Age | Commit message (Collapse) | Author |
|
* pm-cpuidle:
drivers: cpuidle: initialize big.LITTLE driver through DT
drivers: cpuidle: CPU idle ARM64 driver
drivers: cpuidle: implement DT based idle states infrastructure
cpuidle: big.LITTLE: add Exynos5800 compatible string
cpuidle: Replace strnicmp with strncasecmp
arm64: add PSCI CPU_SUSPEND based cpu_suspend support
arm64: kernel: introduce cpu_init_idle CPU operation
arm64: kernel: refactor the CPU suspend API for retention states
Documentation: arm: define DT idle states bindings
|
|
* pm-domains: (32 commits)
PM / Domains: Rename cpu_data to cpuidle_data
PM / Domains: Move dev_pm_domain_attach|detach() to pm_domain.h
PM / Domains: Remove legacy API for adding devices through DT
PM / Domains: Add genpd attach/detach callbacks
PM / Domains: add debugfs listing of struct generic_pm_domain-s
ACPI / PM: Convert acpi_dev_pm_detach() into a static function
ARM: exynos: Move to generic PM domain DT bindings
amba: Add support for attach/detach of PM domains
spi: core: Convert to dev_pm_domain_attach|detach()
mmc: sdio: Convert to dev_pm_domain_attach|detach()
i2c: core: Convert to dev_pm_domain_attach|detach()
drivercore / platform: Convert to dev_pm_domain_attach|detach()
PM / Domains: Add APIs to attach/detach a PM domain for a device
PM / Domains: Add generic OF-based PM domain look-up
ACPI / PM: Assign the ->detach() callback when attaching the PM domain
PM / Domains: Add a detach callback to the struct dev_pm_domain
PM / domains: Spelling s/domian/domain/
PM / domains: Keep declaration of dev_power_governors together
PM / domains: Remove default_stop_ok() API
drivers: sh: Leave disabling of unused PM domains to genpd
...
|
|
* pm-genirq:
PM / genirq: Document rules related to system suspend and interrupts
PCI / PM: Make PCIe PME interrupts wake up from suspend-to-idle
x86 / PM: Set IRQCHIP_SKIP_SET_WAKE for IOAPIC IRQ chip objects
genirq: Simplify wakeup mechanism
genirq: Mark wakeup sources as armed on suspend
genirq: Create helper for flow handler entry check
genirq: Distangle edge handler entry
genirq: Avoid double loop on suspend
genirq: Move MASK_ON_SUSPEND handling into suspend_device_irqs()
genirq: Make use of pm misfeature accounting
genirq: Add sanity checks for PM options on shared interrupt lines
genirq: Move suspend/resume logic into irq/pm code
PM / sleep: Mechanism for aborting system suspends unconditionally
|
|
The NT flag doesn't do anything in long mode other than causing IRET
to #GP. Oddly, CPL3 code can still set NT using popf.
Entry via hardware or software interrupt clears NT automatically, so
the only relevant entries are fast syscalls.
If user code causes kernel code to run with NT set, then there's at
least some (small) chance that it could cause trouble. For example,
user code could cause a call to EFI code with NT set, and who knows
what would happen? Apparently some games on Wine sometimes do
this (!), and, if an IRET return happens, they will segfault. That
segfault cannot be handled, because signal delivery fails, too.
This patch programs the CPU to clear NT on entry via SYSCALL (both
32-bit and 64-bit, by my reading of the AMD APM), and it clears NT
in software on entry via SYSENTER.
To save a few cycles, this borrows a trick from Jan Beulich in Xen:
it checks whether NT is set before trying to clear it. As a result,
it seems to have very little effect on SYSENTER performance on my
machine.
There's another minor bug fix in here: it looks like the CFI
annotations were wrong if CONFIG_AUDITSYSCALL=n.
Testers beware: on Xen, SYSENTER with NT set turns into a GPF.
I haven't touched anything on 32-bit kernels.
The syscall mask change comes from a variant of this patch by Anish
Bhatt.
Note to stable maintainers: there is no known security issue here.
A misguided program can set NT and cause the kernel to try and fail
to deliver SIGSEGV, crashing the program. This patch fixes Far Cry
on Wine: https://bugs.winehq.org/show_bug.cgi?id=33275
Cc: <stable@vger.kernel.org>
Reported-by: Anish Bhatt <anish@chelsio.com>
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/395749a5d39a29bd3e4b35899cf3a3c1340e5595.1412189265.git.luto@amacapital.net
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
* pci/host-xgene:
arm64: dts: Add APM X-Gene PCIe device tree nodes
PCI: xgene: Add APM X-Gene PCIe driver
Conflicts:
drivers/pci/host/Kconfig
drivers/pci/host/Makefile
|
|
Add the device tree nodes for APM X-Gene PCIe host controller and PCIe
clock interface. Since X-Gene SOC supports maximum 5 ports, 5 dts nodes
are added.
Signed-off-by: Tanmay Inamdar <tinamdar@apm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
|
This fixes two bugs in PVH guests:
- Not setting EFER.NX means the NX bit in page table entries is
ignored on Intel processors and causes reserved bit page faults on
AMD processors.
