 we end up restoring the %rip (which is set to
'resume_point') and jump there.
In 'resume_point' we call 'restore_processor_state' which does
the load_gdt on the saved context. This load_gdt is redundant as the
GDT loaded via early_gdt_desc is the same.
Here is the call-chain:
wakeup_start
|- lgdtl wakeup_gdt [the work-around broken BIOSes]
|
\-- trampoline_start (trampoline_64.S)
|- lgdtl tr_gdt
|
\-- startup_32 (trampoline_64.S)
|
\-- startup_64 (trampoline_64.S)
|
\-- secondary_startup_64
|- lgdtl early_gdt_desc
| ...
|- movq initial_code(%rip), %eax
|-.. lretq
\-- wakeup_64
|-- other registers are reloaded
|-- call restore_processor_state
The hibernate path is much simpler. During the saving of the hibernation
image we call save_processor_state() and save the contents of that along
with the rest of the kernel in the hibernation image destination.
We save the EIP of 'restore_registers' (restore_jump_address) and cr3
(restore_cr3).
During hibernate resume, the 'restore_registers' (via the
'restore_jump_address) in hibernate_asm_64.S is invoked which restores
the contents of most registers. Naturally the resume path benefits from
already being in 64-bit mode, so it does not have to load the GDT.
It only reloads the cr3 (from restore_cr3) and continues on. Note that
the restoration of the restore image page-tables is done prior to this.
After the 'restore_registers' it returns and we end up called
restore_processor_state() - where we reload the GDT. The reload of
the GDT is not needed as bootup kernel has already loaded the GDT which
is at the same physical location as the the restored kernel.
Note that the hibernation path assumes the GDT is correct during its
'restore_registers'. The assumption in the code is that the restored
image is the same as saved - meaning we are not trying to restore
an different kernel in the virtual address space of a new kernel.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Link: http://lkml.kernel.org/r/1365194544-14648-2-git-send-email-konrad.wilk@oracle.com
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Make a copy of the IDT (as seen via the "sidt" instruction) read-only.
This primarily removes the IDT from being a target for arbitrary memory
write attacks, and has the added benefit of also not leaking the kernel
base offset, if it has been relocated.
We already did this on vendor == Intel and family == 5 because of the
F0 0F bug -- regardless of if a particular CPU had the F0 0F bug or
not. Since the workaround was so cheap, there simply was no reason to
be very specific. This patch extends the readonly alias to all CPUs,
but does not activate the #PF to #UD conversion code needed to deliver
the proper exception in the F0 0F case except on Intel family 5
processors.
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/20130410192422.GA17344@www.outflux.net
Cc: Eric Northup <digitaleric@google.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Some EFI implementations return always a MaximumVariableSize of 0,
check against max_size only if it is non-zero.
My Intel DQ67SW desktop board has such an implementation.
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
This fixes a regression introduced in commit 03ebebeb1 ("KVM: x86
emulator: Leave segment limit and attributs alone in real mode").
The mentioned commit changed the segment descriptors for both real mode
and VM86 to only update the segment base instead of creating a
completely new descriptor with limit 0xffff so that unreal mode keeps
working across a segment register reload.
This leads to an invalid segment descriptor in the eyes of VMX, which
seems to be okay for real mode because KVM will fix it up before the
next VM entry or emulate the state, but it doesn't do this if the guest
is in VM86, so we end up with:
KVM: entry failed, hardware error 0x80000021
Fix this by effectively reverting commit 03ebebeb1 for VM86 and leaving
it only in place for real mode, which is where it's really needed.
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
|
|
Commit:
a8aed3e0752b ("x86/mm/pageattr: Prevent PSE and GLOABL leftovers to confuse pmd/pte_present and pmd_huge")
introduced a valid fix but one location that didn't trigger the bug that
lead to finding those (small) problems, wasn't updated using the
right variable.
The wrong variable was also initialized for no good reason, that
may have been the source of the confusion. Remove the noop
initialization accordingly.
Commit a8aed3e0752b also erroneously removed one canon_pgprot pass meant
to clear pmd bitflags not supported in hardware by older CPUs, that
automatically gets corrected by this patch too by applying it to the right
variable in the new location.
