Age | Commit message (Collapse) | Author |
|
Instead of littering main() with #ifdef CONFIG_EFI_STUB, move the logic
into separate functions that do nothing if the config option isn't set.
This makes main() much easier to read.
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
handover_offset is now filled out by build.c. Don't set a default value
as it will be overwritten anyway.
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
This patch removes the IRQF_DISABLED flag from x86 architecture
code. It's a NOOP since 2.6.35 and it will be removed one day.
Signed-off-by: Michael Opdenacker <michael.opdenacker@free-electrons.com>
Cc: venki@google.com
Link: http://lkml.kernel.org/r/1393965305-17248-1-git-send-email-michael.opdenacker@free-electrons.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The vmbus/hyperv interrupt handling is another complete trainwreck and
probably the worst of all currently in tree.
If CONFIG_HYPERV=y then the interrupt delivery to the vmbus happens
via the direct HYPERVISOR_CALLBACK_VECTOR. So far so good, but:
The driver requests first a normal device interrupt. The only reason
to do so is to increment the interrupt stats of that device
interrupt. For no reason it also installs a private flow handler.
We have proper accounting mechanisms for direct vectors, but of
course it's too much effort to add that 5 lines of code.
Aside of that the alloc_intr_gate() is not protected against
reallocation which makes module reload impossible.
Solution to the problem is simple to rip out the whole mess and
implement it correctly.
First of all move all that code to arch/x86/kernel/cpu/mshyperv.c and
merily install the HYPERVISOR_CALLBACK_VECTOR with proper reallocation
protection and use the proper direct vector accounting mechanism.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: linuxdrivers <devel@linuxdriverproject.org>
Cc: x86 <x86@kernel.org>
Link: http://lkml.kernel.org/r/20140223212739.028307673@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
HyperV abuses a device interrupt to account for the
HYPERVISOR_CALLBACK_VECTOR.
Provide proper accounting as we have for the other vectors as well.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: x86 <x86@kernel.org>
Link: http://lkml.kernel.org/r/20140223212738.681855582@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Let the core do the irq_desc resolution.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xen <xen-devel@lists.xenproject.org>
Cc: x86 <x86@kernel.org>
Link: http://lkml.kernel.org/r/20140223212737.869264085@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
... into a kexec flavor for better code readability and simplicity. The
original one was getting ugly with ifdeffery.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Currently, running SetVirtualAddressMap() and passing the physical
address of the virtual map array was working only by a lucky coincidence
because the memory was present in the EFI page table too. Until Toshi
went and booted this on a big HP box - the krealloc() manner of resizing
the memmap we're doing did allocate from such physical addresses which
were not mapped anymore and boom:
http://lkml.kernel.org/r/1386806463.1791.295.camel@misato.fc.hp.com
One way to take care of that issue is to reimplement the krealloc thing
but with pages. We start with contiguous pages of order 1, i.e. 2 pages,
and when we deplete that memory (shouldn't happen all that often but you
know firmware) we realloc the next power-of-two pages.
Having the pages, it is much more handy and easy to map them into the
EFI page table with the already existing mapping code which we're using
for building the virtual mappings.
Thanks to Toshi Kani and Matt for the great debugging help.
Reported-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
We will use it in efi so expose it.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
This is very useful for debugging issues with the recently added
pagetable switching code for EFI virtual mode.
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
With reusing the ->trampoline_pgd page table for mapping EFI regions in
order to use them after having switched to EFI virtual mode, it is very
useful to be able to dump aforementioned page table in dmesg. This adds
that functionality through the walk_pgd_level() interface which can be
called from somewhere else.
The original functionality of dumping to debugfs remains untouched.
Cc: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Coalesce formats and remove spaces before tabs.
Move __initdata after the variable declaration.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
For now we only ensure about 5kb free space for avoiding our board
refusing boot. But the comment lies that we retain 50% space.