- After the Xen commit 7645640d6ff1 ("x86/PVH: don't set EFER_SCE for
pvh guest") PVH guests are required to set EFER.SCE to enable the
SYSCALL instruction.
Secondary VCPUs are started with pagetables with the NX bit set so
EFER.NX must be set before using any stack or data segment.
xen_pvh_cpu_early_init() is the new secondary VCPU entry point that
sets EFER before jumping to cpu_bringup_and_idle().
Signed-off-by: Mukesh Rathor <mukesh.rathor@oracle.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
|
|
swapper_low_pmd_dir and swapper_pud_dir are actually completely
useless and unnecessary.
We just need swapper_pg_dir[]. Naturally the other page table chunks
will be allocated on an as-needed basis. Since the kernel actually
accesses these tables in the PAGE_OFFSET view, there is not even a TLB
locality advantage of placing them in the kernel image.
Use the hard coded vmlinux.ld.S slot for swapper_pg_dir which is
naturally page aligned.
Increase MAX_BANKS to 1024 in order to handle heavily fragmented
virtual guests.
Even with this MAX_BANKS increase, the kernel is 20K+ smaller.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
|
|
This patch attempts to do a few things. The highlights are: 1) enable
SPARSE_IRQ unconditionally, 2) kills off !SPARSE_IRQ code 3) allocates
ivector_table at boot time and 4) default to cookie only VIRQ mechanism
for supported firmware. The first firmware with cookie only support for
me appears on T5. You can optionally force the HV firmware to not cookie
only mode which is the sysino support.
The sysino is a deprecated HV mechanism according to the most recent
SPARC Virtual Machine Specification. HV_GRP_INTR is what controls the
cookie/sysino firmware versioning.
The history of this interface is:
1) Major version 1.0 only supported sysino based interrupt interfaces.
2) Major version 2.0 added cookie based VIRQs, however due to the fact
that OSs were using the VIRQs without negoatiating major version
2.0 (Linux and Solaris are both guilty), the VIRQs calls were
allowed even with major version 1.0
To complicate things even further, the VIRQ interfaces were only
actually hooked up in the hypervisor for LDC interrupt sources.
VIRQ calls on other device types would result in HV_EINVAL errors.
So effectively, major version 2.0 is unusable.
3) Major version 3.0 was created to signal use of VIRQs and the fact
that the hypervisor has these calls hooked up for all interrupt
sources, not just those for LDC devices.
A new boot option is provided should cookie only HV support have issues.
hvirq - this is the version for HV_GRP_INTR. This is related to HV API
versioning. The code attempts major=3 first by default. The option can
be used to override this default.
I've tested with SPARSE_IRQ on T5-8, M7-4 and T4-X and Jalap?no.
Signed-off-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In order to accomodate embedded per-cpu allocation with large numbers
of cpus and numa nodes, we have to use as much virtual address space
as possible for the vmalloc region. Otherwise we can get things like:
PERCPU: max_distance=0x380001c10000 too large for vmalloc space 0xff00000000
So, once we select a value for PAGE_OFFSET, derive the size of the
vmalloc region based upon that.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
|
|
Make sure, at compile time, that the kernel can properly support
whatever MAX_PHYS_ADDRESS_BITS is defined to.
On M7 chips, use a max_phys_bits value of 49.
Based upon a patch by Bob Picco.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
|
|
For sparse memory configurations, the vmemmap array behaves terribly
and it takes up an inordinate amount of space in the BSS section of
the kernel image unconditionally.
Just build huge PMDs and look them up just like we do for TLB misses
in the vmalloc area.
Kernel BSS shrinks by about 2MB.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
|
|
If max_phys_bits needs to be > 43 (f.e. for T4 chips), things like
DEBUG_PAGEALLOC stop working because the 3-level page tables only
can cover up to 43 bits.
Another problem is that when we increased MAX_PHYS_ADDRESS_BITS up to
47, several statically allocated tables became enormous.
Compounding this is that we will need to support up to 49 bits of
physical addressing for M7 chips.
The two tables in question are sparc64_valid_addr_bitmap and
kpte_linear_bitmap.
The first holds a bitmap, with 1 bit for each 4MB chunk of physical
memory, indicating whether that chunk actually exists in the machine
and is valid.
The second table is a set of 2-bit values which tell how large of a
mapping (4MB, 256MB, 2GB, 16GB, respectively) we can use at each 256MB
chunk of ram in the system.
These tables are huge and take up an enormous amount of the BSS
section of the sparc64 kernel image. Specifically, the
sparc64_valid_addr_bitmap is 4MB, and the kpte_linear_bitmap is 128K.
So let's solve the space wastage and the DEBUG_PAGEALLOC problem
at the same time, by using the kernel page tables (as designed) to
manage this information.
We have to keep using large mappings when DEBUG_PAGEALLOC is disabled,
and we do this by encoding huge PMDs and PUDs.