Reported-by: Stefan Bader <stefan.bader@canonical.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1365600505-19314-1-git-send-email-aarcange@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen
Pull Xen fixes from Konrad Rzeszutek Wilk:
"Two bug-fixes:
- Early bootup issue found on DL380 machines
- Fix for the timer interrupt not being processed right awaym leading
to quite delayed time skew on certain workloads"
* tag 'stable/for-linus-3.9-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
xen/mmu: On early bootup, flush the TLB when changing RO->RW bits Xen provided pagetables.
xen/events: Handle VIRQ_TIMER before any other hardirq in event loop.
|
|
Invoking arch_flush_lazy_mmu_mode() results in calls to
preempt_enable()/disable() which may have performance impact.
Since lazy MMU is not used on bare metal we can patch away
arch_flush_lazy_mmu_mode() so that it is never called in such
environment.
[ hpa: the previous patch "Fix vmalloc_fault oops during lazy MMU
updates" may cause a minor performance regression on
bare metal. This patch resolves that performance regression. It is
somewhat unclear to me if this is a good -stable candidate. ]
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: http://lkml.kernel.org/r/1364045796-10720-2-git-send-email-konrad.wilk@oracle.com
Tested-by: Josh Boyer <jwboyer@redhat.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: <stable@vger.kernel.org> SEE NOTE ABOVE
|
|
In paravirtualized x86_64 kernels, vmalloc_fault may cause an oops
when lazy MMU updates are enabled, because set_pgd effects are being
deferred.
One instance of this problem is during process mm cleanup with memory
cgroups enabled. The chain of events is as follows:
- zap_pte_range enables lazy MMU updates
- zap_pte_range eventually calls mem_cgroup_charge_statistics,
which accesses the vmalloc'd mem_cgroup per-cpu stat area
- vmalloc_fault is triggered which tries to sync the corresponding
PGD entry with set_pgd, but the update is deferred
- vmalloc_fault oopses due to a mismatch in the PUD entries
The OOPs usually looks as so:
------------[ cut here ]------------
kernel BUG at arch/x86/mm/fault.c:396!
invalid opcode: 0000 [#1] SMP
.. snip ..
CPU 1
Pid: 10866, comm: httpd Not tainted 3.6.10-4.fc18.x86_64 #1
RIP: e030:[<ffffffff816271bf>] [<ffffffff816271bf>] vmalloc_fault+0x11f/0x208
.. snip ..
Call Trace:
[<ffffffff81627759>] do_page_fault+0x399/0x4b0
[<ffffffff81004f4c>] ? xen_mc_extend_args+0xec/0x110
[<ffffffff81624065>] page_fault+0x25/0x30
[<ffffffff81184d03>] ? mem_cgroup_charge_statistics.isra.13+0x13/0x50
[<ffffffff81186f78>] __mem_cgroup_uncharge_common+0xd8/0x350
[<ffffffff8118aac7>] mem_cgroup_uncharge_page+0x57/0x60
[<ffffffff8115fbc0>] page_remove_rmap+0xe0/0x150
[<ffffffff8115311a>] ? vm_normal_page+0x1a/0x80
[<ffffffff81153e61>] unmap_single_vma+0x531/0x870
[<ffffffff81154962>] unmap_vmas+0x52/0xa0
[<ffffffff81007442>] ? pte_mfn_to_pfn+0x72/0x100
[<ffffffff8115c8f8>] exit_mmap+0x98/0x170
[<ffffffff810050d9>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81059ce3>] mmput+0x83/0xf0
[<ffffffff810624c4>] exit_mm+0x104/0x130
[<ffffffff8106264a>] do_exit+0x15a/0x8c0
[<ffffffff810630ff>] do_group_exit+0x3f/0xa0
[<ffffffff81063177>] sys_exit_group+0x17/0x20
[<ffffffff8162bae9>] system_call_fastpath+0x16/0x1b
Calling arch_flush_lazy_mmu_mode immediately after set_pgd makes the
changes visible to the consistency checks.
Cc: <stable@vger.kernel.org>
RedHat-Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=914737
Tested-by: Josh Boyer <jwboyer@redhat.com>
Reported-and-Tested-by: Krishna Raman <kraman@redhat.com>
Signed-off-by: Samu Kallio <samu.kallio@aberdeencloud.com>
Link: http://lkml.kernel.org/r/1364045796-10720-1-git-send-email-konrad.wilk@oracle.com
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Minor. Reordered a few lines to lose a superfluous OR operation.