Signed-off-by: Madper Xie <cxie@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
It makes more sense to set the feature flag in the success path of the
detection function than it does to rely on the caller doing it. Apart
from it being more logical to group the code and data together, it sets
a much better example for new EFI architectures.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
As we grow support for more EFI architectures they're going to want the
ability to query which EFI features are available on the running system.
Instead of storing this information in an architecture-specific place,
stick it in the global 'struct efi', which is already the central
location for EFI state.
While we're at it, let's change the return value of efi_enabled() to be
bool and replace all references to 'facility' with 'feature', which is
the usual word used to describe the attributes of the running system.
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/maz/arm-platforms into kvm-next
|
|
commit 0061d53daf26f introduced a mechanism to execute a global clock
update for a vm. We can apply this periodically in order to propagate
host NTP corrections. Also, if all vcpus of a vm are pinned, then
without an additional trigger, no guest NTP corrections can propagate
either, as the current trigger is only vcpu cpu migration.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When we update a vcpu's local clock it may pick up an NTP correction.
We can't wait an indeterminate amount of time for other vcpus to pick
up that correction, so commit 0061d53daf26f introduced a global clock
update. However, we can't request a global clock update on every vcpu
load either (which is what happens if the tsc is marked as unstable).
The solution is to rate-limit the global clock updates. Marcelo
calculated that we should delay the global clock updates no more
than 0.1s as follows:
Assume an NTP correction c is applied to one vcpu, but not the other,
then in n seconds the delta of the vcpu system_timestamps will be
c * n. If we assume a correction of 500ppm (worst-case), then the two
vcpus will diverge 50us in 0.1s, which is a considerable amount.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
For architecture dependent compat syscalls in common code an architecture
must define something like __ARCH_WANT_<WHATEVER> if it wants to use the
code.
This however is not true for compat_sys_getdents64 for which architectures
must define __ARCH_OMIT_COMPAT_SYS_GETDENTS64 if they do not want the code.
This leads to the situation where all architectures, except mips, get the
compat code but only x86_64, arm64 and the generic syscall architectures
actually use it.
So invert the logic, so that architectures actively must do something to
get the compat code.
This way a couple of architectures get rid of otherwise dead code.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
If a failure occurs while modifying ftrace function, it bails out and will
remove the tracepoints to be back to what the code originally was.
There is missing the final sync run across the CPUs after the fix up is done
and before the ftrace int3 handler flag is reset.
Here's the description of the problem:
CPU0 CPU1
---- ----
remove_breakpoint();
modifying_ftrace_code = 0;
[still sees breakpoint]
<takes trap>
[sees modifying_ftrace_code as zero]
[no breakpoint handler]
[goto failed case]
[trap exception - kernel breakpoint, no
handler]
BUG()
Link: http://lkml.kernel.org/r/1393258342-29978-2-git-send-email-pmladek@suse.cz
Fixes: 8a4d0a687a5 "ftrace: Use breakpoint method to update ftrace caller"
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Petr Mladek <pmladek@suse.cz>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
|
If a failure occurs while enabling a trace, it bails out and will remove
the tracepoints to be back to what the code originally was. But the fix
up had some bugs in it. By injecting a failure in the code, the fix up
ran to completion, but shortly afterward the system rebooted.
There was two bugs here.
The first was that there was no final sync run across the CPUs after the
fix up was done, and before the ftrace int3 handler flag was reset. That
means that other CPUs could still see the breakpoint and trigger on it
long after the flag was cleared, and the int3 handler would think it was
a spurious interrupt. Worse yet, the int3 handler could hit other breakpoints
because the ftrace int3 handler flag would have prevented the int3 handler
from going further.
Here's a description of the issue:
CPU0 CPU1
---- ----
remove_breakpoint();
modifying_ftrace_code = 0;
[still sees breakpoint]
<takes trap>
[sees modifying_ftrace_code as zero]
[no breakpoint handler]
[goto failed case]
[trap exception - kernel breakpoint, no
handler]
BUG()
The second bug was that the removal of the breakpoints required the
"within()" logic updates instead of accessing the ip address directly.