On a T4-2 with 256GB of ram the kernel page table takes up 16K with
DEBUG_PAGEALLOC disabled and 256MB with it enabled. Furthermore, this
memory is dynamically allocated at run time rather than coded
statically into the kernel image.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
|
|
As currently coded the KTSB accesses in the kernel only support up to
47 bits of physical addressing.
Adjust the instruction and patching sequence in order to support
arbitrary 64 bits addresses.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
|
|
Now that we use 4-level page tables, we can provide up to 53-bits of
virtual address space to the user.
Adjust the VA hole based upon the capabilities of the cpu type probed.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
|
|
This has become necessary with chips that support more than 43-bits
of physical addressing.
Based almost entirely upon a patch by Bob Picco.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
|
|
Otherwise we get the following build warning:
(XTENSA_PLATFORM_XTFPGA) selects ETHOC which has unmet direct
dependencies (NETDEVICES && ETHERNET && HAS_IOMEM && HAS_DMA)
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
|
|
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
|
|
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
|
|
The default pgprot_noncached doesn't do anything. This leads to issues
when drivers rely on it to disable caching in userspace mappings.
Implement pgprot_noncached properly so that caching of userspace mappings
could be controlled.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
|
|
When we have to split up a flush request into multiple pieces
(in order to avoid the firmware range) we don't specify the
arguments in the right order for the second piece.
Fix the order, or else we get hangs as the code tries to
flush "a lot" of entries and we get lockups like this:
[ 4422.981276] NMI watchdog: BUG: soft lockup - CPU#12 stuck for 23s! [expect:117032]
[ 4422.996130] Modules linked in: ipv6 loop usb_storage igb ptp sg sr_mod ehci_pci ehci_hcd pps_core n2_rng rng_core
[ 4423.016617] CPU: 12 PID: 117032 Comm: expect Not tainted 3.17.0-rc4+ #1608
[ 4423.030331] task: fff8003cc730e220 ti: fff8003d99d54000 task.ti: fff8003d99d54000
[ 4423.045282] TSTATE: 0000000011001602 TPC: 00000000004521e8 TNPC: 00000000004521ec Y: 00000000 Not tainted
[ 4423.064905] TPC: <__flush_tlb_kernel_range+0x28/0x40>
[ 4423.074964] g0: 000000000052fd10 g1: 00000001295a8000 g2: ffffff7176ffc000 g3: 0000000000002000
[ 4423.092324] g4: fff8003cc730e220 g5: fff8003dfedcc000 g6: fff8003d99d54000 g7: 0000000000000006
[ 4423.109687] o0: 0000000000000000 o1: 0000000000000000 o2: 0000000000000003 o3: 00000000f0000000
[ 4423.127058] o4: 0000000000000080 o5: 00000001295a8000 sp: fff8003d99d56d01 ret_pc: 000000000052ff54
[ 4423.145121] RPC: <__purge_vmap_area_lazy+0x314/0x3a0>
[ 4423.155185] l0: 0000000000000000 l1: 0000000000000000 l2: 0000000000a38040 l3: 0000000000000000
[ 4423.172559] l4: fff8003dae8965e0 l5: ffffffffffffffff l6: 0000000000000000 l7: 00000000f7e2b138
[ 4423.189913] i0: fff8003d99d576a0 i1: fff8003d99d576a8 i2: fff8003d99d575e8 i3: 0000000000000000
[ 4423.207284] i4: 0000000000008008 i5: fff8003d99d575c8 i6: fff8003d99d56df1 i7: 0000000000530c24
[ 4423.224640] I7: <free_vmap_area_noflush+0x64/0x80>
[ 4423.234193] Call Trace:
[ 4423.239051] [0000000000530c24] free_vmap_area_noflush+0x64/0x80
[ 4423.251029] [0000000000531a7c] remove_vm_area+0x5c/0x80
[ 4423.261628] [0000000000531b80] __vunmap+0x20/0x120
[ 4423.271352] [000000000071cf18] n_tty_close+0x18/0x40
[ 4423.281423] [00000000007222b0] tty_ldisc_close+0x30/0x60
[ 4423.292183] [00000000007225a4] tty_ldisc_reinit+0x24/0xa0
[ 4423.303120] [0000000000722ab4] tty_ldisc_hangup+0xd4/0x1e0
[ 4423.314232] [0000000000719aa0] __tty_hangup+0x280/0x3c0
[ 4423.324835] [0000000000724cb4] pty_close+0x134/0x1a0
[ 4423.334905] [000000000071aa24] tty_release+0x104/0x500
[ 4423.345316] [00000000005511d0] __fput+0x90/0x1e0
[ 4423.354701] [000000000047fa54] task_work_run+0x94/0xe0
[ 4423.365126] [0000000000404b44] __handle_signal+0xc/0x2c
Fixes: 4ca9a23765da ("sparc64: Guard against flushing openfirmware mappings.")
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The symbol is an orphan, get rid of it.