Signed-off-by: Martin Bundgaard <martin@mindflux.org>
Link: http://lkml.kernel.org/r/1363286075-62615-1-git-send-email-martin@mindflux.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Add CYCLE_ACTIVITY.CYCLES_NO_DISPATCH/CYCLES_L1D_PENDING constraints.
These recently documented events have restrictions to counter
0-3 and counter 2 respectively. The perf scheduler needs to know
that to schedule them correctly.
IvyBridge already has the necessary constraints.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: a.p.zijlstra@chello.nl
Cc: Stephane Eranian <eranian@google.com>
Link: http://lkml.kernel.org/r/1362784968-12542-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
CONFIG_INVLPG got removed in commit
094ab1db7cb7833cd4c820acd868fc26acf3f08e ("x86, 386 removal:
Remove CONFIG_INVLPG").
That commit left one instance of CONFIG_INVLPG untouched, effectively
disabling DEBUG_TLBFLUSH for X86_32. Since all currently supported
x86 CPUs should now be able to support that option, just drop the entire
sub-dependency.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Link: http://lkml.kernel.org/r/1363262077.1335.71.camel@x61.thuisdomein
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The Kconfig symbol ARCH_HAS_DEFAULT_IDLE is unused. Commit
a0bfa1373859e9d11dc92561a8667588803e42d8 ("cpuidle: stop
depending on pm_idle") removed the only place were it was
actually used. But it did not remove its Kconfig entries (for sh
and x86). Remove those two entries now.
Signed-off-by: Paul Bolle <pebolle@tiscali.nl>
Cc: Len Brown <len.brown@intel.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Link: http://lkml.kernel.org/r/1363869683.1390.134.camel@x61.thuisdomein
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
So basically we're generating the pte_t * from a struct page and
we're handing it down to the __split_large_page() internal version
which then goes and gets back struct page * from it because it
needs it.
Change the caller to hand down struct page * directly and the
callee can compute the pte_t itself.
Net save is one virt_to_page() call and simpler code. While at
it, make __split_large_page() static.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1363886217-24703-1-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
governor
Future AMD processors, starting with Family 16h, can provide software
with feedback on how the workload may respond to frequency change --
memory-bound workloads will not benefit from higher frequency, where
as compute-bound workloads will. This patch enables this "frequency
sensitivity feedback" to aid the ondemand governor to make better
frequency change decisions by hooking into the powersave bias.
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Acked-by: Thomas Renninger <trenn@suse.de>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Let's not burden ia64 with checks in the common efivars code that we're not
writing too much data to the variable store. That kind of thing is an x86
firmware bug, plain and simple.
efi_query_variable_store() provides platforms with a wrapper in which they can
perform checks and workarounds for EFI variable storage bugs.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ras/ras into x86/ras
Pull clean up of the cmci_rediscover code to fix problems found by Dave Jones,
from Tony Luck.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130321215235.486594473@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
|
|
Move it to a common place. Preparatory patch for implementing
set/clear for the idle need_resched poll implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Cc: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Magnus Damm <magnus.damm@gmail.com>
Link: http://lkml.kernel.org/r/20130321215233.446034505@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Return an error from __copy_instruction() and use printk() to
give us a more productive message, since this is just an error
case which we can handle and also the BUG_ON() never tells us
why and what happened.
This is related to the following bug-report:
https://bugzilla.redhat.com/show_bug.cgi?id=910649
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Frank Ch. Eigler <fche@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: yrl.pp-manager.tt@hitachi.com
Link: http://lkml.kernel.org/r/20130404104230.22862.85242.stgit@mhiramat-M0-7522
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The variable kvm_rebooting is a common kvm variable, so move its
declaration from arch/x86/include/asm/kvm_host.h to
include/asm/kvm_host.h.
Fixes this sparse warning when building on arm64:
virt/kvm/kvm_main.c:warning: symbol 'kvm_rebooting' was not declared. Should it be static?
Signed-off-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
|
|
The routine kvm_spurious_fault() is an x86 specific routine, so
move it from virt/kvm/kvm_main.c to arch/x86/kvm/x86.c.
Fixes this sparse warning when building on arm64:
virt/kvm/kvm_main.c:warning: symbol 'kvm_spurious_fault' was not declared. Should it be static?
Signed-off-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
|
|
The variables vm_list and kvm_lock are common to all architectures, so
move the declarations from arch/x86/include/asm/kvm_host.h to
include/linux/kvm_host.h.