As the kernel text is mapped read-only when CONFIG_DEBUG_RODATA is set, and
the removal of the breakpoint is a modification of the kernel text.
The ftrace_write() includes the "within()" logic, where as, the
probe_kernel_write() does not. This prevented the breakpoint from being
removed at all.
Link: http://lkml.kernel.org/r/1392650573-3390-1-git-send-email-pmladek@suse.cz
Reported-by: Petr Mladek <pmladek@suse.cz>
Tested-by: Petr Mladek <pmladek@suse.cz>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
|
Commit e504c9098ed6 (kvm, vmx: Fix lazy FPU on nested guest, 2013-11-13)
highlighted a real problem, but the fix was subtly wrong.
nested_read_cr0 is the CR0 as read by L2, but here we want to look at
the CR0 value reflecting L1's setup. In other words, L2 might think
that TS=0 (so nested_read_cr0 has the bit clear); but if L1 is actually
running it with TS=1, we should inject the fault into L1.
The effective value of CR0 in L2 is contained in vmcs12->guest_cr0, use
it.
Fixes: e504c9098ed6acd9e1079c5e10e4910724ad429f
Reported-by: Kashyap Chamarty <kchamart@redhat.com>
Reported-by: Stefan Bader <stefan.bader@canonical.com>
Tested-by: Kashyap Chamarty <kchamart@redhat.com>
Tested-by: Anthoine Bourgeois <bourgeois@bertin.fr>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
We want the fixes in here.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
"Misc fixes, most of them on the tooling side"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf tools: Fix strict alias issue for find_first_bit
perf tools: fix BFD detection on opensuse
perf: Fix hotplug splat
perf/x86: Fix event scheduling
perf symbols: Destroy unused symsrcs
perf annotate: Check availability of annotate when processing samples
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Peter Anvin:
"The VMCOREINFO patch I'll pushing for this release to avoid having a
release with kASLR and but without that information.
I was hoping to include the FPU patches from Suresh, but ran into a
problem (see other thread); will try to make them happen next week"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, kaslr: add missed "static" declarations
x86, kaslr: export offset in VMCOREINFO ELF notes
|
|
Pull KVM fixes from Paolo Bonzini:
"Three x86 fixes and one for ARM/ARM64.
In particular, nested virtualization on Intel is broken in 3.13 and
fixed by this pull request"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm, vmx: Really fix lazy FPU on nested guest
kvm: x86: fix emulator buffer overflow (CVE-2014-0049)
arm/arm64: KVM: detect CPU reset on CPU_PM_EXIT
KVM: MMU: drop read-only large sptes when creating lower level sptes
|
|
Commit e504c9098ed6 (kvm, vmx: Fix lazy FPU on nested guest, 2013-11-13)
highlighted a real problem, but the fix was subtly wrong.
nested_read_cr0 is the CR0 as read by L2, but here we want to look at
the CR0 value reflecting L1's setup. In other words, L2 might think
that TS=0 (so nested_read_cr0 has the bit clear); but if L1 is actually
running it with TS=1, we should inject the fault into L1.
The effective value of CR0 in L2 is contained in vmcs12->guest_cr0, use
it.
Fixes: e504c9098ed6acd9e1079c5e10e4910724ad429f
Reported-by: Kashyap Chamarty <kchamart@redhat.com>
Reported-by: Stefan Bader <stefan.bader@canonical.com>
Tested-by: Kashyap Chamarty <kchamart@redhat.com>
Tested-by: Anthoine Bourgeois <bourgeois@bertin.fr>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The problem occurs when the guest performs a pusha with the stack
address pointing to an mmio address (or an invalid guest physical
address) to start with, but then extending into an ordinary guest
physical address. When doing repeated emulated pushes
emulator_read_write sets mmio_needed to 1 on the first one. On a
later push when the stack points to regular memory,
mmio_nr_fragments is set to 0, but mmio_is_needed is not set to 0.