Signed-off-by: Richard Weinberger <richard@nod.at>
Acked-by: Lennox Wu <lennox.wu@gmail.com>
Cc: Paul Bolle <pebolle@tiscali.nl>
[Guenter Roeck: Merge with 3.17-rc3; update headline]
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
|
|
The related error (with allmodconfig under score):
CC [M] drivers/staging/speakup/speakup_acntpc.o
In file included from drivers/staging/speakup/speakup_acntpc.c:33:0:
drivers/staging/speakup/serialio.h:7:24: fatal error: asm/serial.h: No such file or directory
#include <asm/serial.h>
^
compilation terminated.
make[3]: *** [drivers/staging/speakup/speakup_acntpc.o] Error 1
make[2]: *** [drivers/staging/speakup] Error 2
make[1]: *** [drivers/staging] Error 2
make: *** [drivers] Error 2
Acked-by: Lennox Wu <lennox.wu@gmail.com>
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
|
|
This patch removes the use of the IRQF_DISABLED flag
from arch/score/kernel/time.c
It's a NOOP since 2.6.35 and it will be removed one day.
Signed-off-by: Michael Opdenacker <michael.opdenacker@free-electrons.com>
Acked-by: Lennox Wu <lennox.wu@gmail.com>
|
|
The related error (with allmodconfig under score):
MODPOST 1365 modules
ERROR: "flush_icache_range" [drivers/misc/lkdtm.ko] undefined!
Acked-by: Lennox Wu <lennox.wu@gmail.com>
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
|
|
'csum_partial_copy_from_user' and 'flush_dcache_page' are also needed by
outside modules, so need export them in the related files.
The related error (with allmodconfig under score):
MODPOST 1365 modules
ERROR: "csum_partial_copy_from_user" [net/rxrpc/af-rxrpc.ko] undefined!
ERROR: "flush_dcache_page" [net/sunrpc/sunrpc.ko] undefined!
Acked-by: Lennox Wu <lennox.wu@gmail.com>
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
|
|
This reverts commit 9ff25d7b58d8a4374886843ed3ed21f1ef17bf16.
Originally reported on the kernel-build-reports mailing list[0]. The
problem is caused by kernel configs that select both pxa25x and pxa27x
such as cm_x2xx_defconfig and palmz72_defconfig. The short term solution
is to revert the patch introducing the failure. Longer term, all the PXA
chips will be converted to the common clock framework allowing support
for various PXA chips to build into a single image.
Reverting just this one patch does introduce some dead code into the
kernel, but that is offset by making it easier to convert the remaining
PXA platforms to the clock framework.
[0] http://lists.linaro.org/pipermail/kernel-build-reports/2014-October/005576.html
Signed-off-by: Mike Turquette <mturquette@linaro.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/scottwood/linux.git
Freescale updates from Scott (27 commits):
"Highlights include DMA32 zone support (SATA, USB, etc now works on 64-bit
FSL kernels), MSI changes, 8xx optimizations and cleanup, t104x board
support, and PrPMC PCI enumeration."
|
|
Conflicts:
arch/x86/boot/compressed/eboot.c
|
|
commit 5dc3826d9f08 ("efi: Implement mandatory locking for UEFI Runtime
Services") implemented some conditional locking when accessing variable
runtime services that Ingo described as "pretty disgusting".
The intention with the !efi_in_nmi() checks was to avoid live-locks when
trying to write pstore crash data into an EFI variable. Such lockless
accesses are allowed according to the UEFI specification when we're in a
"non-recoverable" state, but whether or not things are implemented
correctly in actual firmware implementations remains an unanswered
question, and so it would seem sensible to avoid doing any kind of
unsynchronized variable accesses.
Furthermore, the efi_in_nmi() tests are inadequate because they don't
account for the case where we call EFI variable services from panic or
oops callbacks and aren't executing in NMI context. In other words,
live-locking is still possible.
Let's just remove the conditional locking altogether. Now we've got the
->set_variable_nonblocking() EFI variable operation we can abort if the
runtime lock is already held. Aborting is by far the safest option.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
All other calls to allocate memory seem to make some noise already, with the
exception of two calls (for gop, uga) in the setup_graphics path.
The purpose is to be noisy on worrysome errors immediately.
commit fb86b2440de0 ("x86/efi: Add better error logging to EFI boot
stub") introduces printing false alarms for lots of hardware. Rather
than playing Whack a Mole with non-fatal exit conditions, try the other
way round.
This is per Matt Fleming's suggestion:
> Where I think we could improve things
> is by adding efi_printk() message in certain error paths. Clearly, not
> all error paths need such messages, e.g. the EFI_INVALID_PARAMETER path
> you highlighted above, but it makes sense for memory allocation and PCI
> read failures.
Link: http://article.gmane.org/gmane.linux.kernel.efi/4628
Signed-off-by: Andre Müller <andre.muller@web.de>
Cc: Ulf Winkelvos <ulf@winkelvos.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
The 32 bit and 64 bit implementations differ in their __init annotations
for some functions referenced from the common EFI code. Namely, the 32
bit variant is missing some of the __init annotations the 64 bit variant
has.
To solve the colliding annotations, mark the corresponding functions in
efi_32.c as initialization code, too -- as it is such.
Actually, quite a few more functions are only used during initialization
and therefore can be marked __init. They are therefore annotated, too.
Also add the __init annotation to the prototypes in the efi.h header so
users of those functions will see it's meant as initialization code
only.
