Age | Commit message (Collapse) | Author |
|
This patch modifies ubi_wl_flush to force the erasure of
particular volume id / logical eraseblock number pairs. Previous functionality
is preserved when passing UBI_ALL for both values. The locations where ubi_wl_flush
were called are appropriately changed: ubi_leb_erase only flushes for the
erased LEB, and ubi_create_volume forces only flushing for its volume id.
External code can call this new feature via the new function ubi_flush() added
to kapi.c, which simply passes through to ubi_wl_flush().
This was tested by disabling the call to do_work in ubi thread, which results
in the work queue remaining unless explicitly called to remove. UBIFS was
changed to call ubifs_leb_change 50 times for four different LEBs. Then the
new function was called to clear the queue: passing wrong volume ids / lnum,
correct ones, and finally UBI_ALL for both to ensure it was finally all
cleard. The work queue was dumped each time and the selective removal
of the particular LEB numbers was observed. Extra checks were enabled and
ubifs's integck was also run. Finally, the drive was repeatedly filled and
emptied to ensure that the queue was cleared normally.
Artem: amended the patch.
Signed-off-by: Joel Reardon <reardonj@inf.ethz.ch>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
|
|
We do not need this feature and to our shame it even was not working
and there was a bug found very recently.
-- Artem Bityutskiy
Without the data type hint UBI2 (fastmap) will be easier to implement.
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
|
|
When truncating an UBI volume, UBI should allocates a PEB-sized
buffer but does not release it, which leads to memory leaks.
This patch fixes the issue.
Reported-by: Marek Skuczynski <mareksk7@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Tested-by: Marek Skuczynski <mareksk7@gmail.com>
Cc: stable@kernel.org
|
|
ubiupdatevol -t does the following:
- ubi_start_update()
- set_update_marker()
- for all LEBs ubi_eba_unmap_leb()
- clear_update_marker()
- ubi_wl_flush()
ubi_wl_flush() physically erases all PEB, once it returns all PEBs are
empty. clear_update_marker() has the update marker written after return.
If there is a power cut between the last two functions then the UBI
volume has no longer the "update" marker set and may have some valid
LEBs while some of them may be gone.
If that volume in question happens to be a UBIFS volume, then mount
will fail with
|UBIFS error (pid 1361): ubifs_read_node: bad node type (255 but expected 6)
|UBIFS error (pid 1361): ubifs_read_node: bad node at LEB 0:0
|Not a node, first 24 bytes:
|00000000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
if there is at least one valid LEB and the wear-leveling worker managed
to clear LEB 0.
The patch waits for the wl worker to finish prior clearing the "update"
marker on flash. The two new LEB which are scheduled for erasing after
clear_update_marker() should not matter because they are only visible to
UBI.
Signed-off-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Cc: stable@kernel.org
|
|
The @vol->upd_marker should be protected by the @ubi->device_mutex,
otherwise 'paranoid_check_volume()' complains sometimes because
vol->upd_marker is 1 while vtbl_rec->upd_marker is 0.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
The mutex essencially protects the entire UBI device, so the
old @volumes_mutex name is a little misleading.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Get rid of 'do_div()' and use more user-friendly primitives from
'linux/math64.h'.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
No functional changes, just tweak comments to make kernel-doc
work fine and stop complaining.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Just out or curiousity ran checkpatch.pl for whole UBI,
and discovered there are quite a few of stylistic issues.
Fix them.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Instead of correctly pad the buffer wich we are writing to the
eraseblock during update, we used weird construct:
memset(buf + len, 0xFF, len - len);
Fix this.
Signed-off-by: Kyungmin Park <kmpark@infradead.org>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Instead of passing vol_id to all functions and then find
struct ubi_volume, pass struct ubi_volume pointer.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Since we do not change semantics of seek(), changing the file
pointer while updating does not make much sense.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Transform vtbl_mutex to volumes_mutex - this just makes code
easier to understand.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Pass volume description object to the EBA function which makes
more sense, and EBA function do not have to find the volume
description object by volume ID.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
UBI allocates temporary buffers of PEB size, which may be 256KiB.