Fixes sparse warnings like these when building for arm64:
virt/kvm/kvm_main.c: warning: symbol 'kvm_lock' was not declared. Should it be static?
virt/kvm/kvm_main.c: warning: symbol 'vm_list' was not declared. Should it be static?
Signed-off-by: Geoff Levand <geoff@infradead.org>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
|
|
The code was already properly aligned, now also add the braces to avoid
that err is checked even if alloc_apic_access_page didn't run and change
it. Found via Coccinelle by Fengguang Wu.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rric/oprofile into perf/core
Pull IBM zEnterprise EC12 support patchlet from Robert Richter.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Free vmx_msr_bitmap_longmode_x2apic and vmx_msr_bitmap_longmode if
kvm_init() fails.
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
|
|
Pull KVM fix from Gleb Natapov:
"Bugfix for the regression introduced by commit c300aa64ddf5"
* git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: Allow cross page reads and writes from cached translations.
|
|
Obviously a copy&paste mistake: prepare_vmcs12 has to check L1's exit
controls for VM_EXIT_SAVE_IA32_PAT.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
|
|
For a given vcpu, kvm_apic_match_dest() will tell you whether
the vcpu in the destination list quickly. Drop kvm_calculate_eoi_exitmap()
and use kvm_apic_match_dest() instead.
Signed-off-by: Yang Zhang <yang.z.zhang@Intel.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
|
|
With the following commit, shadow pages can be zapped at random during
a shadow page talbe walk:
KVM: MMU: Move kvm_mmu_free_some_pages() into kvm_mmu_alloc_page()
7ddca7e43c8f28f9419da81a0e7730b66aa60fe9
This patch reverts it and fixes __direct_map() and FNAME(fetch)().
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
|
|
This patch adds support for kvm_gfn_to_hva_cache_init functions for
reads and writes that will cross a page. If the range falls within
the same memslot, then this will be a fast operation. If the range
is split between two memslots, then the slower kvm_read_guest and
kvm_write_guest are used.
Tested: Test against kvm_clock unit tests.
Signed-off-by: Andrew Honig <ahonig@google.com>
Signed-off-by: Gleb Natapov <gleb@redhat.com>
|
|
eboot.o and efi_stub_$(BITS).o didn't get added to "targets", and hence
their .cmd files don't get included by the build machinery, leading to
the files always getting rebuilt.
Rather than adding the two files individually, take the opportunity and
add $(VMLINUX_OBJS) to "targets" instead, thus allowing the assignment
at the top of the file to be shrunk quite a bit.
At the same time, remove a pointless flags override line - the variable
assigned to was misspelled anyway, and the options added are
meaningless for assembly sources.
[ hpa: the patch is not minimal, but I am taking it for -urgent anyway
since the excess impact of the patch seems to be small enough. ]
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Link: http://lkml.kernel.org/r/515C5D2502000078000CA6AD@nat28.tlf.novell.com
Cc: Matthew Garrett <mjg@redhat.com>
Cc: Matt Fleming <matt.fleming@intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
git://git.linaro.org/people/jstultz/linux into timers/core
|
|
Provides SHA256 x86_64 assembly routine optimized with SSE, AVX and
AVX2's RORX instructions. Speedup of 70% or more has been
measured over the generic implementation.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Provides SHA256 x86_64 assembly routine optimized with SSE and AVX instructions.
Speedup of 60% or more has been measured over the generic implementation.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
SSE3 instructions.
Provides SHA256 x86_64 assembly routine optimized with SSSE3 instructions.
Speedup of 40% or more has been measured over the generic implementation.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
supports AVX instructions
These modules require AVX support in assembler, so add new check to Makefile
for this.
Other option would be to use CONFIG_AS_AVX inside source files, but that would
result dummy/empty/no-fuctionality modules being created.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
So gcc nags about those since forever in randconfig builds.
arch/x86/kernel/quirks.c: In function ‘ati_ixp4x0_rev’:
arch/x86/kernel/quirks.c:361:4: warning: ‘b’ is used uninitialized in this function [-Wuninitialized]
arch/x86/kernel/quirks.c: In function ‘ati_force_enable_hpet’:
arch/x86/kernel/quirks.c:367:4: warning: ‘d’ may be used uninitialized in this function [-Wuninitialized]
arch/x86/kernel/quirks.c:357:6: note: ‘d’ was declared here
arch/x86/kernel/quirks.c:407:21: warning: ‘val’ may be used uninitialized in this function [-Wuninitialized]
This function quirk is called on a SB400 chipset only anyway so the
distant possibility of a PCI access failing becomes almost impossible
there. Even if it did fail, then something else more serious is the
problem.