This patch also fixes the "prelog" typo. ("prologue" / "epilogue" might
be more appropriate but this is C code after all, not an opera! :D)
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Commit 3f4a7836e331 ("x86/efi: Rip out phys_efi_get_time()") left
set_virtual_address_map as the only runtime service needed with a
phys mapping but missed to update the preceding comment. Fix that.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
This variable was accidentally exported, even though it's only used in
this compilation unit and only during initialization.
Remove the bogus export, make the variable static instead and mark it
as __initdata.
Fixes: 200001eb140e ("x86 boot: only pick up additional EFI memmap...")
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Complement commit 62fa6e69a436 ("x86/efi: Delete most of the efi_call*
macros") and delete the stub macros for the !CONFIG_EFI case, too. In
fact, there are no EFI calls in this case so we don't need a dummy for
efi_call() even.
Signed-off-by: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
An example log excerpt demonstrating the change:
Before the patch:
> Processing EFI memory map:
> 0x000040000000-0x000040000fff [Loader Data]
> 0x000040001000-0x00004007ffff [Conventional Memory]
> 0x000040080000-0x00004072afff [Loader Data]
> 0x00004072b000-0x00005fdfffff [Conventional Memory]
> 0x00005fe00000-0x00005fe0ffff [Loader Data]
> 0x00005fe10000-0x0000964e8fff [Conventional Memory]
> 0x0000964e9000-0x0000964e9fff [Loader Data]
> 0x0000964ea000-0x000096c52fff [Loader Code]
> 0x000096c53000-0x00009709dfff [Boot Code]*
> 0x00009709e000-0x0000970b3fff [Runtime Code]*
> 0x0000970b4000-0x0000970f4fff [Runtime Data]*
> 0x0000970f5000-0x000097117fff [Runtime Code]*
> 0x000097118000-0x000097199fff [Runtime Data]*
> 0x00009719a000-0x0000971dffff [Runtime Code]*
> 0x0000971e0000-0x0000997f8fff [Conventional Memory]
> 0x0000997f9000-0x0000998f1fff [Boot Data]*
> 0x0000998f2000-0x0000999eafff [Conventional Memory]
> 0x0000999eb000-0x00009af09fff [Boot Data]*
> 0x00009af0a000-0x00009af21fff [Conventional Memory]
> 0x00009af22000-0x00009af46fff [Boot Data]*
> 0x00009af47000-0x00009af5bfff [Conventional Memory]
> 0x00009af5c000-0x00009afe1fff [Boot Data]*
> 0x00009afe2000-0x00009afe2fff [Conventional Memory]
> 0x00009afe3000-0x00009c01ffff [Boot Data]*
> 0x00009c020000-0x00009efbffff [Conventional Memory]
> 0x00009efc0000-0x00009f14efff [Boot Code]*
> 0x00009f14f000-0x00009f162fff [Runtime Code]*
> 0x00009f163000-0x00009f194fff [Runtime Data]*
> 0x00009f195000-0x00009f197fff [Boot Data]*
> 0x00009f198000-0x00009f198fff [Runtime Data]*
> 0x00009f199000-0x00009f1acfff [Conventional Memory]
> 0x00009f1ad000-0x00009f1affff [Boot Data]*
> 0x00009f1b0000-0x00009f1b0fff [Runtime Data]*
> 0x00009f1b1000-0x00009fffffff [Boot Data]*
> 0x000004000000-0x000007ffffff [Memory Mapped I/O]
> 0x000009010000-0x000009010fff [Memory Mapped I/O]
After the patch:
> Processing EFI memory map:
> 0x000040000000-0x000040000fff [Loader Data | | | | | |WB|WT|WC|UC]
> 0x000040001000-0x00004007ffff [Conventional Memory| | | | | |WB|WT|WC|UC]
> 0x000040080000-0x00004072afff [Loader Data | | | | | |WB|WT|WC|UC]
> 0x00004072b000-0x00005fdfffff [Conventional Memory| | | | | |WB|WT|WC|UC]
> 0x00005fe00000-0x00005fe0ffff [Loader Data | | | | | |WB|WT|WC|UC]
> 0x00005fe10000-0x0000964e8fff [Conventional Memory| | | | | |WB|WT|WC|UC]
> 0x0000964e9000-0x0000964e9fff [Loader Data | | | | | |WB|WT|WC|UC]
> 0x0000964ea000-0x000096c52fff [Loader Code | | | | | |WB|WT|WC|UC]
> 0x000096c53000-0x00009709dfff [Boot Code | | | | | |WB|WT|WC|UC]*
> 0x00009709e000-0x0000970b3fff [Runtime Code |RUN| | | | |WB|WT|WC|UC]*
> 0x0000970b4000-0x0000970f4fff [Runtime Data |RUN| | | | |WB|WT|WC|UC]*
> 0x0000970f5000-0x000097117fff [Runtime Code |RUN| | | | |WB|WT|WC|UC]*
> 0x000097118000-0x000097199fff [Runtime Data |RUN| | | | |WB|WT|WC|UC]*
> 0x00009719a000-0x0000971dffff [Runtime Code |RUN| | | | |WB|WT|WC|UC]*
> 0x0000971e0000-0x0000997f8fff [Conventional Memory| | | | | |WB|WT|WC|UC]
> 0x0000997f9000-0x0000998f1fff [Boot Data | | | | | |WB|WT|WC|UC]*
> 0x0000998f2000-0x0000999eafff [Conventional Memory| | | | | |WB|WT|WC|UC]
> 0x0000999eb000-0x00009af09fff [Boot Data | | | | | |WB|WT|WC|UC]*
