Age | Commit message (Collapse) | Author |
|
- (better, more, bigger ...) then -> (...) than
Signed-off-by: Frederik Schwarzer <schwarzerf@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
This patch makes debugging a missconfigured UBI a bit easier
by providing the needed information in the boot log.
Signed-off-by: Deepak Saxena <dsaxena@laptop.org>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Before UBI got into mainline, there was a slight flash format
change - we did not have sequence number support, then added it.
We have carried full support of those ancient images till this
moment. Now the support is removed, well, not fully removed.
Now UBI will support only _clean_ old images, which were cleanly
detached last time (just before kernel upgrade). This is most
likely the case.
But we will not support unclean ancient images. Surprisingly,
this allows us to remove a big chunk of legacy code.
And the same should be true for downgrading: clean images should
downgrade fine, but unclean ones will not.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
No functional changes, just tweak comments to make kernel-doc
work fine and stop complaining.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Just out or curiousity ran checkpatch.pl for whole UBI,
and discovered there are quite a few of stylistic issues.
Fix them.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Quite useful ioctl which allows to make atomic system upgrades.
The idea belongs to Richard Titmuss <richard_titmuss@logitech.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
UBI already checks that @min io size is the power of 2 at io_init.
It is save to use bit operations then.
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
It is not clear why we schedule PEB for scrubbing in case of
-EBADMSG. Elaborate.
Requested-by: Kyungmin Park <kmpark@infradead.org>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Print error code if checking failed which is very useful
to identify problems.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
This patch fixes a memory leak introduced by commit
4ccf8cffa963c7b5bdc6d455ea9417084ee49aa8 and spotted by the Coverity
checker.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
This is just not necessary. We re-write whole layout copy, so
the old contents cannot show up again sice scan process will
drop it.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Add more information about layout volume to make userspace tools
use the macros instead of constants. Also rename UBI_LAYOUT_VOL_ID
to make it consistent with other macros.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
The problem: NAND flashes have different amount of initial bad physical
eraseblocks (marked as bad by the manufacturer). For example, for 256MiB
Samsung OneNAND flash there might be from 0 to 40 bad initial eraseblocks,
which is about 2%. When UBI is used as the base system, one needs to know
the exact amount of good physical eraseblocks, because this number is
needed to create the UBI image which is put to the devices during
production. But this number is not know, which forces us to use the
minimum number of good physical eraseblocks. And UBI additionally
reserves some percentage of physical eraseblocks for bad block handling
(default is 1%), so we have 1-3% of PEBs reserved at the end, depending
on the amount of initial bad PEBs. But it is desired to always have
1% (or more, depending on the configuration).
Solution: this patch adds an "auto-resize" flag to the volume table.
The volume which has the "auto-resize" flag will automatically be re-sized
(enlarged) on the first UBI initialization. UBI clears the flag when
the volume is re-sized. Only one volume may have the "auto-resize" flag.
So, the production UBI image may have one volume with "auto-resize"
flag set, and its size is automatically adjusted on the first boot
of the device.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Add ref_count field to UBI volumes and remove weired "vol->removed"
field. This way things are better understandable and we do not have
to do whold show_attr operation under spinlock.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Transform vtbl_mutex to volumes_mutex - this just makes code
easier to understand.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Pass volume description object to the EBA function which makes
more sense, and EBA function do not have to find the volume
description object by volume ID.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Similar reason as in case of the previous patch: it causes
deadlocks if a filesystem with writeback support works on top
of UBI. So pre-allocate needed buffers when attaching MTD device.
We also need mutexes to protect the buffers, but they do not
cause much contantion because they are used in recovery, torture,
and WL copy routines, which are called seldom.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Use GFP_NOFS flag when allocating memory on I/O path, because otherwise
we may deadlock the filesystem which works on top of us. We observed
the deadlocks with UBIFS. Example:
VFS->FS lock a lock->UBI->kmalloc()->VFS writeback->FS locks the same
lock again.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
I was experiencing overflows in multiplications for
volume->used_bytes in vmt.c & vtbl.c, while creating & resizing large volumes.
vol->used_bytes is long long however its 2 operands vol->used_ebs &
vol->usable_leb_size
are int. So their multiplication for larger values causes integer overflows.
Typecasting them solves the problem.
My machine & flash details:
64Bit dual-core AMD opteron, 1 GB RAM, linux 2.6.18.3.
mtd size = 6GB, volume size= 5GB, peb_size = 4MB.
heres patch which does the fix.
Signed-off-by: Vinit Agnihotri <vinit.agnihotri@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
When volume creation fails, we have to set ubi->volumes[vol_id]
back to NULL.