As a result, KVM exits to userspace, and then returns to
complete_emulated_mmio. In complete_emulated_mmio
vcpu->mmio_cur_fragment is incremented. The termination condition of
vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments is never achieved.
The code bounces back and fourth to userspace incrementing
mmio_cur_fragment past it's buffer. If the guest does nothing else it
eventually leads to a a crash on a memcpy from invalid memory address.
However if a guest code can cause the vm to be destroyed in another
vcpu with excellent timing, then kvm_clear_async_pf_completion_queue
can be used by the guest to control the data that's pointed to by the
call to cancel_work_item, which can be used to gain execution.
Fixes: f78146b0f9230765c6315b2e14f56112513389ad
Signed-off-by: Andrew Honig <ahonig@google.com>
Cc: stable@vger.kernel.org (3.5+)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
No need to scan the entire VCPU array.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Extend ECC decoding support for F16h M30h. Tested on F16h M30h with ECC
turned on using mce_amd_inj module and the patch works fine.
Signed-off-by: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Link: http://lkml.kernel.org/r/1392913726-16961-1-git-send-email-Aravind.Gopalakrishnan@amd.com
Tested-by: Arindam Nath <Arindam.Nath@amd.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|
If we explicitly disable the use of CLFLUSH, we should disable the use
of CLFLUSHOPT as well.
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/n/tip-jtdv7btppr4jgzxm3sxx1e74@git.kernel.org
|
|
We call this "clflush" in /proc/cpuinfo, and have
cpu_has_clflush()... let's be consistent and just call it that.
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alan Cox <alan@linux.intel.com>
Link: http://lkml.kernel.org/n/tip-mlytfzjkvuf739okyn40p8a5@git.kernel.org
|
|
If clflushopt is available on the system, use it instead of clflush in
clflush_cache_range.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Link: http://lkml.kernel.org/r/1393441612-19729-3-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Add support for the new clflushopt instruction. This instruction was
announced in the document "Intel Architecture Instruction Set Extensions
Programming Reference" with Ref # 319433-018.
http://download-software.intel.com/sites/default/files/managed/50/1a/319433-018.pdf
[ hpa: changed the feature flag to simply X86_FEATURE_CLFLUSHOPT - if
that is what we want to report in /proc/cpuinfo anyway... ]
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Link: http://lkml.kernel.org/r/1393441612-19729-2-git-send-email-ross.zwisler@linux.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
The NUMAQ support seems to be unmaintained, remove it.
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/n/530CFD6C.7040705@zytor.com
|
|
The SGI Visual Workstation seems to be dead; remove support so we
don't have to continue maintaining it.
Cc: Andrey Panin <pazke@donpac.ru>
Cc: Michael Reed <mdr@sgi.com>
Link: http://lkml.kernel.org/r/530CFD6C.7040705@zytor.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Add a few comments on the ->add(), ->del() and ->*_txn()
implementation.
Requested-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-he3819318c245j7t5e1e22tr@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Merge the latest fixes before queueing up new changes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Vince "Super Tester" Weaver reported a new round of syscall fuzzing (Trinity) failures,
with perf WARN_ON()s triggering. He also provided traces of the failures.
This is I think the relevant bit:
> pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_disable: x86_pmu_disable
> pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_state: Events: {
> pec_1076_warn-2804 [000] d... 147.926156: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null))
> pec_1076_warn-2804 [000] d... 147.926158: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800)
> pec_1076_warn-2804 [000] d... 147.926159: x86_pmu_state: }
> pec_1076_warn-2804 [000] d... 147.926160: x86_pmu_state: n_events: 1, n_added: 0, n_txn: 1
> pec_1076_warn-2804 [000] d... 147.926161: x86_pmu_state: Assignment: {
> pec_1076_warn-2804 [000] d... 147.926162: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800)
> pec_1076_warn-2804 [000] d... 147.926163: x86_pmu_state: }
> pec_1076_warn-2804 [000] d... 147.926166: collect_events: Adding event: 1 (ffff880119ec8800)
So we add the insn:p event (fd[23]).