Use vmalloc instead of kmalloc for such big temporary buffers.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
UBI (Latin: "where?") manages multiple logical volumes on a single
flash device, specifically supporting NAND flash devices. UBI provides
a flexible partitioning concept which still allows for wear-levelling
across the whole flash device.
In a sense, UBI may be compared to the Logical Volume Manager
(LVM). Whereas LVM maps logical sector numbers to physical HDD sector
numbers, UBI maps logical eraseblocks to physical eraseblocks.
More information may be found at
http://www.linux-mtd.infradead.org/doc/ubi.html
Partitioning/Re-partitioning
An UBI volume occupies a certain number of erase blocks. This is
limited by a configured maximum volume size, which could also be
viewed as the partition size. Each individual UBI volume's size can
be changed independently of the other UBI volumes, provided that the
sum of all volume sizes doesn't exceed a certain limit.
UBI supports dynamic volumes and static volumes. Static volumes are
read-only and their contents are protected by CRC check sums.
Bad eraseblocks handling
UBI transparently handles bad eraseblocks. When a physical
eraseblock becomes bad, it is substituted by a good physical
eraseblock, and the user does not even notice this.
Scrubbing
On a NAND flash bit flips can occur on any write operation,
sometimes also on read. If bit flips persist on the device, at first
they can still be corrected by ECC, but once they accumulate,
correction will become impossible. Thus it is best to actively scrub
the affected eraseblock, by first copying it to a free eraseblock
and then erasing the original. The UBI layer performs this type of
scrubbing under the covers, transparently to the UBI volume users.
Erase Counts
UBI maintains an erase count header per eraseblock. This frees
higher-level layers (like file systems) from doing this and allows
for centralized erase count management instead. The erase counts are
used by the wear-levelling algorithm in the UBI layer. The algorithm
itself is exchangeable.
Booting from NAND
For booting directly from NAND flash the hardware must at least be
capable of fetching and executing a small portion of the NAND
flash. Some NAND flash controllers have this kind of support. They
usually limit the window to a few kilobytes in erase block 0. This
"initial program loader" (IPL) must then contain sufficient logic to
load and execute the next boot phase.
Due to bad eraseblocks, which may be randomly scattered over the
flash device, it is problematic to store the "secondary program
loader" (SPL) statically. Also, due to bit-flips it may become
corrupted over time. UBI allows to solve this problem gracefully by
storing the SPL in a small static UBI volume.
UBI volumes vs. static partitions
UBI volumes are still very similar to static MTD partitions:
* both consist of eraseblocks (logical eraseblocks in case of UBI
volumes, and physical eraseblocks in case of static partitions;
* both support three basic operations - read, write, erase.
But UBI volumes have the following advantages over traditional
static MTD partitions:
* there are no eraseblock wear-leveling constraints in case of UBI
volumes, so the user should not care about this;
* there are no bit-flips and bad eraseblocks in case of UBI volumes.
So, UBI volumes may be considered as flash devices with relaxed
restrictions.
Where can it be found?
Documentation, kernel code and applications can be found in the MTD
gits.
What are the applications for?
The applications help to create binary flash images for two purposes: pfi
files (partial flash images) for in-system update of UBI volumes, and plain
binary images, with or without OOB data in case of NAND, for a manufacturing
step. Furthermore some tools are/and will be created that allow flash content
analysis after a system has crashed..
Who did UBI?
The original ideas, where UBI is based on, were developed by Andreas
Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others
were involved too. The implementation of the kernel layer was done by Artem
B. Bityutskiy. The user-space applications and tools were written by Oliver
Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem.
Joern Engel contributed a patch which modifies JFFS2 so that it can be run on
a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander
Schmidt made some testing work as well as core functionality improvements.
Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de>
Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
|