This patch also tweaks some debugging stuff.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Kill UBI's homegrown endianess handling and replace it with
the standard kernel endianess handling.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
UBI allocates temporary buffers of PEB size, which may be 256KiB.
Use vmalloc instead of kmalloc for such big temporary buffers.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
There were several bugs in volume table creation error path. Thanks to
Satyam Sharma <satyam.sharma@gmail.com> and Florin Malita <fmalita@gmail.com>
for finding and analysing them: http://lkml.org/lkml/2007/5/3/274
This patch makes ubi_scan_add_to_list() static and renames it to
add_to_list(), just because it is not needed outside scan.c anymore.
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
Coverity (CID 1614) spotted new_seb being dereferenced after kfree() in
create_vtbl's write_error path.
Signed-off-by: Florin Malita <fmalita@gmail.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
|
UBI (Latin: "where?") manages multiple logical volumes on a single
flash device, specifically supporting NAND flash devices. UBI provides
a flexible partitioning concept which still allows for wear-levelling
across the whole flash device.
In a sense, UBI may be compared to the Logical Volume Manager
(LVM). Whereas LVM maps logical sector numbers to physical HDD sector
numbers, UBI maps logical eraseblocks to physical eraseblocks.
More information may be found at
http://www.linux-mtd.infradead.org/doc/ubi.html
Partitioning/Re-partitioning
An UBI volume occupies a certain number of erase blocks. This is
limited by a configured maximum volume size, which could also be
viewed as the partition size. Each individual UBI volume's size can
be changed independently of the other UBI volumes, provided that the
sum of all volume sizes doesn't exceed a certain limit.
UBI supports dynamic volumes and static volumes. Static volumes are
read-only and their contents are protected by CRC check sums.
Bad eraseblocks handling
UBI transparently handles bad eraseblocks. When a physical
eraseblock becomes bad, it is substituted by a good physical
eraseblock, and the user does not even notice this.
Scrubbing
On a NAND flash bit flips can occur on any write operation,
sometimes also on read. If bit flips persist on the device, at first
they can still be corrected by ECC, but once they accumulate,
correction will become impossible. Thus it is best to actively scrub
the affected eraseblock, by first copying it to a free eraseblock
and then erasing the original. The UBI layer performs this type of
scrubbing under the covers, transparently to the UBI volume users.
Erase Counts
UBI maintains an erase count header per eraseblock. This frees
higher-level layers (like file systems) from doing this and allows
for centralized erase count management instead. The erase counts are
used by the wear-levelling algorithm in the UBI layer. The algorithm
itself is exchangeable.
Booting from NAND
For booting directly from NAND flash the hardware must at least be
capable of fetching and executing a small portion of the NAND
flash. Some NAND flash controllers have this kind of support. They
usually limit the window to a few kilobytes in erase block 0. This
"initial program loader" (IPL) must then contain sufficient logic to
load and execute the next boot phase.
Due to bad eraseblocks, which may be randomly scattered over the
flash device, it is problematic to store the "secondary program
loader" (SPL) statically. Also, due to bit-flips it may become
corrupted over time. UBI allows to solve this problem gracefully by
storing the SPL in a small static UBI volume.
UBI volumes vs. static partitions
UBI volumes are still very similar to static MTD partitions:
* both consist of eraseblocks (logical eraseblocks in case of UBI
volumes, and physical eraseblocks in case of static partitions;
* both support three basic operations - read, write, erase.
But UBI volumes have the following advantages over traditional
static MTD partitions:
* there are no eraseblock wear-leveling constraints in case of UBI
volumes, so the user should not care about this;
* there are no bit-flips and bad eraseblocks in case of UBI volumes.
So, UBI volumes may be considered as flash devices with relaxed
restrictions.
Where can it be found?
Documentation, kernel code and applications can be found in the MTD
gits.
What are the applications for?
The applications help to create binary flash images for two purposes: pfi
files (partial flash images) for in-system update of UBI volumes, and plain
binary images, with or without OOB data in case of NAND, for a manufacturing
step. Furthermore some tools are/and will be created that allow flash content
analysis after a system has crashed..
Who did UBI?
The original ideas, where UBI is based on, were developed by Andreas
Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others
were involved too. The implementation of the kernel layer was done by Artem
B. Bityutskiy. The user-space applications and tools were written by Oliver
Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem.
Joern Engel contributed a patch which modifies JFFS2 so that it can be run on
a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander
Schmidt made some testing work as well as core functionality improvements.
Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de>
Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
|