At this point we should have:
n_events = 2, n_added = 1, n_txn = 1
> pec_1076_warn-2804 [000] d... 147.926170: collect_events: Adding event: 0 (ffff8800c9e01800)
> pec_1076_warn-2804 [000] d... 147.926172: collect_events: Adding event: 4 (ffff8800cbab2c00)
We try and add the {BP,cycles,br_insn} group (fd[3], fd[4], fd[15]).
These events are 0:cycles and 4:br_insn, the BP event isn't x86_pmu so
that's not visible.
group_sched_in()
pmu->start_txn() /* nop - BP pmu */
event_sched_in()
event->pmu->add()
So here we should end up with:
0: n_events = 3, n_added = 2, n_txn = 2
4: n_events = 4, n_added = 3, n_txn = 3
But seeing the below state on x86_pmu_enable(), the must have failed,
because the 0 and 4 events aren't there anymore.
Looking at group_sched_in(), since the BP is the leader, its
event_sched_in() must have succeeded, for otherwise we would not have
seen the sibling adds.
But since neither 0 or 4 are in the below state; their event_sched_in()
must have failed; but I don't see why, the complete state: 0,0,1:p,4
fits perfectly fine on a core2.
However, since we try and schedule 4 it means the 0 event must have
succeeded! Therefore the 4 event must have failed, its failure will
have put group_sched_in() into the fail path, which will call:
event_sched_out()
event->pmu->del()
on 0 and the BP event.
Now x86_pmu_del() will reduce n_events; but it will not reduce n_added;
giving what we see below:
n_event = 2, n_added = 2, n_txn = 2
> pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_enable: x86_pmu_enable
> pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_state: Events: {
> pec_1076_warn-2804 [000] d... 147.926179: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null))
> pec_1076_warn-2804 [000] d... 147.926181: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800)
> pec_1076_warn-2804 [000] d... 147.926182: x86_pmu_state: }
> pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: n_events: 2, n_added: 2, n_txn: 2
> pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: Assignment: {
> pec_1076_warn-2804 [000] d... 147.926186: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800)
> pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: 1->0 tag: 1 config: 1 (ffff880119ec8800)
> pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: }
> pec_1076_warn-2804 [000] d... 147.926190: x86_pmu_enable: S0: hwc->idx: 33, hwc->last_cpu: 0, hwc->last_tag: 1 hwc->state: 0
So the problem is that x86_pmu_del(), when called from a
group_sched_in() that fails (for whatever reason), and without x86_pmu
TXN support (because the leader is !x86_pmu), will corrupt the n_added
state.
Reported-and-Tested-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Dave Jones <davej@redhat.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20140221150312.GF3104@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
We checked "nbytes < bsize" before so it can't happen here.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Jussi Kivilinna <jussi.kivilinna@iki.fi>
Acked-by: Johannes Götzfried <johannes.goetzfried@cs.fau.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
Read-only large sptes can be created due to read-only faults as
follows:
- QEMU pagetable entry that maps guest memory is read-only
due to COW.
- Guest read faults such memory, COW is not broken, because
it is a read-only fault.
- Enable dirty logging, large spte not nuked because it is read-only.
- Write-fault on such memory causes guest to loop endlessly
(which must go down to level 1 because dirty logging is enabled).
Fix by dropping large spte when necessary.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
emulator_cmpxchg_emulated writes to guest memory, therefore it should
update the dirty bitmap accordingly.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Reviewed-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Randomize the load address of modules in the kernel to make kASLR
effective for modules. Modules can only be loaded within a particular
range of virtual address space. This patch adds 10 bits of entropy to
the load address by adding 1-1024 * PAGE_SIZE to the beginning range
where modules are loaded.