So zero-out the variables so that gcc shuts up but do a coarse check
on the PCI accesses at the end and signal whether any of them had an
error. They shouldn't but in case they do, we'll at least know and we
can address it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1362428180-8865-6-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Make sure all MSR-accessing primitives which split MSR values in
two 32-bit parts have their variables called 'low' and 'high' for
consistence with the rest of the code and for ease of staring.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1362428180-8865-5-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
We have KERNEL_IMAGE_START and __START_KERNEL_map which both contain the
start of the kernel text mapping's virtual address. Remove the prior one
which has been replicated a lot less times around the tree.
No functionality change.
Signed-off-by: Borislav Petkov <bp@alien8.de>
Link: http://lkml.kernel.org/r/1362428180-8865-3-git-send-email-bp@alien8.de
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Commit fca460f95e928bae373daa8295877b6905bc62b8 simplified the x32
implementation by creating a syscall bitmask, equal to 0x40000000, that
could be applied to x32 syscalls such that the masked syscall number
would be the same as a x86_64 syscall. While that patch was a nice
way to simplify the code, it went a bit too far by adding the mask to
syscall_get_nr(); returning the masked syscall numbers can cause
confusion with callers that expect syscall numbers matching the x32
ABI, e.g. unmasked syscall numbers.
This patch fixes this by simply removing the mask from syscall_get_nr()
while preserving the other changes from the original commit. While
there are several syscall_get_nr() callers in the kernel, most simply
check that the syscall number is greater than zero, in this case this
patch will have no effect. Of those remaining callers, they appear
to be few, seccomp and ftrace, and from my testing of seccomp without
this patch the original commit definitely breaks things; the seccomp
filter does not correctly filter the syscalls due to the difference in
syscall numbers in the BPF filter and the value from syscall_get_nr().
Applying this patch restores the seccomp BPF filter functionality on
x32.
I've tested this patch with the seccomp BPF filters as well as ftrace
and everything looks reasonable to me; needless to say general usage
seemed fine as well.
Signed-off-by: Paul Moore <pmoore@redhat.com>
Link: http://lkml.kernel.org/r/20130215172143.12549.10292.stgit@localhost
Cc: <stable@vger.kernel.org>
Cc: Will Drewry <wad@chromium.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Dave Jones reports that offlining a CPU leads to this trace:
numa_remove_cpu cpu 1 node 0: mask now 0,2-3
smpboot: CPU 1 is now offline
BUG: using smp_processor_id() in preemptible [00000000] code:
cpu-offline.sh/10591
caller is cmci_rediscover+0x6a/0xe0
Pid: 10591, comm: cpu-offline.sh Not tainted 3.9.0-rc3+ #2
Call Trace:
[<ffffffff81333bbd>] debug_smp_processor_id+0xdd/0x100
[<ffffffff8101edba>] cmci_rediscover+0x6a/0xe0
[<ffffffff815f5b9f>] mce_cpu_callback+0x19d/0x1ae
[<ffffffff8160ea66>] notifier_call_chain+0x66/0x150
[<ffffffff8107ad7e>] __raw_notifier_call_chain+0xe/0x10
[<ffffffff8104c2e3>] cpu_notify+0x23/0x50
[<ffffffff8104c31e>] cpu_notify_nofail+0xe/0x20
[<ffffffff815ef082>] _cpu_down+0x302/0x350
[<ffffffff815ef106>] cpu_down+0x36/0x50
[<ffffffff815f1c9d>] store_online+0x8d/0xd0
[<ffffffff813edc48>] dev_attr_store+0x18/0x30
[<ffffffff81226eeb>] sysfs_write_file+0xdb/0x150
[<ffffffff811adfb2>] vfs_write+0xa2/0x170
[<ffffffff811ae16c>] sys_write+0x4c/0xa0
[<ffffffff81613019>] system_call_fastpath+0x16/0x1b
However, a look at cmci_rediscover shows that it can be simplified quite
a bit, apart from solving the above issue. It invokes functions that
take spin locks with interrupts disabled, and hence it can run in atomic
context. Also, it is run in the CPU_POST_DEAD phase, so the dying CPU
is already dead and out of the cpu_online_mask. So take these points into
account and simplify the code, and thereby also fix the above issue.
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
|