> 0x00009af0a000-0x00009af21fff [Conventional Memory| | | | | |WB|WT|WC|UC]
> 0x00009af22000-0x00009af46fff [Boot Data | | | | | |WB|WT|WC|UC]*
> 0x00009af47000-0x00009af5bfff [Conventional Memory| | | | | |WB|WT|WC|UC]
> 0x00009af5c000-0x00009afe1fff [Boot Data | | | | | |WB|WT|WC|UC]*
> 0x00009afe2000-0x00009afe2fff [Conventional Memory| | | | | |WB|WT|WC|UC]
> 0x00009afe3000-0x00009c01ffff [Boot Data | | | | | |WB|WT|WC|UC]*
> 0x00009c020000-0x00009efbffff [Conventional Memory| | | | | |WB|WT|WC|UC]
> 0x00009efc0000-0x00009f14efff [Boot Code | | | | | |WB|WT|WC|UC]*
> 0x00009f14f000-0x00009f162fff [Runtime Code |RUN| | | | |WB|WT|WC|UC]*
> 0x00009f163000-0x00009f194fff [Runtime Data |RUN| | | | |WB|WT|WC|UC]*
> 0x00009f195000-0x00009f197fff [Boot Data | | | | | |WB|WT|WC|UC]*
> 0x00009f198000-0x00009f198fff [Runtime Data |RUN| | | | |WB|WT|WC|UC]*
> 0x00009f199000-0x00009f1acfff [Conventional Memory| | | | | |WB|WT|WC|UC]
> 0x00009f1ad000-0x00009f1affff [Boot Data | | | | | |WB|WT|WC|UC]*
> 0x00009f1b0000-0x00009f1b0fff [Runtime Data |RUN| | | | |WB|WT|WC|UC]*
> 0x00009f1b1000-0x00009fffffff [Boot Data | | | | | |WB|WT|WC|UC]*
> 0x000004000000-0x000007ffffff [Memory Mapped I/O |RUN| | | | | | | |UC]
> 0x000009010000-0x000009010fff [Memory Mapped I/O |RUN| | | | | | | |UC]
The attribute bitmap is now displayed, in decoded form.
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
The effects of the patch on the i64 memory map log are similar to those
visible in the previous (x86) patch: the type enum and the attribute
bitmap are decoded.
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
An example log excerpt demonstrating the change:
Before the patch:
> efi: mem00: type=7, attr=0xf, range=[0x0000000000000000-0x000000000009f000) (0MB)
> efi: mem01: type=2, attr=0xf, range=[0x000000000009f000-0x00000000000a0000) (0MB)
> efi: mem02: type=7, attr=0xf, range=[0x0000000000100000-0x0000000000400000) (3MB)
> efi: mem03: type=2, attr=0xf, range=[0x0000000000400000-0x0000000000800000) (4MB)
> efi: mem04: type=10, attr=0xf, range=[0x0000000000800000-0x0000000000808000) (0MB)
> efi: mem05: type=7, attr=0xf, range=[0x0000000000808000-0x0000000000810000) (0MB)
> efi: mem06: type=10, attr=0xf, range=[0x0000000000810000-0x0000000000900000) (0MB)
> efi: mem07: type=4, attr=0xf, range=[0x0000000000900000-0x0000000001100000) (8MB)
> efi: mem08: type=7, attr=0xf, range=[0x0000000001100000-0x0000000001400000) (3MB)
> efi: mem09: type=2, attr=0xf, range=[0x0000000001400000-0x0000000002613000) (18MB)
> efi: mem10: type=7, attr=0xf, range=[0x0000000002613000-0x0000000004000000) (25MB)
> efi: mem11: type=4, attr=0xf, range=[0x0000000004000000-0x0000000004020000) (0MB)
> efi: mem12: type=7, attr=0xf, range=[0x0000000004020000-0x00000000068ea000) (40MB)
> efi: mem13: type=2, attr=0xf, range=[0x00000000068ea000-0x00000000068f0000) (0MB)
> efi: mem14: type=3, attr=0xf, range=[0x00000000068f0000-0x0000000006c7b000) (3MB)
> efi: mem15: type=6, attr=0x800000000000000f, range=[0x0000000006c7b000-0x0000000006c7d000) (0MB)
> efi: mem16: type=5, attr=0x800000000000000f, range=[0x0000000006c7d000-0x0000000006c85000) (0MB)
> efi: mem17: type=6, attr=0x800000000000000f, range=[0x0000000006c85000-0x0000000006c87000) (0MB)
> efi: mem18: type=3, attr=0xf, range=[0x0000000006c87000-0x0000000006ca3000) (0MB)
> efi: mem19: type=6, attr=0x800000000000000f, range=[0x0000000006ca3000-0x0000000006ca6000) (0MB)
> efi: mem20: type=10, attr=0xf, range=[0x0000000006ca6000-0x0000000006cc6000) (0MB)
> efi: mem21: type=6, attr=0x800000000000000f, range=[0x0000000006cc6000-0x0000000006d95000) (0MB)
> efi: mem22: type=5, attr=0x800000000000000f, range=[0x0000000006d95000-0x0000000006e22000) (0MB)
> efi: mem23: type=7, attr=0xf, range=[0x0000000006e22000-0x0000000007165000) (3MB)
> efi: mem24: type=4, attr=0xf, range=[0x0000000007165000-0x0000000007d22000) (11MB)
> efi: mem25: type=7, attr=0xf, range=[0x0000000007d22000-0x0000000007d25000) (0MB)
> efi: mem26: type=3, attr=0xf, range=[0x0000000007d25000-0x0000000007ea2000) (1MB)
> efi: mem27: type=5, attr=0x800000000000000f, range=[0x0000000007ea2000-0x0000000007ed2000) (0MB)
> efi: mem28: type=6, attr=0x800000000000000f, range=[0x0000000007ed2000-0x0000000007ef6000) (0MB)
> efi: mem29: type=7, attr=0xf, range=[0x0000000007ef6000-0x0000000007f00000) (0MB)