The single base offset was chosen because randomizing each module
load ends up wasting/fragmenting memory too much. Prior approaches to
minimizing fragmentation while doing randomization tend to result in
worse entropy than just doing a single base address offset.
Example kASLR boot without this change, with a single module loaded:
---[ Modules ]---
0xffffffffc0000000-0xffffffffc0001000 4K ro GLB x pte
0xffffffffc0001000-0xffffffffc0002000 4K ro GLB NX pte
0xffffffffc0002000-0xffffffffc0004000 8K RW GLB NX pte
0xffffffffc0004000-0xffffffffc0200000 2032K pte
0xffffffffc0200000-0xffffffffff000000 1006M pmd
---[ End Modules ]---
Example kASLR boot after this change, same module loaded:
---[ Modules ]---
0xffffffffc0000000-0xffffffffc0200000 2M pmd
0xffffffffc0200000-0xffffffffc03bf000 1788K pte
0xffffffffc03bf000-0xffffffffc03c0000 4K ro GLB x pte
0xffffffffc03c0000-0xffffffffc03c1000 4K ro GLB NX pte
0xffffffffc03c1000-0xffffffffc03c3000 8K RW GLB NX pte
0xffffffffc03c3000-0xffffffffc0400000 244K pte
0xffffffffc0400000-0xffffffffff000000 1004M pmd
---[ End Modules ]---
Signed-off-by: Andy Honig <ahonig@google.com>
Link: http://lkml.kernel.org/r/20140226005916.GA27083@www.outflux.net
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
This silences build warnings about unexported variables and functions.
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: http://lkml.kernel.org/r/20140209215644.GA30339@www.outflux.net
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Include kASLR offset in VMCOREINFO ELF notes to assist in debugging.
[ hpa: pushing this for v3.14 to avoid having a kernel version with
kASLR where we can't debug output. ]
Signed-off-by: Eugene Surovegin <surovegin@google.com>
Link: http://lkml.kernel.org/r/20140123173120.GA25474@www.outflux.net
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
From 44c2abca2c2eadc6f2f752b66de4acc8131880c4 Mon Sep 17 00:00:00 2001
From: Liu Jinsong <jinsong.liu@intel.com>
Date: Mon, 24 Feb 2014 18:12:31 +0800
Subject: [PATCH v5 3/3] KVM: x86: Enable Intel MPX for guest
This patch enable Intel MPX feature to guest.
Signed-off-by: Xudong Hao <xudong.hao@intel.com>
Signed-off-by: Liu Jinsong <jinsong.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
From 5d5a80cd172ea6fb51786369bcc23356b1e9e956 Mon Sep 17 00:00:00 2001
From: Liu Jinsong <jinsong.liu@intel.com>
Date: Mon, 24 Feb 2014 18:11:55 +0800
Subject: [PATCH v5 2/3] KVM: x86: add MSR_IA32_BNDCFGS to msrs_to_save
Add MSR_IA32_BNDCFGS to msrs_to_save, and corresponding logic
to kvm_get/set_msr().
Signed-off-by: Liu Jinsong <jinsong.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
From caddc009a6d2019034af8f2346b2fd37a81608d0 Mon Sep 17 00:00:00 2001
From: Liu Jinsong <jinsong.liu@intel.com>
Date: Mon, 24 Feb 2014 18:11:11 +0800
Subject: [PATCH v5 1/3] KVM: x86: Intel MPX vmx and msr handle
This patch handle vmx and msr of Intel MPX feature.
Signed-off-by: Xudong Hao <xudong.hao@intel.com>
Signed-off-by: Liu Jinsong <jinsong.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
- a bugfix which prevents a divide by 0 panic when the newly introduced
try_msr_calibrate_tsc() fails
- enablement of the Baytrail platform to utilize the newfangled msr
based calibration
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: tsc: Add missing Baytrail frequency to the table
x86, tsc: Fallback to normal calibration if fast MSR calibration fails
|