> efi: mem30: type=9, attr=0xf, range=[0x0000000007f00000-0x0000000007f02000) (0MB)
> efi: mem31: type=10, attr=0xf, range=[0x0000000007f02000-0x0000000007f06000) (0MB)
> efi: mem32: type=4, attr=0xf, range=[0x0000000007f06000-0x0000000007fd0000) (0MB)
> efi: mem33: type=6, attr=0x800000000000000f, range=[0x0000000007fd0000-0x0000000007ff0000) (0MB)
> efi: mem34: type=7, attr=0xf, range=[0x0000000007ff0000-0x0000000008000000) (0MB)
After the patch:
> efi: mem00: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000000000000-0x000000000009f000) (0MB)
> efi: mem01: [Loader Data | | | | | |WB|WT|WC|UC] range=[0x000000000009f000-0x00000000000a0000) (0MB)
> efi: mem02: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000000100000-0x0000000000400000) (3MB)
> efi: mem03: [Loader Data | | | | | |WB|WT|WC|UC] range=[0x0000000000400000-0x0000000000800000) (4MB)
> efi: mem04: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x0000000000800000-0x0000000000808000) (0MB)
> efi: mem05: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000000808000-0x0000000000810000) (0MB)
> efi: mem06: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x0000000000810000-0x0000000000900000) (0MB)
> efi: mem07: [Boot Data | | | | | |WB|WT|WC|UC] range=[0x0000000000900000-0x0000000001100000) (8MB)
> efi: mem08: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000001100000-0x0000000001400000) (3MB)
> efi: mem09: [Loader Data | | | | | |WB|WT|WC|UC] range=[0x0000000001400000-0x0000000002613000) (18MB)
> efi: mem10: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000002613000-0x0000000004000000) (25MB)
> efi: mem11: [Boot Data | | | | | |WB|WT|WC|UC] range=[0x0000000004000000-0x0000000004020000) (0MB)
> efi: mem12: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000004020000-0x00000000068ea000) (40MB)
> efi: mem13: [Loader Data | | | | | |WB|WT|WC|UC] range=[0x00000000068ea000-0x00000000068f0000) (0MB)
> efi: mem14: [Boot Code | | | | | |WB|WT|WC|UC] range=[0x00000000068f0000-0x0000000006c7b000) (3MB)
> efi: mem15: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006c7b000-0x0000000006c7d000) (0MB)
> efi: mem16: [Runtime Code |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006c7d000-0x0000000006c85000) (0MB)
> efi: mem17: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006c85000-0x0000000006c87000) (0MB)
> efi: mem18: [Boot Code | | | | | |WB|WT|WC|UC] range=[0x0000000006c87000-0x0000000006ca3000) (0MB)
> efi: mem19: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006ca3000-0x0000000006ca6000) (0MB)
> efi: mem20: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x0000000006ca6000-0x0000000006cc6000) (0MB)
> efi: mem21: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006cc6000-0x0000000006d95000) (0MB)
> efi: mem22: [Runtime Code |RUN| | | | |WB|WT|WC|UC] range=[0x0000000006d95000-0x0000000006e22000) (0MB)
> efi: mem23: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000006e22000-0x0000000007165000) (3MB)
> efi: mem24: [Boot Data | | | | | |WB|WT|WC|UC] range=[0x0000000007165000-0x0000000007d22000) (11MB)
> efi: mem25: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000007d22000-0x0000000007d25000) (0MB)
> efi: mem26: [Boot Code | | | | | |WB|WT|WC|UC] range=[0x0000000007d25000-0x0000000007ea2000) (1MB)
> efi: mem27: [Runtime Code |RUN| | | | |WB|WT|WC|UC] range=[0x0000000007ea2000-0x0000000007ed2000) (0MB)
> efi: mem28: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000007ed2000-0x0000000007ef6000) (0MB)
> efi: mem29: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000007ef6000-0x0000000007f00000) (0MB)
> efi: mem30: [ACPI Reclaim Memory| | | | | |WB|WT|WC|UC] range=[0x0000000007f00000-0x0000000007f02000) (0MB)
> efi: mem31: [ACPI Memory NVS | | | | | |WB|WT|WC|UC] range=[0x0000000007f02000-0x0000000007f06000) (0MB)
> efi: mem32: [Boot Data | | | | | |WB|WT|WC|UC] range=[0x0000000007f06000-0x0000000007fd0000) (0MB)
> efi: mem33: [Runtime Data |RUN| | | | |WB|WT|WC|UC] range=[0x0000000007fd0000-0x0000000007ff0000) (0MB)
> efi: mem34: [Conventional Memory| | | | | |WB|WT|WC|UC] range=[0x0000000007ff0000-0x0000000008000000) (0MB)
Both the type enum and the attribute bitmap are decoded, with the
additional benefit that the memory ranges line up as well.
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
If enter virtual mode failed due to some reason other than the efi call
the EFI_RUNTIME_SERVICES bit in efi.flags should be cleared thus users
of efi runtime services can check the bit and handle the case instead of
assume efi runtime is ok.
Per Matt, if efi call SetVirtualAddressMap fails we will be not sure
it's safe to make any assumptions about the state of the system. So
kernel panics instead of clears EFI_RUNTIME_SERVICES bit.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
In case efi runtime disabled via noefi kernel cmdline
arm64_enter_virtual_mode should error out.
At the same time move early_memunmap(memmap.map, mapsize) to the
beginning of the function or it will leak early mem.
Signed-off-by: Dave Young <dyoung@redhat.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
There's one early memmap leak in uefi_init error path, fix it and
slightly tune the error handling code.
Signed-off-by: Dave Young <dyoung@redhat.com>
Acked-by: Mark Salter <msalter@redhat.com>
Reported-by: Will Deacon <will.deacon@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
noefi kernel param means actually disabling efi runtime, Per suggestion
from Leif Lindholm efi=noruntime should be better. But since noefi is
already used in X86 thus just adding another param efi=noruntime for
same purpose.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
There should be a generic function to parse params like a=b,c
Adding parse_option_str in lib/cmdline.c which will return true
if there's specified option set in the params.
Also updated efi=old_map parsing code to use the new function
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
noefi param can be used for arches other than X86 later, thus move it
out of x86 platform code.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Gracefully handle failures to allocate memory for the image, which might
be arbitrarily large.
efi_bgrt_init can fail in various ways as well, usually because the
BIOS-provided BGRT structure does not match expectations. Add
appropriate error messages rather than failing silently.
Reported-by: Srihari Vijayaraghavan <linux.bug.reporting@gmail.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=81321
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
We need a way to customize the behaviour of the EFI boot stub, in
particular, we need a way to disable the "chunking" workaround, used
when reading files from the EFI System Partition.
One of my machines doesn't cope well when reading files in 1MB chunks to
a buffer above the 4GB mark - it appears that the "chunking" bug
workaround triggers another firmware bug. This was only discovered with
commit 4bf7111f5016 ("x86/efi: Support initrd loaded above 4G"), and
that commit is perfectly valid. The symptom I observed was a corrupt
initrd rather than any kind of crash.
efi= is now used to specify EFI parameters in two very different
execution environments, the EFI boot stub and during kernel boot.
There is also a slight performance optimization by enabling efi=nochunk,
but that's offset by the fact that you're more likely to run into
firmware issues, at least on x86. This is the rationale behind leaving
the workaround enabled by default.
Also provide some documentation for EFI_READ_CHUNK_SIZE and why we're
using the current value of 1MB.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Roy Franz <roy.franz@linaro.org>
Cc: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
According to section 7.1 of the UEFI spec, Runtime Services are not fully
reentrant, and there are particular combinations of calls that need to be
serialized. Use a spinlock to serialize all Runtime Services with respect
to all others, even if this is more than strictly needed.
We've managed to get away without requiring a runtime services lock
until now because most of the interactions with EFI involve EFI
variables, and those operations are already serialised with
__efivars->lock.
Some of the assumptions underlying the decision whether locks are
needed or not (e.g., SetVariable() against ResetSystem()) may not
apply universally to all [new] architectures that implement UEFI.
Rather than try to reason our way out of this, let's just implement at
least what the spec requires in terms of locking.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
|
|
Function prototypes are never definitions, so remove any 'extern' keyword
from the funcion prototypes in cpu_ops.h. Fixes warnings emited by
checkpatch.
Signed-off-by: Geoff Levand <geoff@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
of_device_ids (i.e. compatible strings and the respective data) are not
supposed to change at runtime. All functions working with of_device_ids
provided by <linux/of.h> work with const of_device_ids. So mark the
only non-const struct in arch/arm64 as const, too.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|